
Math 104: Midterm 2 solutions

1. Consider the power series
∞

∑
n=1

(2x)n2

n
.

(a) Show that the series diverges at x = 1/2 and converges at x = −1/2.

Answer: If x = 1/2, the series becomes

∞

∑
n=1

1
n

,

which diverges to ∞. If x = −1/2, the series becomes

∞

∑
n=1

(−1)n2

n
.

If n is even then n2 is even. If n is odd, then it can be written as 2k + 1, and
thus n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1, so n2 is odd. Hence
(−1)n2

= (−1)n for all n ∈ N and thus the series can be rewritten as

∞

∑
n=1

(−1)n

n
.

This converges by the alternating series theorem.

(b) What is the radius of convergence of the series? Either calculate it explicitly, or
justify carefully using part (a).

Answer: If the radius of convergence of a power series is R, then it must con-
verge for |x| < R and diverge for |x| > R. Since the series converges for
x = 1/2, it follows that R ≥ 1/2. Since the series diverges for x = −1/2, it
follows that R ≤ 1/2. Hence R = 1/2.
Alternatively, to calculate explicitly, first rewrite the sum as ∑ anxn, where an =
2nn−1/2 if n is a square number, and an = 0 otherwise. The general radius of
convergence formula then gives

β = lim sup |an|1/n = lim sup |an2 |1/n2
= lim

n→∞

∣∣∣∣∣2n2

n

∣∣∣∣∣
1/n2

= 2 lim
n→∞

|n|−1/n2
.

For all n ∈ N, |n|−1/n ≤ |n|−1/n2 ≤ 1. Since limn→∞ |n|−1/n = 1, it follows that
limn→∞ |n|−1/n2

= 1 by the squeezing lemma. Hence β = 2, so R = 1/β = 1/2.



2. Consider the function

d(x, y) =
{

0 if x = y,
1 + |x − y| if x ̸= y,

defined for all x, y ∈ R.

(a) Prove that d is a metric on R.

Answer: Consider the three properties of a metric:

M1. From the definition, it can be seen that d(x, x) = 0 for all x ∈ R, and that
d(x, y) > 0 for all x, y ∈ R where x ̸= y.

M2. Consider x, y ∈ R. If x = y then d(x, y) = 0 = d(y, x). If x ̸= y, then
d(x, y) = 1 + |x − y| = 1 + |y − x| = d(y, x) and hence d is symmetric.

M3. Consider x, y, z ∈ R. If x = y, then d(x, y) + d(y, z) = 0 + d(y, z) = d(x, z)
and the triangle inequality is satisfied. If y = z, then similarly d(x, y) +
d(y, z) = d(x, z). Otherwise x ̸= y and y ̸= z. By making use of the usual
triangle inequality,

d(x, y)+ d(y, z) = 2+ |x− y|+ |y− z| ≥ 2+ |x− z| > 1+ |x− z| ≥ d(x, z).

Hence d satisfies the triangle inequality.

(b) Find the interior of [0, 1] with respect to d.

Answer: For any x ∈ [0, 1], the neighborhood of radius 1/2 at x is N1/2(x) =
{y ∈ R : d(x, y) < 1/2} = {x}. Since {x} ⊆ [0, 1], it follows that x is an interior
point. Hence the interior is [0, 1].

(c) Suppose that (sn) is a Cauchy sequence in R with respect to d. Prove that it is
a convergent sequence with respect to d.

Answer: Since (sn) is Cauchy, there exists an N such that n, m > N implies
that d(sn, sm) < 1/2. However, d(x, y) > 1 for any x ̸= y. Hence sn = sm for all
n, m > N, so the sequence is equal to some constant s for all n > N. Hence, for
any ϵ > 0, n > N implies that d(sn, s) = 0 < ϵ, so the series converges.



3. Consider the functions f (x) = x2(2 − x) and g(x) = | f (x)| defined for all x ∈ R.

(a) Sketch f and g over the domain −1 ≤ x ≤ 3.

Answer: The functions are sketched in Figure 1.

(b) Use the ϵ-δ property to prove that g is continuous at x = 2.

Answer: Consider any ϵ > 0. Then

|g(x)− g(2)| =
∣∣∣|x2(2 − x)| − 0

∣∣∣ = x2|2 − x|.

Suppose |x − 2| < 1. Then 1 < x < 3, and hence x2|2 − x| < 32|2 − x| =
9|2 − x|. If |x − 2| < δ where δ = min{1, ϵ/9}, then

|g(x)− g(2)| < 9|2 − x| < 9ϵ

9
= ϵ

and hence g is continuous at x = 2.

(c) Prove that there are at least four solutions to the equation g(x) = 1/2.

Answer: By looking at Figure 1, it can be seen that g(x) crosses the line y = 1/2

four times. Note that

g(−1) = 3, g(0) = 0, g(1) = 1, g(2) = 0, g(3) = 9

and hence applying the Intermediate Value Theorem to the intervals (−1, 0),
(0, 1), (1, 2), and (2, 3) will give four distinct values of x where g(x) = 1/2.
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Figure 1: Functions considered in question 3.



4. Let f be a real-valued function on (0, 1). Define a sequence of functions as

fn(x) =
{

α if x < 1/n,
f (x) if x ≥ 1/n

where α is a real constant.

(a) Prove that fn → f pointwise.

Answer: Consider a fixed x ∈ (0, 1). Then by the Archimedean principle there
exists an N ∈ N such that 1/N < x. Consider any ϵ > 0. Then n > N implies
that | fn(x)− f (x)| = | f (x)− f (x)| = 0 < ϵ, and thus limn→∞ fn(x) = f (x).
Hence fn → f pointwise.

(b) Prove that fn → f uniformly if and only if limx→0+ f (x) = α.

Answer: Suppose limx→0+ f = α. To prove fn → f uniformly, consider any
ϵ > 0. Then there exists δ > 0 such that 0 < x < δ implies that | f (x)− α| <
ϵ. By the Archimedean principle, there exists an N ∈ N such that 1/N < δ.
Consider fn for n > N. If x ≥ 1/n, then fn(x) = f (x). If x < 1

n then fn(x) = α,
and since x < δ, it follows that | f (x)− α| < ϵ, so | f (x)− fn(x)| < ϵ. Hence
| f (x)− fn(x)| < ϵ for all x ∈ (0, 1). Hence fn → f uniformly.
Now consider the converse and suppose fn → f uniformly. For any ϵ > 0,
there exists an N ∈ N such that n > N implies | fn(x) − f (x)| < ϵ for all
x ∈ (0, 1). If δ = 1

N+1 then 0 < x < δ implies that fN+1(x) = α, and hence
| f (x)− α| = | f (x)− fN+1(x)| < ϵ. Hence limx→0+ f (x) = α.


