
Math 104: Midterm 1 solutions

1. (a) Use the rational zeroes theorem to prove that

x =

√
2 +

√
3

is irrational.

Answer: A polynomial for x can be derived as

x2 = 2 +
√

3
(x2 − 2)2 = 3

x4 − 4x2 + 1 = 0.

By the rational zeroes theorem, if x = p/q where p and q integers, then p
divides 1 and q divides 1. Thus the only possibilities for x are ±1. It is clear
that x is positive, so x = −1 is not possible. Since (1)4 − 4(1)2 + 1 = −2 it
follows that x = 1 is also not possible. Thus x must be irrational.

(b) Consider the set T = {t ∈ Q : 0 ≤ t ≤ x} where x is defined as above.
Determine its maximum and minimum if they exist. Determine its supremum
and infimum. Detailed proofs are not required, but you should justify your
answers.

Answer: Since 0 ∈ T and 0 ≥ t for all t ∈ T, it follows that min T = 0. Consider
any number t ∈ T. Since t ∈ Q then t < x. By the denseness of Q, there is a
rational number s such that t < s < x, and hence t is not a maximum element
for T. Thus the maximum does not exist.
Since the minimum is 0, the infimum is equal to 0 also. The supremum is x,
since this is an upper bound, and for any value y < x there exists an element
in T that is larger than y, so it is the least upper bound.



2. (a) State the definition for a sequence (sn) to converge to a limit s as n → ∞.

Answer: The sequence (sn) converges to s if for all ϵ > 0, there exists an N
such that for all n > N, |sn − s| < ϵ.

(b) Consider the sequence (sn) defined for n ∈ N as

sn =

{
2 if n is even,
3 if n is odd.

Show that (sn) does not converge.

Answer: Suppose (sn) converges to a limit s. Consider ϵ = 1/2; there exists N
such that n > N implies that |sn − s| < 1/2. Let j be an even number larger than
N, and let k be an odd number larger than N. Then

|sj − sk| = |(sj − s)− (sk − s)| ≤ |sj − s|+ |sk − s| < 1/2 + 1/2 = 1.

However |sj − sk| = |2 − 3| = 1, and thus 1 < 1 which is a contradiction. Thus
(sn) does not converge.

(c) Determine whether the series

∑
1

(sn)n

converges or diverges.

Answer: Note that ∣∣∣∣ 1
(sn)n

∣∣∣∣ ≤ 2−n.

The series ∑ 2−n is a geometric series and converges. Hence, by the comparison
test, the given series must converge also. Alternatively, by using the root test,

lim sup
∣∣∣∣ 1
(sn)n

∣∣∣∣1/n
= lim sup

1
sn

=
1
2

and since this is less than 1 the series converges.



3. Let S an T be two non-empty subsets of (0, ∞). Define R = {st : s ∈ S, t ∈ T} to be
the set of all products of elements from S and T.

(a) Suppose that S and T are bounded. Prove that

sup R = (sup S)(sup T).

Answer: Write s0 = sup S and t0 = sup T. Both s0 and t0 are strictly positive
since both S and T contain a strictly positive element. Consider an element
r ∈ R. Then r = st for some s ∈ S and t ∈ T. Since s ≤ s0 and t ≤ t0, it follows
that

st ≤ s0t0,

and thus s0t0 is an upper bound for R. Now suppose that q = s0t0 − ϵ is an
upper bound for R. It must be the case that q > 0, since S and T are sets of
positive numbers. Since s0 is the least upper bound for S, there exists an s ∈ S
such that

s > s0 −
ϵ

2t0

and since t0 is the least upper bound for T, there exists a t ∈ T such that

t > t0 −
ϵ

2s0
.

Thus

st >
(

s0 −
ϵ

2t0

)(
t0 −

ϵ

2s0

)
= s0t0 − ϵ +

ϵ

4s0t0
> s0t0 − ϵ = q

and hence q is not an upper bound of T. Thus sup R = s0t0.

(b) Prove that if sup S = ∞ then sup R = ∞.

Answer: Suppose sup S = ∞. Choose any element t ∈ T. Suppose that M
was an upper bound for R. Since sup S = ∞, there exists an s ∈ S such that
s > M/t. Hence st > tM/t = M. But st ∈ R, which is a contradiction, and
thus sup R = ∞.



4. Let (sn) and (tn) be sequences such that lim sn = s and lim sup tn = t, where s and
t are real numbers. Prove that lim sup(sn + tn) = s + t.

Answer: Consider ϵ > 0. Then there exists an N1 such that n > N1 implies that

|sn − s| < ϵ

2

and hence
s − ϵ

2
< sn < s +

ϵ

2
.

Similarly, there exists an N2 such that N > N2 implies that

| sup{tn : n > N} − t| < ϵ

2

and hence
t − ϵ

2
< sup{tn : n > N} < t +

ϵ

2
.

Then for N > max{N1, N2},

sup{sn + tn : n > N} ≤ sup{s + ϵ/2 + tn : n > N}
= s +

ϵ

2
+ sup{tn : n > N}

< s +
ϵ

2
+ t +

ϵ

2
= s + t + ϵ. (1)

The first inequality is obtained because each element in the set is replaced with
something larger, so the supremum must be larger. For the second line, the quan-
tity s + ϵ/2 can be brought outside the supremum since it shifts all the terms by a
constant amount. By following similar steps,

sup{sn + tn : n > N} ≥ sup{s − ϵ/2 + tn : n > N}
= s − ϵ

2
+ sup{tn : n > N}

> s − ϵ

2
+ t − ϵ

2
= s + t − ϵ. (2)

Hence, by making use of Eqs. 1 and 2,

|sup{sn + tn : n > N} − s − t| < ϵ

for all N > max{N1, N2}. Since argument can be applied for arbitrary ϵ > 0, it
follows that lim sup(sn + tn) = s + t.


