Math 104: Midterm 1 solutions

1. (a) Use the rational zeroes theorem to prove that

$$x = \sqrt{2 + \sqrt{3}}$$

is irrational.

Answer: A polynomial for *x* can be derived as

$$x^{2} = 2 + \sqrt{3}$$

(x²-2)² = 3
x⁴-4x²+1 = 0.

By the rational zeroes theorem, if x = p/q where p and q integers, then p divides 1 and q divides 1. Thus the only possibilities for x are ± 1 . It is clear that x is positive, so x = -1 is not possible. Since $(1)^4 - 4(1)^2 + 1 = -2$ it follows that x = 1 is also not possible. Thus x must be irrational.

(b) Consider the set $T = \{t \in \mathbb{Q} : 0 \le t \le x\}$ where *x* is defined as above. Determine its maximum and minimum if they exist. Determine its supremum and infimum. Detailed proofs are not required, but you should justify your answers.

Answer: Since $0 \in T$ and $0 \ge t$ for all $t \in T$, it follows that min T = 0. Consider any number $t \in T$. Since $t \in \mathbb{Q}$ then t < x. By the denseness of \mathbb{Q} , there is a rational number *s* such that t < s < x, and hence *t* is not a maximum element for *T*. Thus the maximum does not exist.

Since the minimum is 0, the infimum is equal to 0 also. The supremum is x, since this is an upper bound, and for any value y < x there exists an element in T that is larger than y, so it is the least upper bound.

2. (a) State the definition for a sequence (s_n) to converge to a limit *s* as $n \to \infty$.

Answer: The sequence (s_n) converges to *s* if for all $\epsilon > 0$, there exists an *N* such that for all n > N, $|s_n - s| < \epsilon$.

(b) Consider the sequence (s_n) defined for $n \in \mathbb{N}$ as

$$s_n = \begin{cases} 2 & \text{if } n \text{ is even,} \\ 3 & \text{if } n \text{ is odd.} \end{cases}$$

Show that (s_n) does not converge.

Answer: Suppose (s_n) converges to a limit *s*. Consider $\epsilon = 1/2$; there exists *N* such that n > N implies that $|s_n - s| < 1/2$. Let *j* be an even number larger than *N*, and let *k* be an odd number larger than *N*. Then

$$|s_j - s_k| = |(s_j - s) - (s_k - s)| \le |s_j - s| + |s_k - s| < 1/2 + 1/2 = 1.$$

However $|s_j - s_k| = |2 - 3| = 1$, and thus 1 < 1 which is a contradiction. Thus (s_n) does not converge.

(c) Determine whether the series

$$\sum \frac{1}{(s_n)^n}$$

converges or diverges.

Answer: Note that

$$\left|\frac{1}{(s_n)^n}\right| \le 2^{-n}.$$

The series $\sum 2^{-n}$ is a geometric series and converges. Hence, by the comparison test, the given series must converge also. Alternatively, by using the root test,

$$\limsup \left| \frac{1}{(s_n)^n} \right|^{1/n} = \limsup \frac{1}{s_n} = \frac{1}{2}$$

and since this is less than 1 the series converges.

- 3. Let *S* an *T* be two non-empty subsets of $(0, \infty)$. Define $R = \{st : s \in S, t \in T\}$ to be the set of all products of elements from *S* and *T*.
 - (a) Suppose that *S* and *T* are bounded. Prove that

$$\sup R = (\sup S)(\sup T)$$

Answer: Write $s_0 = \sup S$ and $t_0 = \sup T$. Both s_0 and t_0 are strictly positive since both *S* and *T* contain a strictly positive element. Consider an element $r \in R$. Then r = st for some $s \in S$ and $t \in T$. Since $s \leq s_0$ and $t \leq t_0$, it follows that

$$st \leq s_0 t_0$$

and thus s_0t_0 is an upper bound for *R*. Now suppose that $q = s_0t_0 - \epsilon$ is an upper bound for *R*. It must be the case that q > 0, since *S* and *T* are sets of positive numbers. Since s_0 is the least upper bound for *S*, there exists an $s \in S$ such that

$$s > s_0 - \frac{\epsilon}{2t_0}$$

and since t_0 is the least upper bound for *T*, there exists a $t \in T$ such that

$$t > t_0 - \frac{\epsilon}{2s_0}$$

Thus

$$st > \left(s_0 - \frac{\epsilon}{2t_0}\right) \left(t_0 - \frac{\epsilon}{2s_0}\right) = s_0 t_0 - \epsilon + \frac{\epsilon}{4s_0 t_0} > s_0 t_0 - \epsilon = q$$

and hence *q* is not an upper bound of *T*. Thus sup $R = s_0 t_0$.

(b) Prove that if $\sup S = \infty$ then $\sup R = \infty$.

Answer: Suppose $\sup S = \infty$. Choose any element $t \in T$. Suppose that M was an upper bound for R. Since $\sup S = \infty$, there exists an $s \in S$ such that s > M/t. Hence st > tM/t = M. But $st \in R$, which is a contradiction, and thus $\sup R = \infty$.

4. Let (s_n) and (t_n) be sequences such that $\lim s_n = s$ and $\lim \sup t_n = t$, where s and t are real numbers. Prove that $\limsup (s_n + t_n) = s + t$.

Answer: Consider $\epsilon > 0$. Then there exists an N_1 such that $n > N_1$ implies that

$$|s_n-s|<\frac{\epsilon}{2}$$

and hence

$$s - \frac{\epsilon}{2} < s_n < s + \frac{\epsilon}{2}.$$

Similarly, there exists an N_2 such that $N > N_2$ implies that

$$|\sup\{t_n:n>N\}-t|<\frac{\epsilon}{2}$$

and hence

$$t - \frac{\epsilon}{2} < \sup\{t_n : n > N\} < t + \frac{\epsilon}{2}$$

Then for $N > \max\{N_1, N_2\}$,

$$\sup\{s_n + t_n : n > N\} \leq \sup\{s + \epsilon/2 + t_n : n > N\}$$
$$= s + \frac{\epsilon}{2} + \sup\{t_n : n > N\}$$
$$< s + \frac{\epsilon}{2} + t + \frac{\epsilon}{2} = s + t + \epsilon.$$
(1)

The first inequality is obtained because each element in the set is replaced with something larger, so the supremum must be larger. For the second line, the quantity $s + \epsilon/2$ can be brought outside the supremum since it shifts all the terms by a constant amount. By following similar steps,

$$\sup\{s_n + t_n : n > N\} \geq \sup\{s - \frac{\epsilon}{2} + t_n : n > N\}$$
$$= s - \frac{\epsilon}{2} + \sup\{t_n : n > N\}$$
$$> s - \frac{\epsilon}{2} + t - \frac{\epsilon}{2} = s + t - \epsilon.$$
(2)

Hence, by making use of Eqs. 1 and 2,

$$|\sup\{s_n+t_n:n>N\}-s-t|<\epsilon$$

for all $N > \max\{N_1, N_2\}$. Since argument can be applied for arbitrary $\epsilon > 0$, it follows that $\limsup(s_n + t_n) = s + t$.