## Math 104: Homework 4 (due February 17)

- 1. Ross exercise 11.10
- 2. Ross exercise 12.10
- 3. Ross exercise 14.12
- 4. Determine the convergence or divergence of each of the following series defined for *n* ∈ N:

(a) 
$$\sum_{n} \frac{n^3}{2^n}$$
, (b)  $\sum_{n} \sqrt{n+1} - \sqrt{n}$ , (c)  $\sum_{n} \frac{1}{\sqrt{n!}}$ , (d)  $\sum_{n} 2^{-3n+(-1)^n}$ , (e)  $\sum_{n} \frac{n!}{n^n}$ .

- 5. Let  $(u_n)$  and  $(v_n)$  be sequences of positive real numbers for  $n \in \mathbb{N}$ . For each of the following statements, either prove it or provide a counterexample.
  - (a) If  $(u_n)$  and  $(v_n)$  are equal except at finitely many n, then  $\sum u_n$  and  $\sum v_n$  either both converge or both diverge.
  - (b) If  $(u_n)$  and  $(v_n)$  are equal at infinitely many n, then  $\sum u_n$  and  $\sum v_n$  either both converge or both diverge.
  - (c) If  $(u_n/v_n) \to 1$  as  $n \to \infty$ , then  $\sum u_n$  and  $\sum v_n$  both converge or both diverge.
  - (d) If  $u_n v_n \rightarrow 0$ , then  $\sum u_n$  and  $\sum v_n$  both converge or both diverge.
  - (e) If  $(u_{n+1}/u_n) > k > 1$  for infinitely many *n*, then  $\sum u_n$  diverges.
- 6. Find a sequence  $(a_n)$  such that  $\sum_{n=1}^{2N} a_n$  and  $\sum_{n=1}^{2N+1} a_n$  both converge as  $N \to \infty$ , but  $\sum a_n$  is divergent.
- 7. **Optional for the enthusiasts.** Consider an infinite number of bricks of unit length, made from a uniform material.



Begin by considering diagram (a): what is the maximum distance  $d_1$  that brick 1 can overhang brick 2 without falling? Now, by considering combined center of mass of bricks 1 and 2, find the distance  $d_2$  that can they can overhang brick 3. Now determine the maximum distance  $d_n$  that a stack of bricks from 1 to n can overhang a brick (n+1). Does  $\sum d_n$  converge or diverge?