
Math 104: Final exam solutions

1. Suppose that (sn) is an increasing sequence with a convergent subsequence. Prove that (sn)
is a convergent sequence.

Answer: Let the convergent subsequence be (snk) that converges to a limit s. Then there
exists a K such that k > K implies |snk − s| < 1, and hence for k > K, snk < s + 1. Suppose
that (sn) is not bounded above. Then there exists an N such that sN > s+ 1, and since it is an
increasing sequence, sn > s + 1 for all n > N. Choosing an nk such that k > K and nk > N
gives snk < s + 1 and snk > s + 1 which is a contradiction. Hence (sn) is bounded above, and
since it is increasing it converges.



2. (a) Let fn(x) = x
n2(1+nx2)

be functions defined on R, for all n ∈ N. By using the Weierstraß
M-test, or otherwise, prove that ∑ fn converges uniformly on R.

Answer: If |x| < 1, then

| fn(x)| <
∣∣∣∣ 1
n2(1 + nx2)

∣∣∣∣ ≤ ∣∣∣∣ 1
n2

∣∣∣∣ = 1
n2 .

If |x| ≥ 1 then

| fn(x)| ≤
∣∣∣∣ x
n2(nx2)

∣∣∣∣ ≤ ∣∣∣∣ 1
n2(nx)

∣∣∣∣ ≤ 1
n2 .

Hence fn(x) < 1/n2 for all x ∈ R. Since ∑ 1/n2 converges, it follows that ∑ fn converges
by the Weierstraß M-test.

(b) Consider the sequence of functions defined on R as

gn(x) =
{

1/n for n − 1 ≤ x < n,
0 otherwise,

for all n ∈ N. Define Mn = sup{|gn(x)| : x ∈ R}. Prove that ∑ gn converges uniformly
to a limit g, but that ∑ Mn diverges. Sketch g(x) for 0 ≤ x < 5.

Answer: From the definition, it can be seen that Mn = 1/n, and hence ∑ Mn diverges.
Consider x ∈ [n − 1, n) for some n ∈ N. Then ∑n

k=1 fn(x) = 1/n. Since fk(x) = 0 for all
k > n it follows that ∑∞

k=1 fn(x) = 1/n. Thus ∑ gn converges pointwise to

g(x) =
{

1/m if x ∈ [m − 1, m) for some m ∈ N,
0 otherwise.

To show that convergence is uniform, consider any ϵ > 0. By the Archimedean prop-
erty, there exists an N ∈ N such that 1/N < ϵ. For n > N, note that∣∣∣∣∣g(x)−

n

∑
k=1

gk(x)

∣∣∣∣∣ =
{

1/m if x ∈ [m − 1, m) for some m ∈ N with m > n,
0 otherwise,

and thus |g(x)− ∑n
k=1 gk(x)| < 1/n < ϵ, so the convergence is uniform. The function g

is plotted in Fig. 1.



3. Consider the sequence defined recursively according to s1 = 1/3 and sn+1 = λsn(1 − sn) for
n ∈ N, where λ is a real constant.

(a) Prove that (sn) converges for λ = 1.

Answer: Suppose that sn ∈ (0, 1). Then sn+1 = sn(1 − sn) < sn and sn+1 > 0, so
sn+1 ∈ (0, sn). Since s1 = 1/3 it follows by induction that (sn) is a decreasing sequence
that is bounded below by 0, so it converges.

(b) Prove that (sn) has a convergent subsequence for λ = 4.

Answer: First, note that

sn+1 = 4(sn − s2
n) = 4

(
1
4
−
(

sn −
1
2

)2
)

= 1 − 4
(

sn −
1
2

)2

.

Suppose that sn ∈ [0, 1]. Then sn − 1/2 ∈ [−1/2, 1/2], so 4(sn − 1/2)2 ∈ [0, 1], and hence
sn+1 ∈ [0, 1]. Since s1 ∈ [0, 1] it follows by mathematical induction that sn ∈ [0, 1] for
all n ∈ N. Thus the sequence is bounded, so it has a convergent subsequence via the
Bolzano–Weierstraß theorem.

(c) Prove that (sn) diverges for λ = 12.

Answer: Now suppose that for n ≥ 2, |sn| > 2n−1. Then

|sn+1| = 12|sn| · |1 − sn| > 12 · 2n−1 · (2n−1 − 1) > 2 · 2n−1 · 1 = 2n.

so |sn+1| > 2(n+1)−1. Since s2 = 8/3 > 2 it follows by mathematical induction that
|sn| > 2n−1 for all n ∈ N with n > 2. Since 2n → ∞ as n → ∞, it follows that sn is
unbounded and hence diverges.



4. A real-valued function f defined on a set S is defined to be Lipschitz continuous if there exists
a K > 0 such that for all x, y ∈ S,

| f (x)− f (y)| ≤ K|x − y|.

(a) Prove that if f is Lipschitz continuous on S, then it is uniformly continuous on S. An-

swer: Choose ϵ > 0. Then set δ = ϵ
K . If x, y ∈ S such that |x − y| < δ, then

| f (x)− f (y)| ≤ K|x − y| < Kδ = ϵ

and hence f is uniformly continuous.

(b) Consider the function f (x) =
√

x on the interval [0, ∞). Prove that it is uniformly
continuous, but not Lipschitz continuous.

Answer: To show that f is uniformly continuous, choose ϵ > 0, and note that

| f (x)− f (y)| = |
√

x −√
y| =

|(
√

x −√
y)(

√
x +

√
y)|

|
√

x +
√

y|
=

|x − y|√
x +

√
y

.

Suppose that x < ϵ2 and y < ϵ2. Then 0 < f (x) < ϵ and 0 < f (y) < ϵ so | f (x) −
f (y)| < ϵ. Otherwise, either x ≥ ϵ2 or y ≥ ϵ2, so

√
x +

√
y ≥ ϵ. If |x − y| < δ where

δ = ϵ2, then

| f (x)− f (y)| = |x − y|√
x +

√
y
<

ϵ2

ϵ
= ϵ,

and hence the function is uniformly continuous. To see that f is not Lipschitz continu-
ous, consider x = 1/n2, and y = 0:

| f (x)− f (y)|
|x − y| =

| f (1/n2)|
1/n2

= n.

Since n can be made arbitrarily large, there does not exist any K such that | f (x) −
f (y)| ≤ K|x − y| for all x, y ∈ [0, ∞).



5. Consider the function defined on the closed interval [a, b] as

hc(x) =
{

1 if x = c,
0 if x ̸= c,

where a < c < b.

(a) Prove that hc is integrable on [a, b] and that
∫ b

a hc = 0.

Answer: Define η = min{b − c, c − a}. For α < η, define the partition Pα = {a = t0 <
t1 < t2 < t3 = b} where t1 = c − α and t2 = c + α. Then

L(hc, Pα) =
3

∑
k=1

m(hc, [tk, tk+1])(tk+1 − tk)

= 0 + 2αm(hc, [c − α, c + α]) + 0 = 0

and

U(hc, Pα) =
3

∑
k=1

M(hc, [tk, tk+1])(tk+1 − tk)

= 0 + 2αM(hc, [c − α, c + α]) + 0 = 2α.

Since α can be made arbitrarily small, it follows that U(hc) ≤ 0 and L(hc) ≥ 0. Hence
U(hc) = L(hc) = 0, and hc is integrable with integral

∫ b
a hc = 0.

(b) Suppose f is integrable on [a, b], and that g is a function on [a, b] such that f (x) = g(x)
except at finitely many x in (a, b). Prove that g(x) is integrable and that

∫ b
a f =

∫ b
a g.

You can make use of basic properties of integrable functions.

Answer: If g differs from f at finitely many points, then it is possible to write

g(x) = f (x) +
n

∑
i=1

bihci(x)

where the ci are the points where they differ and bi = g(ci)− f (ci). Since g is the sum
of integrable functions it is integrable and hence∫ b

a
g =

∫ b

a
f +

n

∑
i=1

∫ b

a
bihci =

∫ b

a
f .



6. Consider the sequence of functions hn on R according to

hn(x) =


n2 if 0 < x < 1/n,
−n2 if −1/n < x < 0,
0 otherwise.

(a) Sketch h1 and h2.

Answer: The functions are shown in Fig. 2

(b) Prove that hn converges pointwise to 0 on R.

Answer: At x = 0, limn→∞ hn(x) = limn→∞ 0 = 0. For x ̸= 0, there exists an N ∈ N

such that 1/N < |x|. Hence for n > N, hn(x) = 0 and thus limn→∞ hn(x) = 0.

(c) Let f be a real-valued function on R that is differentiable at x = 0. Prove that

lim
n→∞

∫ ∞

−∞
hn f = f ′(0).

Answer: Consider any ϵ > 0. Then there exists a δ > 0 such that |x − 0| < δ implies∣∣∣∣ f (x)− f (0)
x − 0

− f ′(0)
∣∣∣∣ = ∣∣∣∣ f (x)

x
− f ′(0)

∣∣∣∣ < ϵ. (1)

By the Archimedean property, there exists an N ∈ N such that 1
N < δ. For n > N,

∫ ∞

−∞
hn f = lim

c→−∞

∫ 0

c
hn f + lim

d→∞

∫ d

0
hn f = −

∫ 0

−1/n
n2 f +

∫ 1/n

0
n2 f .

By using Eq. 1,∫ 1/n

0
f −

∫ 0

−1/n
f ≥

∫ 1/n

0
( f (0)− x( f ′(0)− ϵ))dx −

∫ 0

−1/n
( f (0)− x( f ′(0) + ϵ))dx

=
f ′(0)− ϵ

2n2 − f ′(0)− ϵ

2n2 =
f ′(0)
n2 − ϵ

n2 .

By the same procedure ∫ 1/n

0
f −

∫ 0

−1/n
f ≤ f ′(0)

n2 +
ϵ

n2

and hence ∣∣∣∣∫ ∞

−∞
hn f − f ′(0)

∣∣∣∣ = ∣∣∣∣n2
(∫ 1/n

0
f −

∫ 0

−1/n
f
)
− f ′(0)

∣∣∣∣ ≤ ϵ

from which it follows that limn→∞ hn f = f ′(0).



7. (a) Find an example of a set A ⊆ R where the interior A◦ is non-empty, but that sup A ̸=
sup A◦ and inf A ̸= inf A◦.

Answer: Consider A = {−2} ∪ (−1, 1) ∪ {2}. Then sup A = 2 and inf A = −2. How-
ever, A◦ = (−1, 1), since if x = ±2, then there is no neighborhood Nδ(x) ⊆ A for any
δ > 0. Hence inf A◦ = −1 and sup A◦ = 1.

(b) Let B1, . . . , Bn be subsets of R. Prove that(
n⋂

i=1

Bi

)◦

=
n⋂

i=1

B◦
i .

Answer: Call the LHS E and the RHS D. Suppose x ∈ E. Then there exists a δ > 0 such
that the neighborhood Nδ(x) ⊆ ⋂n

i=1 Bi. Hence Nδ(x) ⊆ Bi for all i = 1, . . . , n and so
x ∈ B◦

i for all i = 1, . . . , n. Hence x ∈ D.
Now suppose that x ∈ D. Then x ∈ B◦

i for all i = 1, . . . , n, so there exist δi > 0 such that
Nδi(x) ⊆ Bi for all i = 1, . . . , n. Let δ = min{δ1, . . . , δn} > 0. Then Nδ(x) ⊆ Bi for all
i = 1, . . . , n and hence Nδ(x) ⊆ ⋂n

i=1 Bi, so x ∈ E.

(c) Suppose that {Ci}∞
i=1 is an infinite sequence of subsets of R. Prove that(

n⋂
i=1

Ci

)◦

⊆
n⋂

i=1

C◦
i

but that these two sets may not be equal.

Answer: The first argument from part (b) can be still be applied when there are an
infinite number of sets, to establish that (

⋂n
i=1 Ci)

◦ ⊆ ⋂n
i=1 C◦

i . However, the second
argument may fail if the infimum of the δi is equal to zero. Motivitated by this, consider
Ci = (−1/i, 1/i). Since these are open sets, C◦

i = Ci. Hence,

∞⋂
i=1

C◦
i = {0}.

However
∞⋂

i=1

Ci = {0}

and thus (
∞⋂

i=1

Ci

)◦

= ∅.



8. (a) If f is a continuous strictly increasing function on R, prove that

d(x, y) = | f (x)− f (y)|

defines a metric on R.

Answer: Consider the three properties of being a metric

M1. For all x ∈ R, d(x, x) = | f (x)− f (x)| = 0. If d(x, y) = 0 then f (x) = f (y), and if f
is strictly increasing then x = y.

M2. For all x, y ∈ R, d(x, y) = | f (x) − f (y)| = | f (y) − f (x)| = d(y, x) and thus the
metric is symmetric.

M3. For all x, y, z ∈ R,

d(x, y) + d(y, z) = | f (x)− f (y)|+ | f (y)− f (z)| ≤ | f (x)− f (z)| = d(x, z)

which follows from the usual triangle inequality.

(b) Prove that d is equivalent to the Euclidean metric dE(x, y) = |x − y|.

Answer: Write Nr(x) and NE
r (x) for the neighborhoods of radius r with respect to d and

dE respectively. To prove that the two metrics are equivalent, consider any x ∈ R, and
ϵ > 0. By continuity, there exists a δ > 0 such that |x − y| < δ implies | f (x)− f (y)| < ϵ.
Hence NE

δ (x) ⊆ Nϵ(x).
Since f is continuous and strictly increasing, it has a continous strictly increasing in-
verse f−1. Consider any x ∈ R and ϵ > 0. By using continuity of f−1 at f (x),
there exists a δ > 0 such that | f (x) − z| < δ implies | f−1( f (x)) − f−1(z)| < ϵ so
|x − f−1(z)| < ϵ. Then

Nδ(x) = {y ∈ R : | f (x)− f (y)| < δ}
⊆ {y ∈ R : |x − f−1( f (y))| < ϵ}
= {y ∈ R : |x − y| < ϵ} = NE

ϵ (x).

Hence the two metrics are equivalent.

(c) Suppose g is a continuous strictly increasing function on [0, ∞) where g(0) = 0. Is the
function

d2(x, y) = g(|x − y|)

always a metric? Either prove the result, or find a counterexample.

Answer: This does not always define a metric. Consider g(x) = x2. Then d2(0, 1) +
d2(1, 2) = 12 + 12 = 2 but d2(0, 2) = 22 = 4 so the triangle inequality is violated.



9. Consider the continuous function defined on R as

f (x) =
{ x

ex−1 if x ̸= 0,
c if x = 0,

where c ∈ R. For this question you can assume basic properties of the exponential, such that
it is continuous, differentiable, and has the Taylor series ex = ∑∞

k=0
xk

k! .

(a) Use L’Hôpital’s rule to compute limx→0 f (x) and hence determine c.

Answer: By L’Hopital’s rule, limx→0 f (x) = limx→0 1/ex = 1. A function is continuous
at 0 if and only if limx→0 f (x) = f (0), and thus c = 1.

(b) Show that f is differentiable on R and compute f ′.

Answer: The derivative for x ̸= 0 is

f ′(x) =
(ex − 1)− xex

(ex − 1)2 .

Using the definition of the derivative,

f ′(0) = lim
a→0

f (a)− f (0)
a − 0

= lim
a→0

a
ea−1 − 1

a

= lim
a→0

a − ea + 1
a(ea − 1)

= lim
a→0

1 − ea

(a + 1)ea − 1

= lim
a→0

−ea

ea(a + 2)
= −1

2

where L’Hôpital’s rule has been applied twice.

(c) Calculate the function limits

lim
x→∞

f (x), lim
x→−∞

(x + f (x)).

Use the results to sketch f and fT on (−10, 10).

Answer: The first limit is

lim
x→∞

f (x) = lim
x→∞

1
ex

x − 1
x

= 0

since ex/x → ∞ as x → ∞; this can be verified by using the Taylor series to see that
ex > x2/2 for all x > 0. The second limit is

lim
x→−∞

(x + f (x)) = lim
x→−∞

x
x(ex − 1 + 1)

ex − 1
= lim

x→∞

xex

ex − 1
= 0

since as xex → 0 as x → −∞. The functions f and fT are plotted in Fig. 3.



10. Given a function f on [a, b], define the total variation of f to be

V f = sup

{
n

∑
k=1

| f (tk)− f (tk−1)|
}

where the supremum is taken over all partitions P = {a = t0 < t1 < . . . < tn = b} of [a, b].

(a) Calculate V f for the function defined on [−1, 1] as

f (x) =
{

−2 if x < 0,
3 if x ≥ 0.

Answer: Consider any partition P = {a = t0 < t1 < . . . < tn = b}. Then there exists a
k such that tk−1 < 0 ≤ tk. For j < k, | f (tj)− f (tj−1| = |(−2)− (−2)| = 0. Similarly, if
j > k, | f (tj)− f (tj−1| = |3 − 3| = 0, and thus

n

∑
k=1

| f (tk)− f (tk−1)| = 0 + | f (tk)− f (tk−1)|+ 0 = |3 − (−2)| = 5.

Since this is true for an arbitrary partition, it follows that V f = 5.

(b) Prove that if f is differentiable on an interval [a, b], and that f ′ is continuous then V f =∫ b
a | f ′|.

Answer: To prove that V f ≤
∫ b

a | f ′|, consider any partition P of [a, b]. Then, by using
the Fundamental Theorem of Calculus,

n

∑
k=1

| f (tk)− f (tk−1)| =
n

∑
k=1

∣∣∣∣∫ tk

tk−1

f ′
∣∣∣∣ ≤ n

∑
k=1

∫ tk

tk−1

| f ′| =
∫ b

a
| f ′|.

Since | f ′| is integrable on [a, b], for all ϵ > 0, there exists a partition P such that
U(| f ′|, P)− L(| f ′|, P) < ϵ, and hence L( f ′, P) > (

∫ b
a | f ′|)− ϵ. By using the Mean Value

Theorem, for each k, there exists an xk ∈ (tk−1, tk) such that

f ′(xk) =
f (tk)− f (tk−1)

tk − tk−1
.

Hence
n

∑
k=1

| f (tk)− f (tk−1)| =
n

∑
k=1

| f ′(xk)(tk − tk−1)|

≥
n

∑
k=1

m(| f ′|, [tk−1, tk])(tk − tk−1)

= L(| f ′|, P) >
(∫ b

a
| f ′|
)
− ϵ.

It is therefore possible to find partition such that the sum is larger than
(∫ b

a | f ′|
)
− ϵ for

all ϵ > 0 and thus V f ≥
∫ b

a | f ′|. Combining this with the first result shows V f =
∫ b

a | f ′|.
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Figure 1: Graph of the function considered in question 2.
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Figure 2: Graph showing the functions h1 and h2 considered in question 5.
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Figure 3: Graph showing the functions considered in question 9 on L’Hôpital’s rule.


