Math 104: Final exam solutions

1. Suppose that (s_n) is an increasing sequence with a convergent subsequence. Prove that (s_n) is a convergent sequence.

Answer: Let the convergent subsequence be (s_{n_k}) that converges to a limit *s*. Then there exists a *K* such that k > K implies $|s_{n_k} - s| < 1$, and hence for k > K, $s_{n_k} < s + 1$. Suppose that (s_n) is not bounded above. Then there exists an *N* such that $s_N > s + 1$, and since it is an increasing sequence, $s_n > s + 1$ for all n > N. Choosing an n_k such that k > K and $n_k > N$ gives $s_{n_k} < s + 1$ and $s_{n_k} > s + 1$ which is a contradiction. Hence (s_n) is bounded above, and since it is increasing it converges.

2. (a) Let $f_n(x) = \frac{x}{n^2(1+nx^2)}$ be functions defined on \mathbb{R} , for all $n \in \mathbb{N}$. By using the Weierstraß M-test, or otherwise, prove that $\sum f_n$ converges uniformly on \mathbb{R} .

Answer: If |x| < 1, then

$$|f_n(x)| < \left|\frac{1}{n^2(1+nx^2)}\right| \le \left|\frac{1}{n^2}\right| = \frac{1}{n^2}$$

If $|x| \ge 1$ then

$$|f_n(x)| \leq \left|\frac{x}{n^2(nx^2)}\right| \leq \left|\frac{1}{n^2(nx)}\right| \leq \frac{1}{n^2}.$$

Hence $f_n(x) < 1/n^2$ for all $x \in \mathbb{R}$. Since $\sum 1/n^2$ converges, it follows that $\sum f_n$ converges by the Weierstraß M-test.

(b) Consider the sequence of functions defined on \mathbb{R} as

$$g_n(x) = \begin{cases} 1/n & \text{for } n-1 \le x < n, \\ 0 & \text{otherwise,} \end{cases}$$

for all $n \in \mathbb{N}$. Define $M_n = \sup\{|g_n(x)| : x \in \mathbb{R}\}$. Prove that $\sum g_n$ converges uniformly to a limit g, but that $\sum M_n$ diverges. Sketch g(x) for $0 \le x < 5$.

Answer: From the definition, it can be seen that $M_n = 1/n$, and hence $\sum M_n$ diverges. Consider $x \in [n - 1, n)$ for some $n \in \mathbb{N}$. Then $\sum_{k=1}^n f_n(x) = 1/n$. Since $f_k(x) = 0$ for all k > n it follows that $\sum_{k=1}^{\infty} f_n(x) = 1/n$. Thus $\sum g_n$ converges pointwise to

$$g(x) = \begin{cases} 1/m & \text{if } x \in [m-1,m) \text{ for some } m \in \mathbb{N}, \\ 0 & \text{otherwise.} \end{cases}$$

To show that convergence is uniform, consider any $\epsilon > 0$. By the Archimedean property, there exists an $N \in \mathbb{N}$ such that $1/N < \epsilon$. For n > N, note that

$$\left|g(x) - \sum_{k=1}^{n} g_k(x)\right| = \begin{cases} 1/m & \text{if } x \in [m-1,m) \text{ for some } m \in \mathbb{N} \text{ with } m > n, \\ 0 & \text{otherwise,} \end{cases}$$

and thus $|g(x) - \sum_{k=1}^{n} g_k(x)| < 1/n < \epsilon$, so the convergence is uniform. The function *g* is plotted in Fig. 1.

- 3. Consider the sequence defined recursively according to $s_1 = 1/3$ and $s_{n+1} = \lambda s_n(1 s_n)$ for $n \in \mathbb{N}$, where λ is a real constant.
 - (a) Prove that (s_n) converges for $\lambda = 1$.

Answer: Suppose that $s_n \in (0,1)$. Then $s_{n+1} = s_n(1-s_n) < s_n$ and $s_{n+1} > 0$, so $s_{n+1} \in (0, s_n)$. Since $s_1 = 1/3$ it follows by induction that (s_n) is a decreasing sequence that is bounded below by 0, so it converges.

(b) Prove that (s_n) has a convergent subsequence for $\lambda = 4$.

Answer: First, note that

$$s_{n+1} = 4(s_n - s_n^2) = 4\left(\frac{1}{4} - \left(s_n - \frac{1}{2}\right)^2\right) = 1 - 4\left(s_n - \frac{1}{2}\right)^2.$$

Suppose that $s_n \in [0,1]$. Then $s_n - 1/2 \in [-1/2, 1/2]$, so $4(s_n - 1/2)^2 \in [0,1]$, and hence $s_{n+1} \in [0,1]$. Since $s_1 \in [0,1]$ it follows by mathematical induction that $s_n \in [0,1]$ for all $n \in \mathbb{N}$. Thus the sequence is bounded, so it has a convergent subsequence via the Bolzano–Weierstraß theorem.

(c) Prove that (s_n) diverges for $\lambda = 12$.

Answer: Now suppose that for $n \ge 2$, $|s_n| > 2^{n-1}$. Then

$$|s_{n+1}| = 12|s_n| \cdot |1 - s_n| > 12 \cdot 2^{n-1} \cdot (2^{n-1} - 1) > 2 \cdot 2^{n-1} \cdot 1 = 2^n$$

so $|s_{n+1}| > 2^{(n+1)-1}$. Since $s_2 = \frac{8}{3} > 2$ it follows by mathematical induction that $|s_n| > 2^{n-1}$ for all $n \in \mathbb{N}$ with n > 2. Since $2^n \to \infty$ as $n \to \infty$, it follows that s_n is unbounded and hence diverges.

4. A real-valued function *f* defined on a set *S* is defined to be *Lipschitz continuous* if there exists a K > 0 such that for all $x, y \in S$,

$$|f(x) - f(y)| \le K|x - y|.$$

(a) Prove that if *f* is Lipschitz continuous on *S*, then it is uniformly continuous on *S*. Answer: Choose $\epsilon > 0$. Then set $\delta = \frac{\epsilon}{K}$. If $x, y \in S$ such that $|x - y| < \delta$, then

$$|f(x) - f(y)| \le K|x - y| < K\delta = \epsilon$$

and hence *f* is uniformly continuous.

(b) Consider the function $f(x) = \sqrt{x}$ on the interval $[0, \infty)$. Prove that it is uniformly continuous, but not Lipschitz continuous.

Answer: To show that *f* is uniformly continuous, choose $\epsilon > 0$, and note that

$$|f(x) - f(y)| = |\sqrt{x} - \sqrt{y}| = \frac{|(\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y})|}{|\sqrt{x} + \sqrt{y}|} = \frac{|x - y|}{\sqrt{x} + \sqrt{y}}.$$

Suppose that $x < \epsilon^2$ and $y < \epsilon^2$. Then $0 < f(x) < \epsilon$ and $0 < f(y) < \epsilon$ so $|f(x) - f(y)| < \epsilon$. Otherwise, either $x \ge \epsilon^2$ or $y \ge \epsilon^2$, so $\sqrt{x} + \sqrt{y} \ge \epsilon$. If $|x - y| < \delta$ where $\delta = \epsilon^2$, then

$$|f(x) - f(y)| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}} < \frac{\epsilon^2}{\epsilon} = \epsilon,$$

and hence the function is uniformly continuous. To see that *f* is not Lipschitz continuous, consider $x = 1/n^2$, and y = 0:

$$\frac{|f(x) - f(y)|}{|x - y|} = \frac{|f(1/n^2)|}{1/n^2} = n.$$

Since *n* can be made arbitrarily large, there does not exist any *K* such that $|f(x) - f(y)| \le K|x - y|$ for all $x, y \in [0, \infty)$.

5. Consider the function defined on the closed interval [*a*, *b*] as

$$h_c(x) = \begin{cases} 1 & \text{if } x = c, \\ 0 & \text{if } x \neq c, \end{cases}$$

where a < c < b.

(a) Prove that h_c is integrable on [a, b] and that $\int_a^b h_c = 0$.

Answer: Define $\eta = \min\{b - c, c - a\}$. For $\alpha < \eta$, define the partition $P_{\alpha} = \{a = t_0 < t_1 < t_2 < t_3 = b\}$ where $t_1 = c - \alpha$ and $t_2 = c + \alpha$. Then

$$L(h_c, P_{\alpha}) = \sum_{k=1}^{3} m(h_c, [t_k, t_{k+1}])(t_{k+1} - t_k)$$

= 0 + 2\alpha m(h_c, [c - \alpha, c + \alpha]) + 0 = 0

and

$$U(h_c, P_{\alpha}) = \sum_{k=1}^{3} M(h_c, [t_k, t_{k+1}])(t_{k+1} - t_k)$$

= 0 + 2\alpha M(h_c, [c - \alpha, c + \alpha]) + 0 = 2\alpha.

Since α can be made arbitrarily small, it follows that $U(h_c) \leq 0$ and $L(h_c) \geq 0$. Hence $U(h_c) = L(h_c) = 0$, and h_c is integrable with integral $\int_a^b h_c = 0$.

(b) Suppose *f* is integrable on [*a*, *b*], and that *g* is a function on [*a*, *b*] such that f(x) = g(x) except at finitely many *x* in (*a*, *b*). Prove that g(x) is integrable and that $\int_a^b f = \int_a^b g$. You can make use of basic properties of integrable functions.

Answer: If *g* differs from *f* at finitely many points, then it is possible to write

$$g(x) = f(x) + \sum_{i=1}^{n} b_i h_{c_i}(x)$$

where the c_i are the points where they differ and $b_i = g(c_i) - f(c_i)$. Since g is the sum of integrable functions it is integrable and hence

$$\int_{a}^{b} g = \int_{a}^{b} f + \sum_{i=1}^{n} \int_{a}^{b} b_{i} h_{c_{i}} = \int_{a}^{b} f.$$

6. Consider the sequence of functions h_n on \mathbb{R} according to

$$h_n(x) = \begin{cases} n^2 & \text{if } 0 < x < 1/n, \\ -n^2 & \text{if } -1/n < x < 0, \\ 0 & \text{otherwise.} \end{cases}$$

(a) Sketch h_1 and h_2 .

Answer: The functions are shown in Fig. 2

(b) Prove that h_n converges pointwise to 0 on \mathbb{R} .

Answer: At x = 0, $\lim_{n\to\infty} h_n(x) = \lim_{n\to\infty} 0 = 0$. For $x \neq 0$, there exists an $N \in \mathbb{N}$ such that 1/N < |x|. Hence for n > N, $h_n(x) = 0$ and thus $\lim_{n\to\infty} h_n(x) = 0$.

(c) Let *f* be a real-valued function on \mathbb{R} that is differentiable at x = 0. Prove that

$$\lim_{n\to\infty}\int_{-\infty}^{\infty}h_nf=f'(0).$$

Answer: Consider any $\epsilon > 0$. Then there exists a $\delta > 0$ such that $|x - 0| < \delta$ implies

$$\left|\frac{f(x) - f(0)}{x - 0} - f'(0)\right| = \left|\frac{f(x)}{x} - f'(0)\right| < \epsilon.$$
(1)

By the Archimedean property, there exists an $N \in \mathbb{N}$ such that $\frac{1}{N} < \delta$. For n > N,

$$\int_{-\infty}^{\infty} h_n f = \lim_{c \to -\infty} \int_{c}^{0} h_n f + \lim_{d \to \infty} \int_{0}^{d} h_n f = -\int_{-1/n}^{0} n^2 f + \int_{0}^{1/n} n^2 f.$$

By using Eq. 1,

$$\begin{aligned} \int_0^{1/n} f - \int_{-1/n}^0 f &\geq \int_0^{1/n} (f(0) - x(f'(0) - \epsilon)) dx - \int_{-1/n}^0 (f(0) - x(f'(0) + \epsilon)) dx \\ &= \frac{f'(0) - \epsilon}{2n^2} - \frac{f'(0) - \epsilon}{2n^2} = \frac{f'(0)}{n^2} - \frac{\epsilon}{n^2}. \end{aligned}$$

By the same procedure

$$\int_0^{1/n} f - \int_{-1/n}^0 f \le \frac{f'(0)}{n^2} + \frac{\epsilon}{n^2}$$

and hence

$$\left| \int_{-\infty}^{\infty} h_n f - f'(0) \right| = \left| n^2 \left(\int_{0}^{1/n} f - \int_{-1/n}^{0} f \right) - f'(0) \right| \le \epsilon$$

from which it follows that $\lim_{n\to\infty} h_n f = f'(0)$.

7. (a) Find an example of a set $A \subseteq \mathbb{R}$ where the interior A° is non-empty, but that sup $A \neq \sup A^{\circ}$ and $\inf A \neq \inf A^{\circ}$.

Answer: Consider $A = \{-2\} \cup (-1, 1) \cup \{2\}$. Then $\sup A = 2$ and $\inf A = -2$. However, $A^{\circ} = (-1, 1)$, since if $x = \pm 2$, then there is no neighborhood $N_{\delta}(x) \subseteq A$ for any $\delta > 0$. Hence $\inf A^{\circ} = -1$ and $\sup A^{\circ} = 1$.

(b) Let B_1, \ldots, B_n be subsets of \mathbb{R} . Prove that

$$\left(\bigcap_{i=1}^n B_i\right)^\circ = \bigcap_{i=1}^n B_i^\circ.$$

Answer: Call the LHS *E* and the RHS *D*. Suppose $x \in E$. Then there exists a $\delta > 0$ such that the neighborhood $N_{\delta}(x) \subseteq \bigcap_{i=1}^{n} B_i$. Hence $N_{\delta}(x) \subseteq B_i$ for all i = 1, ..., n and so $x \in B_i^{\circ}$ for all i = 1, ..., n. Hence $x \in D$.

Now suppose that $x \in D$. Then $x \in B_i^\circ$ for all i = 1, ..., n, so there exist $\delta_i > 0$ such that $N_{\delta_i}(x) \subseteq B_i$ for all i = 1, ..., n. Let $\delta = \min\{\delta_1, ..., \delta_n\} > 0$. Then $N_{\delta}(x) \subseteq B_i$ for all i = 1, ..., n and hence $N_{\delta}(x) \subseteq \bigcap_{i=1}^n B_i$, so $x \in E$.

(c) Suppose that $\{C_i\}_{i=1}^{\infty}$ is an infinite sequence of subsets of \mathbb{R} . Prove that

$$\left(\bigcap_{i=1}^{n} C_{i}\right)^{\circ} \subseteq \bigcap_{i=1}^{n} C_{i}^{\circ}$$

but that these two sets may not be equal.

Answer: The first argument from part (b) can be still be applied when there are an infinite number of sets, to establish that $(\bigcap_{i=1}^{n} C_i)^{\circ} \subseteq \bigcap_{i=1}^{n} C_i^{\circ}$. However, the second argument may fail if the infimum of the δ_i is equal to zero. Motivitated by this, consider $C_i = (-1/i, 1/i)$. Since these are open sets, $C_i^{\circ} = C_i$. Hence,

$$\bigcap_{i=1}^{\infty} C_i^{\circ} = \{0\}.$$

However

$$\bigcap_{i=1}^{\infty} C_i = \{0\}$$

and thus

$$\left(\bigcap_{i=1}^{\infty} C_i\right)^{\circ} = \emptyset.$$

8. (a) If *f* is a continuous strictly increasing function on \mathbb{R} , prove that

$$d(x,y) = |f(x) - f(y)|$$

defines a metric on \mathbb{R} .

Answer: Consider the three properties of being a metric

- M1. For all $x \in \mathbb{R}$, d(x, x) = |f(x) f(x)| = 0. If d(x, y) = 0 then f(x) = f(y), and if f is strictly increasing then x = y.
- M2. For all $x, y \in \mathbb{R}$, d(x, y) = |f(x) f(y)| = |f(y) f(x)| = d(y, x) and thus the metric is symmetric.
- M3. For all $x, y, z \in \mathbb{R}$,

$$d(x,y) + d(y,z) = |f(x) - f(y)| + |f(y) - f(z)| \le |f(x) - f(z)| = d(x,z)$$

which follows from the usual triangle inequality.

(b) Prove that *d* is equivalent to the Euclidean metric $d_E(x, y) = |x - y|$.

Answer: Write $N_r(x)$ and $N_r^E(x)$ for the neighborhoods of radius r with respect to d and d_E respectively. To prove that the two metrics are equivalent, consider any $x \in \mathbb{R}$, and $\epsilon > 0$. By continuity, there exists a $\delta > 0$ such that $|x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$. Hence $N_{\delta}^E(x) \subseteq N_{\epsilon}(x)$.

Since *f* is continuous and strictly increasing, it has a continous strictly increasing inverse f^{-1} . Consider any $x \in \mathbb{R}$ and $\epsilon > 0$. By using continuity of f^{-1} at f(x), there exists a $\delta > 0$ such that $|f(x) - z| < \delta$ implies $|f^{-1}(f(x)) - f^{-1}(z)| < \epsilon$ so $|x - f^{-1}(z)| < \epsilon$. Then

$$N_{\delta}(x) = \{ y \in \mathbb{R} : |f(x) - f(y)| < \delta \}$$

$$\subseteq \{ y \in \mathbb{R} : |x - f^{-1}(f(y))| < \epsilon \}$$

$$= \{ y \in \mathbb{R} : |x - y| < \epsilon \} = N_{\epsilon}^{E}(x).$$

Hence the two metrics are equivalent.

(c) Suppose *g* is a continuous strictly increasing function on $[0, \infty)$ where g(0) = 0. Is the function

$$d_2(x,y) = g(|x-y|)$$

always a metric? Either prove the result, or find a counterexample.

Answer: This does not always define a metric. Consider $g(x) = x^2$. Then $d_2(0,1) + d_2(1,2) = 1^2 + 1^2 = 2$ but $d_2(0,2) = 2^2 = 4$ so the triangle inequality is violated.

9. Consider the continuous function defined on \mathbb{R} as

$$f(x) = \begin{cases} \frac{x}{e^x - 1} & \text{if } x \neq 0, \\ c & \text{if } x = 0, \end{cases}$$

where $c \in \mathbb{R}$. For this question you can assume basic properties of the exponential, such that it is continuous, differentiable, and has the Taylor series $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$.

(a) Use L'Hôpital's rule to compute $\lim_{x\to 0} f(x)$ and hence determine *c*.

Answer: By L'Hopital's rule, $\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{1}{e^x} = 1$. A function is continuous at 0 if and only if $\lim_{x\to 0} f(x) = f(0)$, and thus c = 1.

(b) Show that *f* is differentiable on \mathbb{R} and compute *f*'.

Answer: The derivative for $x \neq 0$ is

$$f'(x) = \frac{(e^x - 1) - xe^x}{(e^x - 1)^2}.$$

Using the definition of the derivative,

$$f'(0) = \lim_{a \to 0} \frac{f(a) - f(0)}{a - 0} = \lim_{a \to 0} \frac{\frac{a}{e^a - 1} - 1}{a}$$
$$= \lim_{a \to 0} \frac{a - e^a + 1}{a(e^a - 1)}$$
$$= \lim_{a \to 0} \frac{1 - e^a}{(a + 1)e^a - 1}$$
$$= \lim_{a \to 0} \frac{-e^a}{e^a(a + 2)} = -\frac{1}{2}$$

where L'Hôpital's rule has been applied twice.

(c) Calculate the function limits

$$\lim_{x\to\infty}f(x),\qquad \lim_{x\to-\infty}(x+f(x)).$$

Use the results to sketch *f* and f_T on (-10, 10).

Answer: The first limit is

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{1}{\frac{e^x}{x} - \frac{1}{x}} = 0$$

since $e^x/x \to \infty$ as $x \to \infty$; this can be verified by using the Taylor series to see that $e^x > \frac{x^2}{2}$ for all x > 0. The second limit is

$$\lim_{x \to -\infty} (x + f(x)) = \lim_{x \to -\infty} x \frac{x(e^x - 1 + 1)}{e^x - 1} = \lim_{x \to \infty} \frac{xe^x}{e^x - 1} = 0$$

since as $xe^x \to 0$ as $x \to -\infty$. The functions *f* and *f*_T are plotted in Fig. 3.

10. Given a function f on [a, b], define the *total variation* of f to be

$$Vf = \sup\left\{\sum_{k=1}^{n} |f(t_k) - f(t_{k-1})|\right\}$$

where the supremum is taken over all partitions $P = \{a = t_0 < t_1 < ... < t_n = b\}$ of [a, b].

(a) Calculate *V f* for the function defined on [-1, 1] as

$$f(x) = \begin{cases} -2 & \text{if } x < 0, \\ 3 & \text{if } x \ge 0. \end{cases}$$

Answer: Consider any partition $P = \{a = t_0 < t_1 < ... < t_n = b\}$. Then there exists a *k* such that $t_{k-1} < 0 \le t_k$. For j < k, $|f(t_j) - f(t_{j-1}| = |(-2) - (-2)| = 0$. Similarly, if j > k, $|f(t_j) - f(t_{j-1}| = |3 - 3| = 0$, and thus

$$\sum_{k=1}^{n} |f(t_k) - f(t_{k-1})| = 0 + |f(t_k) - f(t_{k-1})| + 0 = |3 - (-2)| = 5.$$

Since this is true for an arbitrary partition, it follows that Vf = 5.

(b) Prove that if *f* is differentiable on an interval [*a*, *b*], and that *f'* is continuous then $Vf = \int_{a}^{b} |f'|$.

Answer: To prove that $Vf \leq \int_{a}^{b} |f'|$, consider any partition *P* of [a, b]. Then, by using the Fundamental Theorem of Calculus,

$$\sum_{k=1}^{n} |f(t_k) - f(t_{k-1})| = \sum_{k=1}^{n} \left| \int_{t_{k-1}}^{t_k} f' \right| \le \sum_{k=1}^{n} \int_{t_{k-1}}^{t_k} |f'| = \int_a^b |f'|.$$

Since |f'| is integrable on [a, b], for all $\epsilon > 0$, there exists a partition P such that $U(|f'|, P) - L(|f'|, P) < \epsilon$, and hence $L(f', P) > (\int_a^b |f'|) - \epsilon$. By using the Mean Value Theorem, for each k, there exists an $x_k \in (t_{k-1}, t_k)$ such that

$$f'(x_k) = \frac{f(t_k) - f(t_{k-1})}{t_k - t_{k-1}}.$$

Hence

$$\begin{split} \sum_{k=1}^{n} |f(t_k) - f(t_{k-1})| &= \sum_{k=1}^{n} |f'(x_k)(t_k - t_{k-1})| \\ &\geq \sum_{k=1}^{n} m(|f'|, [t_{k-1}, t_k])(t_k - t_{k-1}) \\ &= L(|f'|, P) > \left(\int_{a}^{b} |f'|\right) - \epsilon. \end{split}$$

It is therefore possible to find partition such that the sum is larger than $\left(\int_a^b |f'|\right) - \epsilon$ for all $\epsilon > 0$ and thus $Vf \ge \int_a^b |f'|$. Combining this with the first result shows $Vf = \int_a^b |f'|$.

Figure 1: Graph of the function considered in question 2.

Figure 2: Graph showing the functions h_1 and h_2 considered in question 5.

Figure 3: Graph showing the functions considered in question 9 on L'Hôpital's rule.