Math 104: Final exam solutions

1. Suppose that (s,) is an increasing sequence with a convergent subsequence. Prove that (s,)
is a convergent sequence.

Answer: Let the convergent subsequence be (s, ) that converges to a limit s. Then there
exists a K such that k > K implies |s,, —s| < 1, and hence for k > K, s, < s+ 1. Suppose
that (s,,) is not bounded above. Then there exists an N such that sy > s+ 1, and since it is an
increasing sequence, s, > s + 1 for all n > N. Choosing an ny such that k > K and n, > N
gives s, < s-+1ands, > s+ 1whichisa contradiction. Hence (s,) is bounded above, and
since it is increasing it converges.



2.

(a)

(b)

Let fu(x) = m be functions defined on R, for all # € IN. By using the Weierstraf3
M-test, or otherwise, prove that }_ f, converges uniformly on R.

Answer: If |x| < 1, then

1 1 1
G < ey | < 2| = w2
If |x| > 1 then
x 1 1
< —.
fa(x)] < n?(nx?)| — |n?(nx)| — n?

Hence f,,(x) < 1/n2 for all x € R. Since }_1/x? converges, it follows that }_ f, converges
by the Weierstrafi M-test.

Consider the sequence of functions defined on R as

(x) = 1/n forn—-1<x<mn,
=19 0 otherwise,

foralln € IN. Define M,, = sup{|g»(x)| : x € R}. Prove that)_ g, converges uniformly
to a limit g, but that ) M,, diverges. Sketch g(x) for 0 < x < 5.

Answer: From the definition, it can be seen that M,, = 1/#, and hence }_ M,, diverges.
Consider x € [n —1,n) for some n € IN. Then Y }_; fu(x) = 1/n. Since f(x) = 0 for all
k > n it follows that Y 32 ; f(x) = 1/n. Thus }_ g, converges pointwise to

(x) = /m ifx € [m—1,m) forsomem € N,
Y=o otherwise.

To show that convergence is uniform, consider any € > 0. By the Archimedean prop-
erty, there exists an N € IN such that 1/N < €. For n > N, note that

'g<x> - Y )
k=1

 Ym ifx € [m—1,m) for some m € N withm > n,
10 otherwise,

and thus |g(x) — Y3_; gk(x)| < /n < €, so the convergence is uniform. The function g
is plotted in Fig.



3. Consider the sequence defined recursively according to sy = 1/3 and s,,+1 = As,(1 —s,) for
n € IN, where A is a real constant.

(a) Prove that (s,) converges for A = 1.

Answer: Suppose that s, € (0,1). Then s,4+1 = s,(1 —s,) < s, and s,+1 > 0, so
snt1 € (0,s,). Since s; = 1/3 it follows by induction that (s,) is a decreasing sequence
that is bounded below by 0, so it converges.

(b) Prove that (s,) has a convergent subsequence for A = 4.

Answer: First, note that

1 1\? 1\?
Sn+1:4(sn—5%):4<4—<sn—2>>:1—4<Sn—2> .

Suppose that s, € [0,1]. Then s, —1/2 € [~1/2,1/2], so 4(s, — 1/2)? € [0,1], and hence
su+1 € [0,1]. Since s; € [0,1] it follows by mathematical induction that s, € [0,1] for
all n € IN. Thus the sequence is bounded, so it has a convergent subsequence via the
Bolzano—Weierstrafs theorem.

(c) Prove that (s,) diverges for A = 12.
Answer: Now suppose that for n > 2, |s,| > 2"~1. Then
|Spi1| = 12]s,] - [1 =5, > 12271 (21 1) > 2.2 1.1 = 2",

s0 |sys1| > 20"D~1 Since s, = 8/3 > 2 it follows by mathematical induction that
|sy| > 2" for all n € N with n > 2. Since 2" — o0 as n — oo, it follows that s, is
unbounded and hence diverges.



4. A real-valued function f defined on a set S is defined to be Lipschitz continuous if there exists
a K > Osuch thatforallx,y € S,

(a)

(b)

[f(x) = f(w)] < K|x —y.
Prove that if f is Lipschitz continuous on S, then it is uniformly continuous on S. An-

swer: Choose € > 0. Then set § = . If x,y € S such that |[x —y| < J, then

f(x) = f <Klx—y| <Ké=e

and hence f is uniformly continuous.

Consider the function f(x) = /x on the interval [0,00). Prove that it is uniformly
continuous, but not Lipschitz continuous.

Answer: To show that f is uniformly continuous, choose € > 0, and note that

e o VA VDGE VD x—y]
£(x) — )] = V3~ vl e T

Suppose that x < €2 and y < €2. Then 0 < f(x) < eand 0 < f(y) < €so |f(x) —
f(y)| < e. Otherwise, either x > € or y > €?,s0 \/x+ \/y > €. If [x —y| < § where
5 = €2, then

2

[x—y| _e
X)— - < —=¢€
0= f W= e <
and hence the function is uniformly continuous. To see that f is not Lipschitz continu-
ous, consider x = 1/x2, and y = 0:

() = fWI _ Lf/»)]

= =1n.

lx —y| /w2

Since n can be made arbitrarily large, there does not exist any K such that |f(x) —
f(y)| < K|x—y|forallx,y € [0,).



5. Consider the function defined on the closed interval [a, b] as

1 ifx =g,

hc(x):{ 0 ifx #¢,
wherea < ¢ < b.

(a) Prove that h, is integrable on [a, b] and that fab h. = 0.

Answer: Define 7 = min{b — ¢,c —a}. For a < 7, define the partition P, = {a =ty <
ty <ty < t3 =b} wheret; =c—waandt, = ¢+ a. Then

3

L(hC/ PO() - Z C/ tk/ tk+l )(tk+1 - tk)
k=1

= 0+ 2am(he,[c—a,c+a])+0=0

and

U(he, Py) = iM(hc/[tk/tk+1])(tk+l_tk)

= 0+2aM(h, [c —a,c+a]) +0 = 2a.
Since a can be made arbitrarily small, it follows that U(h.) < 0 and L(h.) > 0. Hence
U(h;) = L(h.) = 0, and h, is integrable with integral f: h. =0.
(b) Suppose f is integrable on [4, b], and that g is a function on [a, b] such that f(x) = g(x)

except at finitely many x in (4,b). Prove that g(x) is integrable and that | ab f=/ ab g.
You can make use of basic properties of integrable functions.

Answer: If ¢ differs from f at finitely many points, then it is possible to write

where the c; are the points where they differ and b; = g(c;) — f(c;). Since g is the sum
of integrable functions it is integrable and hence

b b n b b
/agz/uf+;/u bihci:/Qf.



6. Consider the sequence of functions /1, on R according to

n? if0 < x < 1/n,
hy(x) =< —n? if —1/n<x<0,
0 otherwise.

(a) Sketch hy and hs.

Answer: The functions are shown in Fig. [2]

(b) Prove that h;, converges pointwise to 0 on RR.

Answer: At x = 0, lim,,_,0 1, (x) = lim;, 0 = 0. For x # 0, there exists an N € IN
such that 1/N < |x|. Hence for n > N, h,(x) = 0 and thus lim;,_,c /1, (x) = 0.

(c) Let f be a real-valued function on IR that is differentiable at x = 0. Prove that

tim [ haf = £/0)

n—oo
Answer: Consider any € > 0. Then there exists a § > 0 such that |[x — 0| < J implies
fx) = fO) 4 ACI”
_ = — ) 1
TEOZIO_po)| = |12 - o] < <>
By the Archimedean property, there exists an N € N such that +; < é. Forn > N,

© ) 0 ) d 1/n
/—oohnf:CErPoo c hnf—i_dlgIJO/O hnf:_/l/nnf+/

By using Eq. m

0

1/n 0 1/n ) /
/O =102 /0 (f(0) —x(f (O)—e))dx—/_l/n(f(o)_x(f (0) + €))dx
_ f0)—e f0)—e_f(0) e
2n? 212 n2 n2’

By the same procedure

/Ol/nf—/ol/nfgfln(g)
s =ro| =l ([ 0= L, 1) ro] =<

from which it follows that limy,_,« i, f = f'(0).

and hence




7.

(a)

(b)

(©)

Find an example of a set A C IR where the interior A° is non-empty, but that sup A #
sup A° and inf A # inf A°.

Answer: Consider A = {—2} U (—1,1) U{2}. Thensup A = 2 and inf A = —2. How-
ever, A° = (—1,1), since if x = %2, then there is no neighborhood N;s(x) C A for any
0 > 0. Hence inf A° = —1 and sup A° = 1.

Let By, ..., B, be subsets of R. Prove that
n © n
(ﬂ Bi> =) B;.
i=1 i=1

Answer: Call the LHS E and the RHS D. Suppose x € E. Then there exists a § > 0 such
that the neighborhood Njs(x) € N/_; B;. Hence Ny(x) C B;foralli = 1,...,n and so
x € B foralli=1,...,n. Hence x € D.

Now suppose that x € D. Then x € B} foralli =1,...,n, so there exist 6; > 0 such that
Ns(x) C Biforalli =1,...,n. Let 6 = min{éy,...,d,} > 0. Then Ns(x) C B; for all
i=1,...,nand hence Ns(x) C N, B;, sox € E.

Suppose that {C;}{°, is an infinite sequence of subsets of R. Prove that

n °© n
i=1 i=1

but that these two sets may not be equal.

Answer: The first argument from part (b) can be still be applied when there are an
infinite number of sets, to establish that (N;L; C;)° € NiL; C;. However, the second
argument may fail if the infimum of the J; is equal to zero. Motivitated by this, consider
C; = (—1/i,1/i). Since these are open sets, C? = C;. Hence,

ﬁc;’ = {0}.

However -
(N Ci = {0}
i=1

and thus



8.

(a)

(b)

(©)

If f is a continuous strictly increasing function on IR, prove that

d(x,y) = |f(x) = f(y)]

defines a metric on R.

Answer: Consider the three properties of being a metric

MI. Forallx € R, d(x,x) = |f(x) — f(x)| =0.Ifd(x,y) = 0 then f(x) = f(y), and if f

is strictly increasing then x = v.

M2. Forall x,y € R, d(x,y) = |f(x) — f(y)| = |f(y) — f(x)| = d(y, x) and thus the

metric is symmetric.

M3. Forallx,y,z € R,

d(x,y) +d(y,z) = [f(x) = fFWI + 1f(y) = F@)] < |f (%) = f(2)] = d(x,2)

which follows from the usual triangle inequality.

Prove that d is equivalent to the Euclidean metric dg(x,y) = [x — y|.

Answer: Write N, (x) and N (x) for the neighborhoods of radius r with respect to d and
dg respectively. To prove that the two metrics are equivalent, consider any x € R, and
€ > 0. By continuity, there exists a § > 0 such that |x — y| < J implies |f(x) — f(y)| < e.
Hence NE(x) C Ne(x).

Since f is continuous and strictly increasing, it has a continous strictly increasing in-
verse f~1. Consider any x € R and € > 0. By using continuity of f~! at f(x),
there exists a § > 0 such that |f(x) —z| < J implies [f~!1(f(x)) — f(z)] < € so
|x — f71(z)| < €. Then

Ns(x) = {yeR: |[f(x)—f(y)] <}
C {yeR:|x—f1(fw)l <e}
= {yeR: |x—y| <e} =NE(x).

Hence the two metrics are equivalent.

Suppose g is a continuous strictly increasing function on [0, c0) where g(0) = 0. Is the
function

d2(x,y) = g(|x —yl)

always a metric? Either prove the result, or find a counterexample.

Answer: This does not always define a metric. Consider g(x) = x2. Then d»(0,1) +
dx(1,2) =12+ 12 = 2 but d»(0,2) = 2% = 4 so the triangle inequality is violated.



9. Consider the continuous function defined on R as

f(x):{ . if x #0,

c ifx=0,

where ¢ € R. For this question you can assume basic properties of the exponential, such that
it is continuous, differentiable, and has the Taylor series e* = Y ;7 ; 77.

(a) Use L'Hopital’s rule to compute lim,_,o f(x) and hence determine c.

Answer: By L'Hopital’s rule, lim,_,o f(x) = limy_,01/e* = 1. A function is continuous
at 0 if and only if lim,_,o f(x) = f(0), and thus c = 1.

(b) Show that f is differentiable on R and compute f’.

Answer: The derivative for x # 0 is

Using the definition of the derivative,

/ 1 f(ll)—f(()) T 8061—1
o= T
. oa—e"+1
= lim—+
a—=0 a(e’ — 1)
I A
a0 (a+1)er —1

-1

lim ——
ali% et (ﬂ + 2) 2
where L'Hopital’s rule has been applied twice.

(c) Calculate the function limits

lim f(x), lim (x+ f(x)).

X—00 X—r—00

Use the results to sketch f and fr on (—10, 10).

Answer: The first limit is

. . 1
o S = i e

=0

since e*/x — o0 as x — oo; this can be verified by using the Taylor series to see that
e* > 2*/2 for all x > 0. The second limit is
X141 X
lim (x+ f(x)) = lim xu = lim ~ =0

X——00 x——00 ex —1 xseoeX —1

since as xe* — 0 as x — —oo. The functions f and fr are plotted in Fig.



10. Given a function f on [a, b], define the total variation of f to be

szmm{éivaw—fuko@
=1

where the supremum is taken over all partitions P = {a =ty < t; < ... < t, = b} of [a, b].
(a) Calculate Vf for the function defined on [—1,1] as

{—2 if x <0,

f)=13 if x > 0.

Answer: Consider any partition P = {a =ty < f; < ... < t, = b}. Then there exists a
ksuch thatt,_; < 0 < t. Forj <k, |f(t;) — f(tji-1| = |(—=2) — (—2)| = 0. Similarly, if
j >k |f(tj) — f(ti1]| = [3 = 3| = 0, and thus

32 () = F(ti)] = 0-+ F(8) = f(ti) +0 = 3= (2) =5

Since this is true for an arbitrary partition, it follows that Vf = 5.
(b) Prove that if f is differentiable on an interval [a, b], and that f” is continuous then V f =

b
fa ‘f/ | *
Answer: To prove that Vf < [ ab |f'|, consider any partition P of [a,b]. Then, by using
the Fundamental Theorem of Calculus,
!/ 3 i ! b !
<y =
k=111 a

Y IF (k) — Fltr)| = )
k=1 k=1

Since |f'| is integrable on [a,b], for all € > 0, there exists a partition P such that
U(|f'|,P) — L(|f'|, P) < €, and hence L(f’, P) > (f: |f'|) — €. By using the Mean Value
Theorem, for each k, there exists an x; € (f;_1, f;) such that

ft) = ft1)

fe — tea

f(x) =

Hence

1=

Y UF) — Flt)| = Y1 (o) (b — fen)|

k=1

.

Sl
—_

v

Z (1], b1, t]) (b — tx—1)

= w712 > ([ 171) -e

It is therefore possible to find partition such that the sum is larger than ( fab |f ]) — € for
alle > 0and thus Vf > [ ab |f'|. Combining this with the first result shows Vf = [ ab |-
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Figure 1: Graph of the function considered in question 2.
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Figure 2: Graph showing the functions ; and h; considered in question 5.
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Figure 3: Graph showing the functions considered in question 9 on L’'Hopital’s rule.



