
Math 104: Midterm 2 sample solutions

1. To show that f is uniformly continuous, choose ϵ > 0. Since fn → f uniformly,
there exists an N such that n > N implies that

| fn(x)− f (x)| < ϵ

3

for all x ∈ (a, b). Now consider fN+1: since this is uniformly continuous, there exists
a δ > 0 such that if x, y ∈ (a, b) and |x − y| < δ, then

| fN+1(x)− fN+1(y)| <
ϵ

3
.

Now, for any x, y ∈ (a, b) with |x − y| < δ,

| f (x)− f (y)| ≤ | f (x)− fN+1(x)|+ | fN+1(x)− fN+1(y)|+ | fN+1(y)− f (y)|
<

ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ

and hence f is uniformly continuous.

2. For three values 0, 1, and 2,

d1(0, 1) + d1(1, 2) = 14 + 14 = 2

but
d1(0, 2) = 24 = 16

and hence the triangle inequality is violated, so d1 is not a metric.

Since d2(0, 0) = 1, it does not satisfy the property that d(x, x) = 0 for all x ∈ R, and
hence d2 is not a metric. Since d3(0, 1) = 2, and d3(1, 0) = 1 it is not symmetric, and
hence it is not a metric.

3. First, consider the series
∞

∑
n=0

xn

n
√

n

so that the coefficients are an = n−
√

n. Then

β = lim sup |an|1/n

= lim sup |n−
√

n|1/n

= lim sup n−1/
√

n.

Since the power will always be negative, all of the terms in this sequence must be
less than or equal to 1, so β ≤ 1. Consider the subsequence of terms for n = 2k.
Then

n−1/
√

n = 2−k/2k/2
.



It is known that k/2k/2 → 0 as k → ∞. Hence 2−k/2−k → 1 as k → ∞. Hence, since
the subsequence tends to 1 as n → ∞, then β ≥ 1. Combining with the result above,
β = 1, and the radius convergence is R = 1.

For the second series
∞

∑
n=0

4n x2n+1

then

an =

{
2n−1 if n is odd
0 if n is even.

Consider the subsequence of odd terms:

|a2k+1|1/(2k+1) = |22k+1−1|1/(2k+1) = 22k/(2k+1)

which converges to 2 as k → ∞. Hence

β = lim sup |an|1/n = 2

and therefore the radius of convergence is R = 1/2.

For the third series,
∞

∑
n=0

xn2
,

the coefficients are an = 1 if n is a square number and zero otherwise. Hence

|an|1/n =

{
1 if n is a square number
0 otherwise.

Hence
β = lim sup |an|1/n = 1

since there are infinitely many terms which are 1 in the sequence. Hence the radius
of convergence is R = 1.

4. If g is bounded on S, then there exists an M > 0 such that |g(x)| < M for all x ∈ S.
Now consider any ϵ > 0. If fn converges uniformly to f , then there exists an N such
that n > N implies that

| fn(x)− f (x)| < ϵ

M
for all x ∈ S. Now consider g · fn:

|g(x) fn(x)− g(x) f (x)| = |g(x)| · | fn(x)− f (x)| < M
ϵ

M
= ϵ

and hence it uniformly converges to g · f .



5. If fn converges uniformly to f , then there exists an N such that n > N implies that

| fn(x)− f (x)| < 1

for all x ∈ S. By using the triangle inequality,

| f (x)| < | fN+1(x)|+ 1.

Since fN+1 is bounded, | fN+1(x)| < M for all x and for some M ≥ 0, and thus
| f (x)| < M + 1 for all x. Hence f is bounded.

6. Since a continuous function on a closed interval is bounded, then for each fn, there
exists Mn such that | fn(x)| < Mn for all x ∈ [0, 1]. Since fn converges uniformly to
f , there exists an N ∈ N such that for all n > N,

| fn(x)− f (x)| ≤ 1

Since the fn converge uniformly and are continuous, the limit f is continuous also,
and therefore bounded, so that | f (x)| < M′ for all x ∈ [0, 1], for some M′ > 0. By
using the triangle inequality,

| fn(x)| < | f (x)|+ 1 < M′ + 1

for all n > N. Now define

L = max{M1, M2, . . . , MN, M′ + 1}

Consider any x ∈ [0, 1] and any n ∈ N. If n ≤ N, then | fn(x)| < Mn ≤ L. If n > N,
then | fn(x)| < M′ + 1 ≤ L. Thus L is an upper bound for the set A = {| fn(x)| : n ∈
N, x ∈ [0, 1]}. Hence 0 ≤ sup A ≤ L, and thus sup A must be finite.


