Math 104: Homework 5 (due March 4)

- 1. Ross exercise 14.12
- 2. (a) By using the integral test, or otherwise, prove that

$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$$

converges if and only if p > 1.

- (b) Suppose (*a_n*) is a non-increasing sequence of positive real numbers, and that ∑*a_n* converges. By considering the Cauchy criterion, or otherwise, prove that *na_n* → 0 as *n* → ∞.
- (c) By considering part (a), find an example of a non-increasing sequence (a_n) where $\sum a_n$ diverges, but $na_n \to 0$ as $n \to \infty$, to show that the converse of part (b) is not true.
- 3. Consider the following functions defined for $x, y \in \mathbb{R}$:

$$d_1(x,y) = (x-y)^2, \ d_2(x,y) = \sqrt{|x-y|}, \ d_3(x,y) = |x^2-y^2|, \ d_4(x,y) = |x-2y|.$$

For each function, determine whether it is a metric or not.

- 4. Ross exercise 13.3
- 5. Consider two-dimensional space \mathbb{R}^2 , with positions written as $\mathbf{u} = (u_1, u_2)$, and the Euclidean norm defined as $||\mathbf{u}|| = (u_1^2 + u_2^2)^{1/2}$. The Poincaré disk model consists of the points $X = {\mathbf{u} : ||\mathbf{u}|| < 1}$, with metric

$$d(\mathbf{u}, \mathbf{v}) = \cosh^{-1} \left[1 + \frac{2||\mathbf{u} - \mathbf{v}||^2}{(1 - ||\mathbf{u}||^2)(1 - ||\mathbf{v}||^2)} \right]$$

for all $\mathbf{u}, \mathbf{v} \in X$. Define $r = \cosh^{-1} \frac{5}{4}$. Draw the Poincaré disk, and then calculate and draw the neighborhoods $N_r(\mathbf{u})$ for $\mathbf{u} = (0,0)$, $(\frac{1}{2},0)$, and $(\frac{3}{4},0)$. [This can be done analytically, although if you prefer, you can also make use of computer programs to do *it* – any method of drawing the picture is acceptable.]

- 6. Suppose that (p_n) is a Cauchy sequence in a space X with metric d, and that some subsequence (p_{n_k}) converges to a point $p \in X$. Prove that the full sequence (p_n) converges to p.
- 7. Suppose that (p_n) and (q_n) are Cauchy sequences in a space *X* with metric *d*. Define $(a_n) = d(p_n, q_n)$. Show that the sequence (a_n) converges. It may be useful to consider the triangle inequality

$$d(p_n,q_n) \leq d(p_n,p_m) + d(p_m,q_m) + d(q_m,q_n)$$

which is true for all *n* and *m*.