Math 104: Homework 3 (due February 11)

- 1. Ross exercise 8.10
- 2. Ross exercise 9.6
- 3. Let (a_n) be a sequence defined according to $a_1 = t$ where t > 0, and $a_{n+1} = \frac{2a_n}{1 + a_n}$ for $n \in \mathbb{N}$. Prove that $a_n \to 1$ as $n \to \infty$.
- 4. Let (s_n) and (t_n) be Cauchy sequences defined on \mathbb{R} , and let (u_n) be a sequence defined as $u_n = as_n + bt_n$ for all n, where $a, b \in \mathbb{R}$. By using the definition of a Cauchy sequence only, without assuming that limits of (s_n) and (t_n) exist, prove that (u_n) is a Cauchy sequence.
- 5. Ross exercise 9.10
- 6. Ross exercise 10.6
- 7. Ross exercise 10.8
- 8. Let (s_n) be a sequence defined by $s_n = (-1)^n (1 + \frac{1}{n})$. Prove that $\limsup s_n = 1$ and $\limsup s_n = -1$.