Math 104: Homework 1 (due January 28)

- 1. Ross exercise 1.3
- 2. Ross exercise 1.8
- 3. The Leonardo numbers are defined according to $L_0 = 1$, $L_1 = 1$, and

$$L_{n+1} = L_n + L_{n-1} + 1$$

for all $n \in \mathbb{N}$. Consider the function

$$f(n) = \frac{2}{\sqrt{5}}(\varphi^{n+1} - (1-\varphi)^{n+1}) - 1$$

where $\varphi = (1 + \sqrt{5})/2$ is the Golden Ratio. For $n \in \mathbb{N}$, define P_n to be the proposition that "both $L_n = f(n)$ and $L_{n-1} = f(n-1)$ ". Apply mathematical induction to prove that P_n is true for all $n \in \mathbb{N}$, and deduce that $L_n = f(n)$ for all $n \in \mathbb{N} \cup \{0\}$.

- 4. Ross exercise 2.4
- 5. Show that $\sqrt{2} + \sqrt{3}$ is irrational.
- 6. Ross exercise 3.1
- 7. Ross exercise 3.4
- 8. Show that $||a| |b|| \le |a b|$ for all $a, b \in \mathbb{R}$.
- 9. Ross exercise 3.6