Mathematics 475 Fall 1999 Wilson
Exam [ 10/20/99
Solutions

Problem 1: If we put 5 rooks on a board so that no two attack each other, they must be in 5
different columns and 5 different rows. On a 9x9 board we can pick the 5 columns in (9) ways and
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the 5 rows also in (g) ways. Making those choices essentially selects a 5x5 “sub-board” on which
we put the rooks. Once that sub-board is chosen, there would be 5! ways to put the rooks on it if
they were all the same color. (See examples in text, or just think of putting a rook in the top row
of the 5, in one of 5 columns, which leaves only 4 columns available for the rook in the second row,
etc.) If we think of the rooks in order from the top row to the fifth row, we can assign the colors
by picking some 3 places out of 5 to place a blue rook and 2 to place a red one. That can be done
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in (3> ways. (Once the three places for blue are picked, the red ones are just the ones left over.)

Hence the answer is (g) (g)fﬂ(g) = 19,051, 200 ways.

Problem 2: The total capacity of the shelves is 240 books, and there are 240 books you have to
put on them. So arranging them subject to the given constraints amounts to: Pick some 90 of the
120 places on the top shelf for the Math books, and fill the remainder of the places on that shelf
with Philosophy books. Pick some 70 of the 120 places on the lower shelf for English books, and
fill the remainder of the places on that shelf with Philosophy books. This will complete putting in
all of the books and will fill all of the spaces. This can be done in (120) (120) ways. (That is about

90 )\ 70
3.117 x 1062.)
Problem 3:

(a) You can use any of several forms of the pigeon hole principle. Thinking through it rather than
grabbing for a formula: How many times can we eat there and not have at least one item at least
10 times? We could have the first item 9 times, the second also 9 times, and so on through the fifth
item on the menu. That would account for 45 meals. So if we have 46 meals there we must have
had at least one item at least ten times.

(b) Since there is no limit on the availability of each item, we could (as an example) have any of
the non-pizza items every meal forever. Hence there is no number of meals that guarantees at least
ten pizzas.

(c) Let z; be the number of times you have item 4, for ¢ = 1...5. Then x; > 0 for each i, and

T1 + 23+ x3+ x4 + 5 = 50. The number of solutions is then (5+§8_1) = (5+540_1) = (544> = 316, 251.

Problem 4: Since nobody is acquainted with him/herself, the maximum number of acquaintances
a person in this group can have is less than 50, and even, so it is 48. Consider two cases: (a) some
person has 48 acquaintances, and (b) nobody has 48 acquaintances.

In case (a), suppose a person X has 48 acquaintances. Let S be the set consisting of X and all
of his/her acquaintances. Then |S| = 49. Each person in S other than X is acquainted with at
least one other person because he/she is acquainted with X, and by the even-ness requirement
is thus acquainted with at least 2 people. Since X is acquainted with 48 people, any person in
S is acquainted with an even number which is at least 2 and at most 48 of people. There are
24 such numbers. Therefore the function that associates with each person in S his/her number of
acquaintances takes 49 people to only 24 different numbers, and by the strong form of the pigeonhole
principle, some three people must go to the same number.



In case (b) any person has a number of acquaintances which is even and ranges from 0 to 46. There
are 24 such numbers. The function which takes a person to his/her number of acquaintances in this
case takes 50 people to 24 numbers, so by the same reasoning some three people must go to the
same number.

Problem 5: Use the binomial theorem:
20— 1) =3 (1) 2o+
k=0

(a) To get x5y'® we must have the term with (2z)°(—4y)'®, which will include the binomial coefficient

20) " Hence the term is (22)(2z)7(—4y)"® = 2°(—4)'5(2)2%y'5. Working that out gives —23°(%Y) ~
(15 15 Yy 15 Y g g 15
—5.327134 x 10 for the coefficient.

(b) To get 2°y'* we must have the term with (22)%(—4y)'*, which will include the binomial coefficient
GZ). Hence the term is (?2)(2@6(—43;)14 = 26(—4)1 (?Z)xﬁym. Working that out gives 234 (fg) ~
6.658917 x 10! for the coefficient.

Problem 6: There are many ways to do this. Here is one: Apply the binomial theorem to (1—x)™.
(We think of doing this because (i) it will have the alternating signs, (ii) it will have powers of «

which when integrated will yield the multipliers %, %, etc.) We get

(1—z)"=1- (Tf)x—l— <Z>x2 - <§>x3+~--+ (—1)”<Z>x”.

Consider both sides as functions of z and integrate: (remember the effect of the —z...You may
want to make a “u-substitution.”)

1 1/n 1/(n 1 n
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n—i—l( ) x 2<1>x +3<2>$ + ( )n—|—1<n>x +C

where C' denotes a constant of integration: For any fixed n it is a constant, but it might change

with n. To evaluate the constant, let x = 0 and get C' = —n%rl. Now substitute instead z = 1: This
gives
1(n 1(n 1 n 1
1—= _ — ... 1" =—C= .
2<1>+3<2> + )n+1<n> n+1
Problem 7:

(a) There are (3) =06 2-combinations from a set of 4 elements. They are:
{A,B},{A,C},{A, D}, {B,C},{B, D}, and {C, D}.

(b) The 2-permutations will be just those 2-combinations and their reversals, written so as to
indicate that order matters. That will make 12 of them. They are:

(A, B),(A,C),(A,D),(B,C),(B,D), and (C, D)
as given above together with

(B,A),(C,A),(D,A),(C,B),(D,B), and (D, C).



