Mathematics 234, Fall 2004 Lecture 3 (Wilson)

Final Exam  December 22, 2004 ANSWERS

Problem 1
For the helical (“corkscrew”) motion 7(t) = 2 cos(¢)7’ — 2sin(t)7+ 3tk:

(a)

(b)

Find the velocity #(t) as a function of ¢.
ANSWER: #(t) = 7'(t) = —2sin(t)7 — 2 cos(t)7 + 3k.

Find the acceleration d(t) as a function of ¢.
ANSWER: a(t) = 7'(t) = —2cos(t)7+ 2sin(t)]+ Ok.

Find the unit tangent vector T'(¢).
ANSWER: T(t) is the unit vector in the direction of #(t). The magnitude of #(t), using part (a),

is \U )= \/4sm t) +4cos?(t) + 9 = V13. Hence T(t) = ﬁﬁ(t) = _\/Ll_s sin(t)7 — \/Ll—scos(t)j'
k.

+
Find the principal unit normal vector N (¢).

7 dT'/d [ _ T’ S .
ANSWER: N(t) = M_T% and 4L = Iﬁ(g?' We got |#(t)] = /13 in part (c). Also fiom
part (¢) we have T(£), so we can calculate T'(t) = _\/Ll_s cos(t)7+ \/Lﬁ sin(t)7+ 0k. Then L —

\/Ll_g (—\/% cos(t)7+ \/%j') = —12—3 cos(t)7 + % sin(t)7. Now we can calculate ]df/ds| = 12—3, and

N(t) = 1 (—12—3 cos(t)+ % sin(t)j’) = — cos(t)7+ sin(t) 7+ Ok.

You might also see this answer geometrically with almost no calculation, in several ways: (i) Since
the motion in the k direction has constant speed, the normal vector will point directly inward
from 7(t) toward the z-axis. Hence its k component will be zero and its 7’ and 7 components will
be just the negatives of what appear in 7 except for normalizing to a unit vector. (ii) Since the
“speed” || is a constant, v/13, the acceleration must be entirely in the direction of the normal
vector 7i(t). Hence we could take d(t) from (b) and multiply by a constant to get unit length.
(iii) You can also realize that (i) or (ii) applies if you notice that @ and 7 are the same except
for the k component.

BUT: A common incorrect procedure involved dividing by a vector. No matter what else you

are doing, that should raise a waving red flag to say something is wrong!

Find the curvature x(t).

ANSWER: x(t) = |4

so using what we got in (d) we have s(t) = 3.

One error that you should not have made was to get a vector as an answer: The curvature is a
number, and furthermore it is never negative.

Problem 2

21>

The function f(z,y) = — o does not have a limit as (z,y) — (0,0).
T Y

Show that this is true.



ANSWER: Since we are told the limit does not exist, we look for paths such that approaching (0, 0)
along different paths produces different apparent limits. There are many possible paths to choose.
Here is one way to do it “all at once”: Suppose we approach (0,0) along the curve z = ay? for
some number a, a parabola if @ # 0 and the y-axis if @ = 0. Where z = ay?, but (z,y) # (0,0),
f(z,y) = a2—2‘f;%; = ?21_1 That is a constant as (z,y) — (0,0) and hence the limit along the path is
that constant. But choosing different values for a gives different values for the limit, e.g. a = 1 gives
%:lwhilea:2gives%7é1.

Problem 3
Let f(z,y) = 2%y + ™ siny.

(a) What is the gradient Vf as a function of z and y?

ANSWER: g—i = 2zy + ye™ siny and % =22 + ze™ siny + €Y cos y.

Thus Vf(z,y) = (2zy + ye® siny) 7 + (2% + xe® siny + ™ cosy) 7

(b) At the point (1,0), in what direction @ is the directional derivative Dgzf largest? In what
direction is the directional derivative smallest?

ANSWER: At (1,0) the gradient, from (a), is 07+ 27 = 27. That is not a unit vector, so we
use the unit vector @ = 7’in the same direction to specify the direction of the greatest directional
derivative at (1,0). If we use 4 in the opposite direction, @ = —7, we will get the least directional
derivative at the same point.

(c) What is the value of the directional derivative at (1,0), in the direction making the directional
derivative largest?

ANSWER: The value of the directional derivative in the direction of the gradient at a point
is the magnitude of the gradient at that point, |V f (1,0)] = v0? + 22 = 2.

Problem 4
Set up but do not evaluate an iterated integral for the integral of

f(z,y,z) = 32° — 2z cos(zy)

over the region in space which is inside the cylinder 22 + 22 = 4 and between the planes y = 0 and
T+y=3.
ANSWER:

The cylinder, since z? + 22> = 4 makes no mention of y, is
parallel to the y-axis. It intersects the xz-plane in a circle of
radius 2, centered at the origin. The plane x +y = 3 extends
vertically through the line x+y = 3 in the zy-plane, and cuts
through the cylinder at 45°. See the picture to the right.




You could set this integral up in different orders for the variables. Using dz dy dz: The largest value
of z, overall, is 2, and the smallest is —2. Hence the outermost integral will go from —2 to 2. For
any = between —2 and 2, y goes from 0 to 3 — = since the region is bounded by the planes y = 0 and
y = 3 — x (rewritten version of z + y = 3.) (When x = —2, y ranges from 0 to 3 — (—2) = 5, along
the back edge. On the front edge, x = 2 and y ranges from 0 to 3 —2 = 1.) At any pair of values for
z and y, z ranges from the lower half of the cylinder to the upper half, i.e. —v4 — 22 < 2z < V4 — 22
Hence we can write the integral as

3—x Vai—z2
/ / / 3:1;2 — 2z cos(zy)) dzdydz.

Problem 5

2 prV4—22
For / / zy\/ 2% + y2 dy dx :
o Jo Yy y=ay

Evaluate the integral by converting to polar coordinates and evaluating the resulting polar integral.
ANSWER: The region of integration is a quarter-circle, the portion of the circle of radius 2 centered
at the origin that is in the first quadrant where > 0 and y > 0. In polar coordinates it can be
described by 0 <r <2and 0 <0 < g That takes care of the limits on the integrals. The integrand,
zy\/2? + y2, can be converted using x = rcosf, y = rsinf, and r = /22 + y2. We must remember
to replace dy dz by rdr df. Doing all of these things, we get

/0% /02(7" cos @) (rsin@)(r)(r)drdd or /0% /02 r(cos 0)(sin 0) dr d6.

We can “pull” the (cos6)(sinf) outside of the dr integral, and also replace it by % sin(26) using an
identity you were given on the exam, to get

us 2 s 5
/02 %sin(%‘)/O rtdrdf = /02 %sin(%) [%]

]
= g[— cos 205 = 36

2 T T
11 2 16 (3

6 = /2 L sin(20)2 4o = —6/2 sin 20 df

0o 2 5 5 Jo

0

Problem 6
If z, y, and z satisfy 2% —ay +yz + 4% = 2:

8z
Find —
(a) Fin 9
ANSWER: 1t is not practical to solve the given equation for z. We find the derivatives
1mphC1tly Taking -2 5, across the equation and remembering the chain rule, we get 3z2 82 —y+

y oz 5. = 0. Grouping on the left the terms that do include 6z and on the right those that don’t

and factoring gives %(3z + y) = y, and dividing we get a; = 3z2y gl
0
(b) Find gz
oy

ANSWER: Proceeding in the same way except that we differentiate with respect to y, we have
(remember the product rule this time as well as the chain rule!) 3z2& —r+yZ 8y +2z+3y? =0,

_ z—2—3y>
322+y -

SO 8y(3z +y)=2—2z—3y* and &



(¢) Find % at the point (1,1,1).

ANSWER: We just use y = 1 and z = 1 (x = 1 happens not to matter) in the expression

Yy . .o . 1
327, We got in (a), giving 7.

Problem 7
Let f(z,y,2) = zy +y + z. Let C be the curve 7#(¢) = 2t7'+ t7+ (2 — 2t)k for 0 < ¢t < 1.

Evaluate the line integral / f(z,y,2)ds.
C
ANSWER: This is a straightforward line integral. Along the curve, x = 2¢t and y =t and z = 2 —2¢,

so f(m,y,2) = (2t)(#) +t+(2—2t) =2t2—t+2. 2’ =2,y =1,and 2’ = —2,50 \/(z')2 + ()2 + (¢')? =
v4+1+4 = 3. Hence we can evaluate the line integral as the ordinary integral

1 2 1 1 2 1 13
22—t +2)(3)dt =3 | =3 — =2 2t] =3<——— 2>=—.
/0 ( +2)03) 3 [3 gt F 0 3 2 + 2

Problem 8
One of the following two vector fields is conservative and the other is not.

Fi(z,y,2) = 2z — 3)7— 27+ (cos 2)k
Fy(z,y,2) = (e cosy + y2)T+ (zz — e®siny) T+ (zy + 2)k

(a) Which vector field is conservative? Which one is not conservative?

ANSWER: To test whether a field F = M7+ N 7+ Pk is conservative we check whether
OM _ N OM _ 9P .4 aN opr
Oy ~ Or® 0z ~ Ox°® — oy

For the field F1 where M = 2x — 3, N = —z, and P = cos z, these amount to 0 = 0, 0 = 0,
and —1 = 0. These are not all true so F1 is not conservative. From this we can infer FQ is
conservative, but the problem as given on the exam said to test each explicitly. So we repeat
the check for ﬁg

For Fy: and BN both give z — e® siny, 24 and aP both give y, and aN and BP both give z.

Hence F2 is a conservatlve field.

(b) For the vector field F' that you found to be conservative, evaluate

| Fla.2)

where C' is any path leading from (0,0,0) to (-1, F,2).

Note: As printed on the exam, the integral read

/ F(z,y,2)ds
c

This was corrected during the exam to the verstion given above. This should not have caused
confusion, the printed version really could not mean anything but F'(z,y,z) - dF in context.
The change was intended to make the problem match the formulas we had seen. In particular



Theorem A on page 742 in the text exactly matches the problem in this form. If you did the
problem without the change you must have interpreted it to mean exactly this anyway!

ANSWER: The field to use is Fy. We do not need to know what the curve is, if we can find a
potential function f(z,y, z) for the field. Once we have f we can simply evaluate f(—1,7%,2) —
£(0,0,0).

To find f: We know Vf = ﬁg, SO % = M = e*cosy + yz. Thus f must be of the form
e® cosy + zyz + g(y, z) where g(y, z) denotes some part that can vary with y and z but not z.
We also have % = N =zz — €*siny: From what we had so far, % = —€e¥siny + xz + 3_57 so if
we let gg = 0 we are still OK. That means ¢(y, z) might depend on z or might be constant, but
it does not vary with y. As our last step we need %Zt = P = zy + z. From what we have so far,
where f = e” cos y+zyz+(some function g(z) depending at most on z), % =zy+ %, 6] % must
be z: We can achieve that if g(z) = %22. Putting it all together, f(z,y,z) = €* cosy + zyz + %22
is a potential function for ﬁz. (We could add a constant and get another potential function, but
we only need to find a potential function so this is sufficient. If we did add a constant it would
occur with both + and — signs in the next calculation and hence it would have no effect on the

answer. )

Now we evaluate f(—1,%,2) =2 —m and f(0,0,0) =1, and the integral is 2 -7 —1=1—7.

Problem 9
Evaluate 7{ —y?dx + zy dy
C

around the square in the zy-plane with vertices (0,0), (1,0), (1,1), and (0, 1), in that order.
ANSWER: You could parametrize each of the four legs of the curve C and do this as a line integral.
It is much easier to use Green’s Theorem and convert this to a double integral over the square that C'
is the boundary of. Since C' is traversed in a counter clockwise direction we don’t even need to worry
about changing a sign. Viewing

%—dex+:zydy as %de—f-Ndy
C C

where M = —y? and N = zy, Green’s theorem says
N M
7[ de+Ndy=// (a——a—> dA
c ox oy
S
In this case % =y and % = —2y, so we have to evaluate [[(y — (—2y))dA where S is the square
S

0<z<land 0<y<1,

/01 /01(3y>dxdy = /01(3y>dy= [%]1 =2

0

If you do it as a line integral, you really need to have four pieces, not three. The problem says “around
the square” and squares have four sides! So your path should go back to the starting point. But this
is not an integral of a conservative field, so going around a closed path does not imply the result is
zero, and as we saw above it is in fact not zero.



Problem 10

Evaluate % F . T ds where
c

ﬁ(x,y,z) = yi'+ z27+ 22k and C is the boundary of the triangle in the plane x + y + z = 1 with
vertices (1,0,0), (0,1,0), and (0,0,1), traversed counterclockwise as viewed from above.
ANSWER: I will use Stokes’ Theorem: It is also possible to do the problem directly, parametrizing
the curve C' in three parts and adding the results. Letting S be the triangle whose boundary is C, the
theorem tells us

7{ ﬁ-fds://(curlﬁ)-ﬁdS
c
S

where 7 is a normal vector oriented consistently with the right-hand-rule for traversing C in the
prescribed direction. Since C' and S lie in the plane z +y + z = 1, a vector perpendicular to the plane
is 7+ 7+ k. Since we go around C' counterclockwise, the right-hand-rule indicates an upward-pointing
vector, so this vector has the correct orientation. But it has length v/3. So we let 7 = %T—F %j’—i— %E

We compute curlF' and get —zt— 2z7+ (2 — 1)12;' Taking the dot product of that with 7 we get
%(—33} +2z—1).
Now we need to compute the surface integral of %(—3:5 + 2z — 1) over the triangle.

1
We i = “ D24 f2
e do this as /R/\/?_’( 3z +2z—1)\/f2+ f2+1dA

where f; and f, come from the expression of the surface in the form z = f(z,y), which in this case is
z=1—-z—y. So f = —1 and f, = —1, and R is the triangle in the zy-plane underneath the surface
S. Thus we have the integral

//%(—3x+(1—x—y)—l)\/gdAZ//(—‘lw—y)dA-
R R

Finally, we set that up as an iterated integral. R is the triangle in the plane with vertices the origin,
(1,0), and (0, 1), which we can describe as 0 <z <1 and 0 <y < 1— 2. The integral in iterated form

1 pl—a 1 y2 = 17 1
/ / (—4z —y)dydz = / —dry — = dr = / <_$2 — 3z — —) dz
0o Jo 0 2] 0 \2 2
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