Mathematics 234, Fall 2004 Lecture 3 (Wilson)
First Midterm Exam  October 4, 2004 ANSWERS

Problem 1
In class we saw pictures of the helix (corkscrew) given by the position vector

7(t) = sin(t)7+ t 7+ cos(t)k.

Calculate the arclength of one turn of this helix, from ¢ = 0 to ¢t = 27.
ANSWER: The velocity vector 7(t) is cos(t)7+7—sin(t)k, so |7] is \/0052(t) + 1 +sin®(t) = V2
at any value of . Thus the arclength is

2
/ V3 dt = 2V,
0

Problem 2
Let  #(t) = 3sin(t)7+ 3cos(t)7+ 4tk describe the motion of an object along a curve in
space. Find as functions of ¢:

(a) The velocity ¥/(t)
(b) The acceleration a(t)

¢) The unit tangent vector T'(£)

)
(c)
(d) The principal unit normal vector N (¢)
e) The curvature x(t)

)

(
(f) The tangential (scalar) component of acceleration ar

(g) The normal (scalar) component of acceleration ay
ANSWERS: Differentiating,
7(t) = 3cos(t)7— 3sin(t)7+ 4k
and
@(t) = —3sin(t)7— 3 cos(t)]+ OF.
To find T, we need a vector of unit length in the direction of #(t). The magnitude of #(¢) is
[7(t)] = /9 cos?(t) + 9sin®() + 16 = v/25 = 5. Thus

(SN

k.

There are several ways to proceed to N. One way is to go ahead and find the components of
acceleration, ar and ay, and since we need them anyway I will do that. For the tangential
component we have

ar(t) = @(t) - T(t) = —3sin(t) x gcos(t) + (—3cos(t)) x (—%sin(t)) 10 x g ~0.



Since @(t) = arT(t) + axN(t) = ayN(t), where |[N(¢)| = 1, we have (i) N(¢) is a unit vector in
the direction of @(t) and (ii) ay is the magnitude of d@(¢). Hence ay = \/9 sin?(t) + 9sin?(t) =
V9 =3, and N(t) = a(t) = —sin(t)7— cos(t)J+ 0k.
This leaves only «(t) to be determined. Again there are several ways to find it: Given what we
have already computed, it may be easiest to compute

an 3
0= e =2

which happens not to depend on ¢.

Problem 3
For each of the four descriptions, fill in A or B or C or D to indicate which graph below it
corresponds to.

(i) z =y sin(z)
ANSWER: Notice that figure C has a sine-wave cross-section in one direction, like
z = sin(z), while in the other horizontal direction it has cross sections that are straight
lines, like z =(some constant)y. C is the answer here.

(ii) » =1+ cos(f), any value of z

ANSWER: From the variables r, #, and z, we can infer this is in cylindrical coordinates.
Since z does not appear in the equation, if any point is on the surface so is the entire
vertical line through that point. That alone is enough to pick out figure D. When you
also notice that a horizontal cross-section will be » = 1 4 cosf in polar coordinates, a
cardioid, you have confirming evidence.

(iii) 2=3—2*—y
ANSWER: This surface slopes downward as y increases, and upward in the —y direction,

and follows the downward opening parabola z = 3 — 2 as you move in the £z directions
along the z-axis, and surface B certainly fits this description.

(iv) p =sin(¢), any value of 6

ANSWER: This must be in spherical coordinates, and since 6 does not appear in the
equation it will be completely symmetric around the z axis. That picks out surface A.
In addition, for any fixed 6, the cross-section will be p = sin ¢: r = sinf gave a circle in
polar coordinates, so looking out from the z-axis in any direction we should see a circle:
This confirms the ”donut” shape in figure A.
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ANSWER: Remembering the chain rule, 3 = cos(2? + 2y) x 22 = 2z cos(z? + 2y).
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+2y) x 2 = 2cos(z? + 2y).

2

ANSWER: Similarly, % = cos(x
% f
0x2



ANSWER: We had % = 2z cos(x? + 2y): we differentiate that with respect to x, using the
product and chain rules, we get % = 2cos(z? + 2y) — 42 sin(z? + 2y).

0 f
(d) Jyox

ANSWER: Since this says to take the derivative first with respect to x and then with respect
to y, we take the derivative of %ﬂé = 2z cos(z? + 2y) with respect to y. Using the chain rule we

get 88;—81; = —4zsin(z? 4 2y).

o0 f
(€) dx0y

ANSWER: We can cite the theorem that says if the partials are all continuous then the
mixed second partials will be equal, so the answer should be the same as for (d). Or we
can directly compute the derivative of 2cos(z? + 2y) with respect to z. Either way, we get

aa;gy = —4zsin(z? + 2y).
2
0 5
ANSWER: Differentiating % = 2 cos(22+2y) with resepect to y we get ‘327’; = —4sin(z%+2y).
Problem 5
(a) Evaluate lim  2%cos(2y).

(@,y)=(2,7)

ANSWER: This function is constructed by multiplying two functions (z? and cos(2y))

which are each continuous at all input values, so it is continuous at all points (z,y). Hence

we can evaluate the limit by “plugging in” and ( %in%2 : 7% cos(2y) = 2% cos(27) = 4.
xT,y)— (2,7

(b) Show that lim ———— does not exist.

(@y)=(00) /2% + y?
ANSWER: If we approach (0, 0) along the y-axis, where x = 0, the function is constantly
0 for all values of y # 0. Hence the limit is 0 as we approach the origin along the y-axis.

If we instead approach along the z-axis, where y = 0, the function values are \/% For

x > 0 this evaluates to 1, so the limit coming in along the postive z-axis is 1, which is
not the same as the 0 we got along the y-axis, and so the limit must not exist. In fact
the limit coming in along the negative z-axis is actually —1, since for z < 0 we have
Va2 = |z| = —z, so we even get different limits coming to zero along the z-axis from
opposite sides, and so we did not actually need the y-axis result.

Problem 6
Let f(x,y) = 2 ¢v.
Let P be the point (1,0).



(a) Find the gradient V f at the point P.
ANSWER: The gradient at any point (x,y) is Vf(z,y) = 2z €T+ 2% €Y7, so when 1 = 1
and y = 0 we have Vf(1,0) = 27+ J.
(b) Find the directional derivative of f at P in the direction of an arbitrary vector 7 = v11+vo].
. . . . . . — S 1= 1 -
ANSWER: First find a unit vector in the direction of ¢: Let & = U = vaﬂ +
L__1,7. Now the directional derivative Dgf(1,0) = V£(1,0) - NoETE

2v14v2
vf—f—v%
(c) Find the directional derivative of f at P in the direction from (1,0) to (4,4).
ANSWER: In this case the vector ¥ = 37+ 47, where v; = 3 and v, = 4, is in the correct
direction. Then \/vf 4+ v3 = /9 +16 = 5 and the answer to (b) becomes 234 = 2.

£y

(d) In what direction is the directional derivative of f at P largest? What is the directional
derivative in that direction?

ANSWER: The direction of the gradient, 27’4 7, gives the direction in which the direc-
tional derivative is greatest. In the form of a unit vector this is %54— % 7. As we have
seen, the directional derivative in that direction will be the magnitude of the gradient,

V5.

Problem 7



Suppose w = sin(zy) +z sin(y), where = u*+v? and y = 2u+v —2.
Using the chain rule:

(a) g—zj = (y cos(zy) + sin(y)) x 2u + (x cos(zy) + z cos(y)) x 2.

(b) 86?—15 = (y cos(zy) + sin(y)) x 2v + (x cos(xy) + x cos(y)) X 1.



Problem 8
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Suppose you are walking over some hills.

altitude in feet is given by

f(z,y) = 1000 — 100sin (

If you are at the point where x = 100 and y = —100, and you start
walking toward the center where x = 0 and y = 0, will you begin by
walking uphill, downhill, or horizontally? Be sure to show how you
determine your answer.

ANSWER: We need to find the directional derivative for the given
altitude function f(x,y) in the direction of a vector from (100, —100)
toward (0,0). A unit vector in that direction is —\%Z’ + % J-

The partial derivatives of f are % = —3f Cos (33%0) — & and g_f —

— 55 COS (3030 — 105- At (100, —100) we get % = Yeos(—4) — 2,

and g—g = —3cos(—%) + 1. Thus the directional derivative we seek

3
is —%(% cos(—%) — 2) + ﬁ(—lg—o cos(—%) + 1) which simplifies to

_% (% cos(——) 3) With a calculator you can approximate that

as +6.748975979, but all we need to know is whether it is positive or

negative, and we can tell that without a calculator: ¥ = 3l is just a

3
bit larger than 7, so the point on the unit circle determmed by —m
is just above the z-axis and nearly at x = —1. Thus cos(—13—0) 1s
negative (nearly —1) so both the terms in % cos(—%’) — 3 are negative,




so their combination must be < 0, and multiplying by —% will give
us a positive number.
Hence the directional derivative is positive and our path leads uphill.



