Mathematics 461, Fall 2008 Lecture 1 (Wilson) ANSWERS

T will refer so often to the Hilbert Euclidean parallel postulate that T hereby declare HEpp an abbre-
viation for that phrase!

Problem 1: (Exercise 3, page 146)

Suppose we have three points A, B, and C satisfying A x B x C:

(a) Prove AB C AC.
Prove CB C

(b) Prove AC C ABU BC.

¢) Prove AC = ABU BC.

(
(d

)
)
) Prove B € ABN BC
)

(e) Prove B is the only point in AB N BC, thereby finishing a proof of Proposition 3.5.

Answer: Suppose A * B x C, which by BA 1 tells us the three points are collinear. We imagine them
as in this picture, but of course we can’t use any properties except those following from our axioms:

4 B ¢

By definition (page 109) a segment such as AB is the set of those points which are between A and B
together with A and B themselves. For (a) we need first to show that every point that is in AB is
also in AC. If P is any point in AB, then P must be A or B or else Ax P x B. If P = A then by
the definition of AC we have P € AC. If P = B then since we know A x B x C' we have P € AC.
If Ax P * B, we use Proposition 3.3 (with P playing the role of B in the proposition, B the role of
C, and C the role of D) and have A« P x C so P € AC. Hence for any point P in AB we have
P € AC, showing AB C AC. (I won’t go into as much detail on subsequent problems, but showing
each element of AB is an element of AC is what is essentially required whenever you are showing set
inclusion AB C AC.)

Now for the second part of (a): The argument in the previous paragraph is perfectly symmetric
(betweenness A x B x C' doesn’t say anything about which one is on the left or right!) so exactly the
same argument but swapping the roles of A and C takes care of this.

For (b): From (a) we have that any point in AB U BC (since BC' = CB) is in AC: We now have
to show the reverse. There are several ways to do this, here is one. Let P be any point in AC: By
definition, P=Aor P=Cor A« PxC. If P= A then P € ABso P € AB U BC, and smnlarly

for the case P = C. If Ax P % C: By Proposition 3.4, P must either be in ray BA or BC ItP EBA
then by the definition of a ray, P € AB or B x A* P. But if B * A x P then using Proposition 3.3 we

would have C x A x P, but that contradicts A * P« C and BA 3. So P € AB. Similarly if P €e BC' we
get P € BC, and we are through.

For (c): Since AC = CA and BC = CB, from (a) and (b) we have both AB U BC C AC and
AC C AB U BC. That means they must be equal.

For (d), just look at the definitions: B € AB and B € BC, so B € ABN BC.

To show (e) Let E be some point off of ;4_)07 which exists by Proposition 2.3. Let [ be the line <B—)E
Since A x B % C, by definition of “sides”, A and C are on opposite sides of [. If P € AB N BC and

P # B, then P must be on the same side of [ as A and also on the same side of | as C, contradicting
BA 4.



Problem 2: (Exercise 9, page 148)

Given a line [ and a point A on [ and a point B which is not on I: Let P be any point on the ray AB
other than the point A. Show that P must be on the same side of [ as B.

Answer: There are many different ways to answer this. For example: If P € AB, then by definition
Pe ABor Ax B« P. If P = B it is certainly on the same side of [ as B. If P € AB and P # A and
P # B, then Ax P x B so by definition of sides we have P on the same side of [ as B. If Ax B* P then
B is on the same side of [ as P also, and since the “same sides” relation is symmetric we are through.

Problem 3: (Exercise 8, page 194)

We are supposed to show that in neutral geometry the greater side in a triangle is opposite the greater
angle, and vice versa. The book has an outline of a proof in the statement of the problem, and I asked
you to fill in the details.

Answer: We consider a triangle AABC. Suppose AB > BC. Remember these are in terms of segment
and angle ordering (pages 124 and 128) not measurement. We want to show <ACB > <CAB. By
the definition of segment ordering, there must be a point D between A and B such that BD = BC.

C

Then ABCD must be isoceles, so by Proposition 3.10 its base angles <BCD and <BDC must be
congruent. By the Exterior Angle Theorem 4.2, <BDC > <CAD. By the above congruence we now
have <BCD > <CAD. But if we use “+” as shorthand for angle addition as described in Proposition
3.19, <ACB = «BCD+<ACD, and then by the definition of < for angles we have <ACB > <CAD,

and <CAD = <CAB since AD=AB, so <ACB > <CAB and we are through.

Now for the other direction: Assume <ACB > <CAB, and we want to show AB > BC. We can
actually use the proof in one direction that we already did to get the other using an RAA argument!
Suppose the result is false, so either AB = BC or AB < BC. If AB = B(C, then AABC is isoceles
so <CAB = q<ACB (by Proposition 3.10), which contradicts our assumption <ACB > <CAB (using
trichotmoty of angle ordering, Proposition 3.21). If AB < BC then using what we have already
proved, <CAB > <ACB, and again using trichotomy that contradicts our RAA assumption. So
either case leads to a contradiction, and we are through.

Problem 4: (Exercise 10, page 195)

The exercise has two parts: Prove Proposition 4.7, and then deduce another conclusion from it, that
either of the two properties that Proposition 4.7 shows equivalent is in turn equivalent to transitivity
of parallelism.

Answer: First we prove the proposition, i.e. that HEpp is equivalent to “if a line intersects one of
two parallel lines, then it also intersects the other.”

Assume HEpp and suppose that lines [ and m are parallel, and line n intersects m. We need to show
that n must intersect {. Since n intersects m there is one, and only one, point P which is on both.
Since m is a line through P parallel to [ and HEpp says there is at most one such line, n is not parallel
to [. Then n must meet [, so we are through.



Now in the other direction, assume “if a line intersects one of two parallel lines, then it also intersects
the other.” We need to show HEpp, i.e., there is at most one line through a given point not on a line
which is parallel to that line. Suppose point P is not on line [. If m is some line through P that is
parallel to [, let n be any other line through P. We need to show n cannot be parallel to [. But we
have two parallel lines [ and m, and a third line n that meets one of them (line m, at P). So by the
assumption, n meets [, hence n is not parallel to [, finishing the proof of Proposition 4.7.

Now we need to show equivalence to “transitivity of parallelism”, i.e. [ || m and m || n implies [ || n.
(I will ignore the trivial case | = n.) First lets show that “if a line intersects one of two parallel lines,
then it also intersects the other” implies transivity of parallellism: Suppose ! || m and m || n, and
(RAA) that [ is not parallel to n. Then n is a line meeting one of two parallel lines | and m so n must
meet the other, i.e. n meets n, but that contradicts m || n. So the assumption [ not parallel to n leads
to a contradiction, it must be that [ || n, as desired.

Now in the other direction, assume transitivity of parallelism. Suppose HEpp were false, i.e. there
were two lines m and n both parallel to a line [ and passing through a point P not on /. Then we
would have m || [ and [ || n, so m || n, but m and n have P in common so they cannot be parallel. So
HEpp must be satisfied.

Problem 5: (Exercise 13, page 195)

The book says “prove Proposition 4.10”.

Answer: First, assume HEpp. Suppose k || [, m L k, and n L [: Suppose m # n. By Proposition 4.9,
m L I. Then m and n are each perpendicular to [, so by Corollary 1 to the Alternate Interior Angle
theorem (page 163) m || n.

Now, in the other direction: Assume that whenever k || [, m L k, and n L [, it follows that either
m = n or m || n: We need to show HEpp. So assume that [ is some line, P a point not on [, and we
need to show there is at most one line through P parallel to [. We know (Corollary 2, page 163) that
there is at least one line m through P parallel to [. Suppose that n is a line through P parallel to [:
We must show m = n. Let t be the perpendicular to [ through P, with foot ) on . So far the picture
looks like Figure 4.11 on page 174. Nowlet s be the perpendicular to n through P. Since t is L to [,
at @, and s is L ton, at P, and [ || n, by our assumption either s =t or s || . But P is on both ¢ and
S, so they can’t be parallel, so s = t. But by CA 4 the ray (and hence line) through P perendicular
to t is unique, and both m and n go through P perpendicular to t, so m = n and we are through.

Problem 6: (Exercise 3, page 229)

(a) The text, on pp. 216-217, proves that Wallis’ Postulate implies the Euclidean parallel postulate:
We have to prove the opposite implication. (Note that this definitely assumes we can measure
angles. The statement of Wallis’ Postulate (page 216) requires “similarity” of triangles, defined
on page 215, which does not use measurement, but Euclid’s fifth postulate does.)

Answer: We have to prove that if Euclid’s fifth postulate holds, then Wallis’ postulate must
also. Assume Euclid’s fifth postulate and assume we have a triangle AABC and a segment DFE
which is congruent to AB. We need to construct a triangle DEF which is similar to AABC.
We can construct rays emanating from D and E such that <A = <D and <B<FE by CA 4: you

can pick either side of DF, I have drawn them on the upper side in the picture on the next page.

Now we need to know that those two rays actually meet, i.e. the triangle “closes up”. But the

—>

rays lie in lines met by transversal DFE, and the interior angles on that side are congruent to the
angles at A and B in the triangle we started with so by Corollary 2 to the EA Theorem (page
171) the sum of those two angles is less than 180°. So by Euclid’s fifth postulate, the two rays do
meet: call the point where they meet F'. Now we know the angles at D and A are congruent, and



the angles at F and B are congruent. But if we have the Euclidean fifth postulate we also have
that any triangle has angle sum equal to 180°. So the angle at C' must have measure 180—the
sum of the angles at A and B, which is the same as 180—the sum of the angles at D and F,
which has to be the measure of the angle at F', so the angles at C' and F' are also congruent and
we have AABC ~ ADEF as desired.

We have to show that a modified version of Wallis’ Postulate, where we replace similarity by
congruence, must be true, not needed as an additional assumption, in any neutral geometry.

Answer: If we start with AABC and we have a segment DFE which is congruent to AB, we
need to show there is a triangle ADEF which is congruent to ABC. But that is exactly the
Corollary to SAS on page 122, which was proved in neutral geometry.



