Mathematics 461 (Wilson) Fall semester 2008

Midterm exam October 29, 2008 ANSWERS
Problem 1

Prove that a line cannot be contained in the interior of a triangle.

Answer:

Let [ = ﬁ be any line and AABC' any triangle.

I. (RAA) Assume [ is contained in the interior of AABC, i.e every point on [ is in the interior
of AABC.

2. Then D and E are in the interior of AABC. (By step 1)
3. Hence the ray ﬁ emanating from D meets AABC in one of its sides, by Proposition 3.9.

4. Thus there is a point F' on DE which is also on one of the sides of AABC'. (Just naming the
point whose existence was found in step 2)

5. But every point of Z?E is also a point of ﬁ , by Proposition 3.1, so F'is on [. (Step 3)

6. But if F' is on one of the sides of AABC then F is not in the interior of AABC. (Definition
of the interior)

7. So there is a point F' on | which is not in the interior of AABC, contradicting the RAA
assumption, and we are through.

Here is another proof I did not think of, from one of the papers, that is much shorter!

—

Suppose hne [ is entirely contained in the mterlor of AABC'. Then [ never intersects AB and so [ is

parallel to AB Similarly [ is also parallel to AC’ But parallelism is transitive: If [ is parallel to m
and m is parallel to n then [ is parallel to n. (This was stated in the student’s proof. .. How would

you justify it?) So /?B and AC must be parallel, each is parallel to I, but that is contradicted by
the fact that A is on each of them.

Problem 2

We call a set of points S convez if, whenever A and B are in S, the entire segment AB is contained
in S.

Prove that a half plane (all of the points on the same side of some given line) is a convex set.
Answer:

1. Let [ be a line and let S be one of the half planes produced by [. (Just giving names to the
things we need to talk about.)

2. Let A be some point in S. (Again just naming: If there were no points in S it would be
convex trivially so there is no loss in assuming there is a point in S.)

3. If B is some other point in S, consider the segment AB. (Giving a name to what we need
to talk about in the definition of convexity. If there are no other points than A in S, S is
trivially convex.)

4. AB has no points on [. (Definition of “same side” together with the fact that B # A.)



5. If C is any point on AB other than A and B (which are already known to be in S), C' is on
the same side of [ as A. (A x C' x B, so every point of AC is a point of AB (Proposition 3.5),
and then apply definition of “same side”)

6. So each point of AB is in S, hence by the definition S is convex.

Problem 3

Prove Proposition 2.3. (The proposition says “For every line, there is at least one point not lying
on it.”)

Answer: There are several ways to do this. I think this is the shortest:

Suppose [ is a line and there are no points that are not on /. Then for any three points P, @, R,
they must all be on [. That violates Incidence Axiom 3.

(Note this did not assume P, @), R were distinct, or even that there are 1, 2, or 3 points.)

A longer proof:

Let [ be any line. By proposition 2.2 there are lines m and n such that no point is on all three lines
[, m, and n. If m =1 and n = [ then every point on [ is on all three lines (there are points on [ by
Incidence Axiom 2) contradicting the previous sentence, so at least two of I, m, and n are not the
same. We assume without loss that m # [. Case (i): m is parallel to I. Then there is some point P
on m (by Incidence Axiom 2) and since m is parallel to I, P must not be on [, and we are through.
Case (ii): m is not parallel to [. Then there is some point P on both [ and m. By Incidence Axiom
2 there are at least two distinct points on m, so there must be a point () on m with P # Q. If Q
were on [, then both [ and m must be the unique line through P and @ (Incidence Axiom 1), but
we know m # [, so @ is not on [ and we are through.

Problem 4
Justify each step in the following proof of Proposition 3.11: (The proposition says “If A «+ B * C,
D x Ex F, AB= DE, and AC = DF, then BC = EF.”)

(1) Assume on the contrary that BC' is not congruent to EF.
Reason: RAA assumption

(2) Then there is a point G on EF such that BC = EG.
Reason: Congruence Axiom 1

(3) G#F.
Reason: RAA: If G = F, then EF = EG and EG = BC, so EF = BC by Congruence Axiom 3,
but that contradicts assumption (1).

(4) Since AB = DE, adding gives AC = DG.
Reason: AB =2 DF is given. Addition uses Congruence Axiom 3.

(5) However, AC = DF..
Reason: Given.

(6) Hence DF = DQG.
Reason: Congruence Axiom 2.

(7) Therefore, F = G.
Reason: Uniqueness of G in Congruence Axiom 1, as used in step (2).

(8) Our assumption has led to a contradiction; hence, BC = EF.
Reason: Our assumption was that the two segments are not congruent, but that led to both F' # G
(3) and F = G (8), so the assumption must be false.



Problem 5
Prove Proposmon 3.6. (The propos1t10n says “Given A * B % C. Then B is the only point common

to rays BA and BC and AB AC” )

Answer: First we prove “Then B is the_) only point common to rays BA and BC”:

The definition of a ray tells us that BA consists of the segment BA together with the points P
such that P « A x B, and similarly BC is the union of BC and {P|B x C % P}. So if P is any
point in both BT4 and B—C)’ , we can consider four separate cases.

(i) Pe€ BA and P € BC

(i) Pe BAand B x C % P

(iii) P * A * B and P € BC

(ivy Px* Ax Band B * C x P

Using Betweenness Axiom 1 and swapping the roles of A and C turns case (ii) into case (iii), so we
only need to prove the desired result for cases (i), (ii), and (iv).

Case (i): This is exactly the situation described in Proposition 3.5, so P must be B.

Case (ii): If P € BA, then P = B, in which case we are through, or P = A, or A x P x B.
(Definition of a segment) We are given A * B % C so in the second and third of these cases we
have P * B * C using Proposition 3.3. But we cannot have both P x B * C' and B *x C % P, by
Betweenness Axiom 3. So only P = B remains.

Case (iii): A x B x C (given) and B * C * P imply A *x B % P by Proposition 3.3. But A * B x P
and P « A x B are incompatible by Betweenness Axiom 3. So this case cannot exist.

So at this point we know that no point other than B could be in both .B_z)4 and B—C)’, but by the
definitions of those rays B is in both, so B is the only point on both, as desired.

We still have to 0 prove the second claim, that AB AC

By deﬁnltlon AB = ABU {P|A % B % P}, and AC = AC' U {P|A x C % P}

If Pe AB then either P € ABor A x B x P. If P € AB, then since AB is a subset of AC' by
Proposition 3.5, P € A_é If A x B x P, P might be C, but that is certainly in A—éY If P#£C,
then either B x P « C or B * C' x P: The first makes P € BC which is a subset of AC so P € AC
and hence Pe AC. The second together with Proposition 3.3 makes P € {P|A * C x P} so again
Pe AC Thus we have shown AB C AC

Now we need to show the reverse inclusion, fTB ) fTC , to show they are equal.

IfPe A_é then either P € AC or A x C' % P. The second, with Proposition 3.3, gives A * B * P,
SOPGE. IfPe AC,then P=Aor P=Cor A x P x C. IfP=A,P€AB,soP€A_B. If
P=C’thenA*B*PsoP€A_B. IfAxPxC,then Ax Px BorP=BorBx P x(C.If
Ax P x BorP=BthenP€AB§A_é. If B*x P % C then A x B x P by Proposition 3.3, so
again P € fTB . That completes the proof.




