
Proof by Induction
This note is intended to do three things: (a) remind you of what proof by induction means, how it

works; (b) use induction to prove Corollary 1.1 from our textbook, i.e. work out exercise 44 on page 53,
and (c) consider what a proof is, and how much one needs to say to constitute a proof.

(I am going to assume we know that any product of matrices, assuming the sizes are such that the
product is defined, can be “reassociated”, i.e. we can put in parentheses in any way and get the same
result. The case of three matrices is part (a) in Theorem 1.2 on page 35. To prove carefully that it is true
for any number of matrices would itself be done by induction. But it is confusingly difficult even to write
out what that means, since there are so many different ways to put in the parentheses. For four matrices
there are five ways to put in the parentheses, and for five there are fourteen. You might find the paper at
http://www.math.hmc.edu/∼su/pcmi/projects/pcmi-Catalan.pdf interesting!)

First of all, “proof by induction” is used in the following situation: (There are actually several forms of
proof by induction, but they are equivalent and I won’t worry about the difference for now.) We have some
statement that is either true or false, depending on a number. The number will typically be a positive
whole number, 1, 2, 3, · · ·: There is no reason it could not start at 0 or some other value, but we definitely
want there to be a “first” value such as 1. (So in its basic form we would not use induction to prove some
statement was true for all whole numbers including 0, − 1, − 2, − 3 · · · as well the positive ones, since
there would be nowhere to get started.) For any particular number (among those that we care about, e,g,
the positive ones) the statement must be either true or false, depending perhaps on the number but not
undecideable. So a statement like “this number is even” would be OK, true for some but not for others, but
“this number is even and it is presently raining in Paris” would not. Corollary 1.1 says that the product of
any n nonsingular matrices in some prescribed order is itself nonsingular, and tells us what the inverse of
that product should be. That does not make much sense for n = 1: What is the product of 1 matrix. But
it does make sense (and for the moment might be either true or false) for n = 2, in which case the corollary
becomes just a restatement of Theorem 1.6, or forsubject to approval of the circuit n = 3, 4, 5, · · ·.

Side issue: What does it mean to say something is a Corollary, as in this case Corollary 1.1? In general
a corollary is apt to follow soon after some theorem. We use the word theorem to apply to something that
can be shown to be true, where the proof may well require some creative thought and/or be complicated.
A corollary is generally itself really a theorem, in the sense that it is a statement to be proved true, but
one whose proof is based on a (perhaps itself creative) use of the theorem it follows. This is exactly the
situation we have here, Corollary 1.1 will be proved by using Theorem 1.6. It would have been possible to
state a different theorem, that said the product of at least two nonsingular matrices is nonsingular and the
inverse was such and such, rather than do the case of 2 matrices first and separately, but it is convenient
to arrange things this way.

Back to what proof by induction means: This is frequently described by analogy. Suppose you have
some small blocks of wood. (Frequently it is suggested these might be dominoes, if you know what they
are,) Suppose they are set up on a table so that they can be knocked over, and suppose two things more:
(a) They are arranged so that if the first block falls over, it knocks over the second, and if the second
falls over, it brings down the third, and in general if the kth block falls over, it knocks down the (k + 1)th

block. (b) The first block gets pushed over. Then what will happen? I claim that any given block will
get pushed over, which we might formalize as “Block n falls over for any n.” There are several details to
consider: What does “for any n” mean? That only makes sense for n = 1, n = 2, etc., not for 0 or −7
or 4.6. And is it equivalent to say “all the blocks fall over”? This latter point is sticky: If we did this
physically, it might be a long time before the 1, 000, 000, 000th block fell over! There is a subtle difference
between “all the blocks fall over” and “for any given block, ultimately it falls over”. If you go a lot further
in mathematics you will encounter situations where that difference matters, but for our purposes here we
will consider them the same.

Now switching to a very formal notation, we could describe proving something by induction this way:
There is some statement P (n) which for numbers n (in some set, e.g. the positive whole numbers that
are at least 2) is either true or false. Suppose there is some number n0 for which P (n0) is true. Suppose
also that whenever k ≥ n0, if P (k) is true then P (k + 1) has to be true also. Then we can claim that
P (n) is true for every n ≥ n0. Establishing that P (n0) is true is called “the basis” of the induction, and
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establishing that P (k) being true imples that P (k + 1) has to be true is called “the inductive step”. You
can see how that resembles the falling blocks. The basis pushes over the first block, and the inductive step
guarantees that each block pushes over the next one.

(If you are interested in where mathematical truth comes from, you might wonder what right I have to
say “Then we can claim . . . ”. We can’t really go into that here: We would have to dig into what numbers
really are! Fundamentally this comes down to a property of the whole numbers called “well ordering”.)

So enough of this generality, let’s use induction to prove Corollary 1.1. The actual statement is

Corollary 1.1
If A1, A2, . . . , Ar are nonsingular matrices, then A1A2 · · ·Ar is nonsingular and (A1A2 · · ·Ar)−1 =
A−1

r A−1
r−1 · · ·A

−1
1 .

That is really a statement about a number r. It might be true for some values of r and false for others.
In fact it does not even make sense unless (a) r is a whole number (What would it mean to multiply 31

2
matrices?) and (b) r is at least 2 (Again, what would the product of fewer than 2 matrices mean? I
suppose you could define the product of 1 matrix to be just that matrix, and occasionally that is actually
useful, but we don’t need it here.) So, although the authors did not write it out, there is an implied “for
whole numbers r that are at least 2” built into the statement. But that is good: Remember that proof by
induction works for statements about whole numbers with some starting point.

(There is actually another statement lurking here that was not spelled out: “nonsingular” was only
defined for square matrices, so we need to know A1A2 · · ·Ar is square before the rest of the statement even
makes sense! So one thing we could do, to be very careful, would be to introduce another claim, called a
lemma because it would be used to help prove this result, that the product of r matrices, each one n× n,
is also n × n! I won’t be that careful, but the case r = 2, the product of two square matrices, is built
into the definition of matrix multiplication on page 22, and then a proof by induction could be used to get
from that to any greater number of matrices. But I won’t belabor this, we will assume we know that the
product A1A2 · · ·Ar is n× n.)

Now what do we really have to show? The second claim in the statement of the corollary is really the
heart of it: (A1A2 · · ·Ar)−1 = A−1

r A−1
r−1 · · ·A

−1
1 . To be nonsingular, a matrix just has to have an inverse. If

we can show that A−1
r A−1

r−1 · · ·A
−1
1 does the right thing to be the inverse of A1A2 · · ·Ar, then A1A2 · · ·Ar

will have A−1
r A−1

r−1 · · ·A
−1
1 as its inverse, the second claim, and so will be nonsingular, the first claim. So

what we have to show is that
(
A−1

r A−1
r−1 · · ·A

−1
1

)
(A1A2 · · ·Ar) = In and (A1A2 · · ·Ar)

(
A−1

r A−1
r−1 · · ·A

−1
1

)
=

In.
Now a question that is fundamental to proving things: Can’t we get away by just saying that is obvious?

I mean come on! We can see that in the middle of the first product we have A1 right next to A−1
1 , so those

cancel out, and then we can cancel the A2 and A−1
2 that will then be next to each other, etc. And in the

second product we can cancel A−1
r and Ar, and again work our way out. It is obvious! But “obvious” is a

very nasty word. What is obvious to one person may not be to another: That does not make the second
person stupid, it may mean he/she just has a higher standard of checking things. And what is obvious to
you today may be very puzzling when you look back at it tomorrow. For many purposes I would say that
we could indeed call this obvious. I expect that may well have been all the authors expected as an answer
to problem 44, that you go this far to show you know what is required and then say that the results are
evident. But that is exactly why this is a good proof to use in demonstrating induction, we can concentrate
on the mechanics and not on something puzzling about why the statement is really true. So I will use
induction to show those two equations are true, for any particular r ≥ 2.

In fact I will just do half of that. What I propose to write out fairly carefully is the inductive proof
that for any whole number r ≥ 2,

(
A−1

r A−1
r−1 · · ·A

−1
1

)
(A1A2 · · ·Ar) = In.

For the basis of the induction we show the statement is true for r = 2: But that is exactly Theorem
1.6, except that in the theorem the matrices were called A and B rather than A1 and A2. So (typical for
a corollary) the theorem establishes that case.

Now suppose we know
(
A−1

k A−1
k−1 · · ·A

−1
1

)
(A1A2 · · ·Ak) = In is true for some particular k (at least

2), which means that the product of the inverses (of any k matrices) in the opposite order is the inverse
of the product of the k matrices. For the inductive step we want to show that it must follow that the
corresponding statement is true for any k + 1 matrices. I.e. we must show that for any k + 1 nonsingular
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n× n matrices A1, A2, . . . , Ak, Ak+1,
(
A−1

k+1A
−1
k · · ·A−1

1

)
(A1A2 · · ·Ak+1) = In.

We are assuming associativity, so I can rewrite the product
(
A−1

k+1A
−1
k · · ·A−1

1

)
(A1A2 · · ·Ak+1) with

parentheses arranged as A−1
k+1

((
A−1

k · · ·A−1
1

)
(A1A2 · · ·Ak)

)
Ak+1.

Now the product inside the outermost parentheses is exactly what we had above in the assumption
that it all worked for k matrices,

(
A−1

k A−1
k−1 · · ·A

−1
1

)
(A1A2 · · ·Ak) = In. So we have the product of just

three matrices, A−1
k+1, In, and Ak+1. We can write that with parentheses wherever we need them (the

associativity assumption again), e.g.
(
A−1

k+1In

)
Ak+1. But In multiplied on the right of any matrix (of a

size such that the product exists, in this case n×n) gives just that matrix as the result, so this is the same
as A−1

k+1Ak+1 which (by the definition of the inverse of a matrix) gives In, and we have established the
induction step. Hence the claim about the one product is proved by mathematical induction. The other
product is proved similarly.

That was a lot of work to prove something that we thought was pretty obvious. So a key question
that you need to think about is this: For homework/quizzes/exams in this course, how much detail do you
need to put into a proof? There is no crisp answer. Someone said that “a proof is whatever it takes to
convince whomever you have to convince” that something is true. For homework, etc., you really don’t
generally have to convince the grader that the result is true, he/she already knows that! What you do have
to convince the grader of is that you know why it is true, that you understand the definitions involved, etc.
And what you have to say to make that clear is itself not so clear. It is surely always safer to err on the
side of being too careful, too detailed. But it is not the case that just piling on lots of words or symbols
is good, that (in addition to irritating the grader, who has finite time!) may lead the grader to believe
you don’t really know what you are doing. So one thing you should be picking up from homework, from
examples done in class, from questions and answers in discussion, etc., is a calibration on what you need
to say to be convincing. (If you find that unsettling, if you have always believed that in math everything
has a nice crisp answer, welcome to reality! This is no worse than writing a paper in some other course,
where the amount of detail and the kind of logic you must use in arguing are not well defined. At least
in math we do have pretty well defined what the logic is. And if you ever expect to use math in “the real
world”, let me assure you on the basis of my own experience that most problems won’t have just one right
answer, let alone just one way to do them!)
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