
Mathematics 340, Spring 2011 Lectures 1 & 2 (Wilson)

Final Exam May 12, 2011 With Answers

Problem 1

For the matrix A =


1 2 −2 3 1
0 1 0 0 −1
0 0 1 0 2
0 −1 1 1 5

 :

(a) Find a basis for the solution space (null space) of A, the subspace of R5 consisting of
solutions of A~x = ~0.

ANSWER:

First we reduce A to Reduced Row Echelon Form, getting AR =


1 0 0 0 1
0 1 0 0 −1
0 0 1 0 2
0 0 0 1 2

. We

see that the fifth column does not contain a leading entry, so the corresponding variable
x5 can be given an arbitrary value. From the first row we see that x1 + x5 = 0, i.e.
x1 must be −x5. Similarly from the remaining rows we get x2 = x5, x3 = −2x5, and

x4 = −2x5. So solutions must look like


−x5
x5

−2x5
−2x5
x5

, i.e. the solutions are all multiples of


−1

1
−2
−2

1

. Hence a basis for the solution space is




−1

1
−2
−2

1


.

(b) What is the dimension of the null space of A (i.e. the nullity of A)?

ANSWER:

Since there was one vector in the basis, the dimension of the null space is 1.

Problem 2

For the matrix A =


1 2 −2 3 1
0 1 0 0 −1
0 0 1 0 2
0 −1 1 1 5

 ( the same matrix as in problem 1):

(a) What is the rank of A?

ANSWER:



We saw in the answer to problem 1 that the reduced row echelon form ofAR =


1 0 0 0 1
0 1 0 0 −1
0 0 1 0 2
0 0 0 1 2

.

Since there are four non-zero rows in that matrix, the rank of A is 4.

(b) Find a basis for the row space of A.

ANSWER:

From (a) We know that the row space will be a four dimensional subspace of R5, so we
know we need four 5-element row vectors. We could use the rows of A, or the rows of AR.
Using the rows of A, one basis is {[1, 2,−2, 3, 1], [0, 1, 0, 0,−1], [0, 0, 1, 0, 2], [0,−1, 1, 1, 5]}.

(c) Find a basis for the column space of A that consists of some columns of A.

ANSWER:

We can use the columns from AR that have leading entries to pick out columns from A:

The leading entries are in the first four columns, so we use




1
0
0
0

 ,


2
1
0
−1

 ,

−2

0
1
1

 ,


3
0
0
1


.

Problem 3
For each of the following functions from R2 to R2, tell whether it is a linear transformation or
not and give reasons for your answer:

(a) L

([
a
b

])
=

[
a+ b
a+ 2b

]
:

ANSWER:

This is a linear transformation. You could check it directly from the definition, or you

could write it as L

([
a
b

])
=

[
a+ b
a+ 2b

]
=

[
1 1
1 2

] [
a
b

]
. We know that multiplication

by a matrix always gives a linear transformation.

(b) L

([
a
b

])
=

[
a+ b
a+ 2

]
:

ANSWER:

This is not a linear transformation. L

([
0
0

])
=

[
0
2

]
6=
[

0
0

]
, so this function does

not take the zero vector to the zero vector, which any linear transformation must do.

(c) L

([
a
b

])
=

[
a− b
a2

]
:

ANSWER:

This is not a linear transformation. If we can find any instance where the requirements
for a linear transformation fail, that would justify this claim, so there are many possible

reasons to give. I note that L

(
2

[
1
1

])
= L

([
2
2

])
=

[
0
4

]
, while 2L

([
1
])

=

2

[
0
1

]
=

[
0
2

]
. So this function does not satisfy L(c~v) = cL(~v).



Problem 4

Let A =

[
−1 −4
−1 2

]
.

(a) Find the characteristic polynomial of A,

ANSWER:

λI − A =

[
λ 0
0 λ

]
−
[
−1 −4
−1 2

]
=

[
λ+ 1 4

1 λ− 2

]
The characteristic polynomial of

A is the determinant of that matrix, i.e. (λ+ 1)(λ− 2)− 4× 1 = λ2 − λ− 6.

(b) What are the eigenvalues of A?

ANSWER:

We can factor λ2 − λ− 6 as (λ− 3)(λ+ 2), so the eigenvalues are λ = 3 and λ = −2.

(c) For each of the eigenvalues, describe all of the eigenvectors.

ANSWER:

We substitute each value of λ into the matrix λI −A above and solve the corresponding
homogeneous equations.

For λ = 3:[
4 4
1 1

] [
x1
x2

]
=

[
0
0

]
has solutions x1 = −x2, i.e. all multiples of

[
1
−1

]
, so the

eigenvectors are all the non-zero multiples of

[
1
−1

]
.

For λ = −2:[
−1 4

1 −4

] [
x1
x2

]
=

[
0
0

]
has solutions x1 = x2, i.e. all multiples of

[
1
1

]
, so the

eigenvectors are all the non-zero multiples of

[
1
1

]
.

Problem 5
Assume L is a linear transformation from a vector space V to a vector space W .

Prove that the range of L is a subspace of W .
ANSWER:
The range, the set of all vectors ~w in W such that ~w = L(~v) for some ~v in V , is by definition a
subset of W . We need to show (a) it is not empty, (b) it is closed under addition, and (c) it is
closed under multiplication by scalars.
(a) Since L(~0V ) = ~0W for any linear transformation from V to W , we have that ~0W is
L(something in V ), so the range of L contains ~0W , so the range is not empty.
(b) We need to show that the sum of any two vectors in the range produces a vector in the
range. Suppose ~w1 and ~w2 are any two vectors in the range of L. Since they are in the
range, there must be vectors ~v1 and ~v2 in V such that ~w1 = L(~v1) and ~w2 = L(~v2). But then
~w1 + ~w2 = L(~v1) + L(~v2), and since L is a linear transformation that must be L(~v1 + ~v2), so
~v1 + ~v2 is a vector in V that L takes to ~w1 + ~w2, hence ~w1 + ~w2 is in the range of L.



(c) We need to show that any scalar multiple of a vector in the range of L is in the range of
L. Let ~w be any vector in the range of L, and let c be any scalar. Since ~w is in the range,
~w = L(~v) for some ~v ∈ V . Then c~w = cL(~v) = L(c~v) (since L is a linear transformation), hence
c~w is “L of something in V ”, i.e. c~w is in the range of L.

Problem 6
Let L be the linear transformation from P2 (the space of polynomials of degree at most two) to
P2 defined by L(p(t)) = p′(t), the derivative of the polynomial function. Using the “standard”
ordered basis B = {1, t, t2} (with the vectors in that order!):

(a) Find the matrix A representing L with respect to B and B.

ANSWER:

We apply L to (i.e. take the derivative of) each vector in B, and find the coordinate
vector of the result with respect to B.

For the first vector 1 in B, the derivative gives 0 which is 0 × 1 + 0 × t + 0 × t2, so the

coordinate vector is

 0
0
0

. For the second vector t, the derivative is 1, so the coordinate

vector is

 1
0
0

. Lastly, the derivative of t2 is 2t = 0×1+2×2+0×t2, and the coordinate

vector of that is

 0
2
0

. Putting these together, the matrix is A =

 0 1 0
0 0 2
0 0 0

.

(b) For the polynomial p(t) = 3− 2t+ 2t2, what is the coordinate vector [p(t)]B?

ANSWER:

Since 3 − 2t + 2t2 is already written as a linear combination of 1, t, and t2, we can read

off the coordinate vector

 3
−2

2

.

(c) What is the coordinate vector [L(p(t))]B for L(p(t)?

ANSWER:

Taking the derivative, L(3− 2t+ 2t2) = −2 + 4t, so its coordinate vector is

 −2
4
0

.

(d) Use the matrix from (a) and the vectors from (b) and (c) to show that the matrix “does
the right thing”, i.e. that multiplying a coordinate vector by the matrix does give you
the coordinates for the result of applying L.

ANSWER: 0 1 0
0 0 2
0 0 0

×
 3
−2

2

 =

 −2
4
0

.



Problem 7
Suppose that L is a linear transformation from a vector space V to a vector space W , and that
the kernel of L contains only the zero vector of V . Show that L must be 1− 1.
ANSWER:
Assume that L is a linear transformation from V to W and that only ~0V is in the kernel of L,
i.e. ~0V is the only vector in V that L takes to ~0W .
Then if L(~u) = L(~v), L(~u)− L(~v) = ~0W , and since L is linear that tells us L(~u− ~v) = ~0W , i.e.
~u−~v is in the kernel of L. But the only vector in the kernel is ~0V , so we must have ~u−~v = ~vV .
Then ~u = ~v. So we have shown that whenever L takes two vectors to the same result in W ,
the two were really the same to begin with, i.e. L is 1− 1.

Problem 8

For the vector space V = R3, with ordered bases S =


 1

0
0

 ,
 1

1
0

 ,
 1

1
1

 and T =
 1

1
1

 ,
 −1

0
2

 ,
 1

0
1

:

Find the matrix PS←T for changing coordinates from T to S.
ANSWER:

For each vector in T , we find its coordinates with respect to S. For the first vector,

 1
1
1

, we

need to solve

 1
1
1

 = a

 1
0
0

 + b

 1
1
0

 + c

 1
1
1

 for a, b, and c. You can set that up as a

system of equations, but we can also just see the answer: That last vector in S is exactly what

we want, so a = b = 0 and c = 1, and the coordinate vector is

 0
0
1

.

Now for the second vector,

 −1
0
2

, solving to make a

 1
0
0

 + b

 1
1
0

 + c

 1
1
1

 give that

vector: The vectors multiplied by a and by b have 0 in the third entry, so c must be 2 to make
the third place work out. But that puts a 2 in the middle place: We fix that by making b = −2.

So far that puts a 0 in the top position, so we let a = −1 and get the coordinates as

 −1
−2

2

.

Moving to the third vector, in the same way we find

 1
0
1

 = 1

 1
0
0

− 1

 1
1
0

+ 1

 1
1
1

, so

the coordinate vector is

 1
−1

1

.

We assemble these as the matrix, getting PS←T =

 0 −1 1
0 −2 −1
1 2 1

.



Problem 9

The set of vectors B =


 2

1
2

 ,
 2

2
3

 ,
 −1

1
0

 is a basis for R3,

the vector space of three element column vectors.
Using the ordinary “dot product” as an inner product on R3:

(a) Use the Gram-Schmidt process starting with B to find an orthogonal basis for R3, i.e. a
basis where each pair of distinct vectors is orthogonal.

ANSWER:

To make the notation match both our textbook and my online description, I will give

names to the three vectors making up S, u1 =

 2
1
2

, ~u2 =

 2
2
3

, and ~u3 =

 −1
1
0

.

We create new vectors ~v1, ~v2, and ~v3 that are orthogonal as follows. Start by letting

~v1 = ~u1 =

 2
1
2

.

Now make ~v2 by starting with ~u2 and subtracting its projection onto ~v1: ~v2 = ~u2− (~u2,~v1)
(~v1,~v1)

~v1.

We are to use the dot product for those inner products: (~u2, ~v1) = ~u2 ·~v1 =

 2
2
3

 ·
 2

1
2


= 2× 2 + 2× 1 + 3× 2 = 12. In the same way we get (~v1, ~v1) = 2× 2 + 1× 1 + 2× 2 = 9.
So we want to compute ~v2 = ~u2 − 12

9
~v1 = ~u2 − 4

3
~v1. But for now all we care about is

orthogonality, not magnitude, so we could instead use 3 times that result, 3~u2− 4~v2, and
not have to deal with fractions: (You did not need to do that, it just makes the arithmetic

easier to follow!) We get ~v2 = 3

 2
2
3

− 4

 2
1
2

 =

 6
6
9

−
 8

4
8

 =

 −2
2
1

.

(As a check, the dot product of v1 and v2 is now (2×−2) + (1× 2) + (2× 1) = 0, so these
are indeed orthogonal!)

Now we construct ~v3 by starting with ~u3 and subtracting its projections onto each of
~v1 and ~v2, ~v3 = ~u3 − (~u3,~v1)

(~v1,~v1)
~v1 − (~u3,~v2)

(~v2,~v2)
~v2. Computing those inner (dot) products: We

already had ~v1 · ~v1 = 1. ~u3 · ~v1 = −2 + 1 + 0 = −1. ~u3 · ~v2 = 2 + 2 = 4. ~v2 · ~v2 =

4 + 4 + 1 = 9. So the formula above gives us ~v3 =

 −1
1
0

− −1
9

 2
1
2

− 4
9

 −2
2
1

. Again

we can simplify things bu using 9 times that vector for ~v3 to eliminate fractions, getting

~v3 = 9

 −1
1
0

 +

 2
1
2

 − 4

 −2
2
1

 =

 1
2
−2

, and again we can check that this does

give 0 for the dot product with either ~v1 or ~v2. Summarizing, our new, orthogonal, basis

is


 2

1
2

 ,
 −2

2
1

 ,
 1

2
−2

.



(b) Continue from what you found in (a) to get a basis which is orthonormal, i.e. in addition
to being orthogonal it now has the magnitude (norm, size) of each vector equal to 1.

ANSWER:

We multiply each of these vectors by 1/||~v||: Each has magnitude ||~v|| =
√

9 = 3, so the

resulting vectors are


 2

3
1
3
2
3

 ,
 −2

3
2
3
1
3

 ,
 1

3
2
3

−2
3

.

Problem 10
Suppose L is a linear transformation from V to W . Prove:
If L is 1−1 and {~v1, ~v2, . . . , ~vk} is a linearly independent set in V , then {L(~v1), L(~v2), . . . , L(~vk)}
is a linearly independent set in W .
ANSWER:
We are given that L is a linear transformation from V to W which is 1 − 1, so its kernel
is just ~0V . For the given linearly independent set {~v1, ~v2, . . . , ~vk} in V , consider the vectors
L(~v1), L(~v2), . . . , L(~vk) in W and suppose some linear combination a1L(~v1) + a2L(~v2) + · · · +
akL(~vk) gives the zero vector ~0W in W . Since L is linear we can rewrite that as L(a1~v1 +a2~v2 +
· · · + ak~vk) = ~0W . But that says a1~v1 + a2~v2 + · · · + ak~vk is in the kernel of L, so it must be
~0V , i.e. a1~v1 + a2~v2 + · · · + ak~vk = ~0V , but the vectors ~v1, ~v2, . . . , ~vk are linearly independent,
so the coefficients a1 = a2 = · · · = ak = 0. Recapping, any linear combination of the vectors
L(v1), L(v2),. . . ,L(vk) that gives ~0W must have all zero coeeficients, so the vectors are linearly
independent.


