Mathematics 340, Spring 2011 Lectures 1 & 2 (Wilson)
Final Exam May 12, 2011  With Answers

Problem 1
1 2 -2 3
. 0 1 00 -1
For the matrix A = 0 0 1 0 9
0 —1 1 1 5

(a) Find a basis for the solution space (null space) of A, the subspace of R® consisting of
solutions of A% = 0.

ANSWER:
1000 1
: : 0100 —1
First we reduce A to Reduced Row Echelon Form, getting Ag = o010 2| We
0001 2

see that the fifth column does not contain a leading entry, so the corresponding variable
x5 can be given an arbitrary value. From the first row we see that z; + x5 = 0, i.e.

r1 must be —x5. Similarly from the remaining rows we get zo = x5, r3 = —2x5, and
_x5 7
Ts
x4 = —2x5. So solutions must look like | —2x5 |, i.e. the solutions are all multiples of
—21'5
Ty ]
-1 ([ —1
1 1
—2 |. Hence a basis for the solution space is —2
-2 -2
1 1

\
(b) What is the dimension of the null space of A (i.e. the nullity of A)?
ANSWER:

Since there was one vector in the basis, the dimension of the null space is 1.

Problem 2
1 2 -2 3 1
: 0 1 00 -1 : .
For the matrix A = 0 0 10 9 ( the same matrix as in problem 1):
0o -1 11 5

(a) What is the rank of A?
ANSWER:



1 000

. 01 00

We saw in the answer to problem 1 that the reduced row echelon form of Ap = 00 10
0001

Since there are four non-zero rows in that matrix, the rank of A is 4.
Find a basis for the row space of A.

ANSWER:

From (a) We know that the row space will be a four dimensional subspace of Ry, so we
know we need four 5-element row vectors. We could use the rows of A, or the rows of Ap.
Using the rows of A, one basis is {[1,2, -2, 3,1],[0,1,0,0,—1],[0,0,1,0,2], [0, —1,1, 1, 5]}.

Find a basis for the column space of A that consists of some columns of A.
ANSWER:

We can use the columns from Ag that have leading entries to pick out columns from A:

The leading entries are in the first four columns, so we use

@)
— O = N

Problem 3
For each of the following functions from R? to R?, tell whether it is a linear transformation or
not and give reasons for your answer:

(a)

(b)

(c)

This is a linear transformation. You could check it directly from the definition, or you

L a | a+b | |11 a e
could write it asL([b})— [a—l—%] —{1 2] [b}.Weknowthat multiplication

by a matrix always gives a linear transformation.

(][]

This is not a linear transformation. L ({ 8 }) = [ g ] #+ { 8 ], so this function does

not take the zero vector to the zero vector, which any linear transformation must do.

This is not a linear transformation. If we can find any instance where the requirements
for a linear transformation fail, that would justify this claim, so there are many possible

reasons to give. I note that L(Q“D = L(BD = {2} while 2L ([ 1 ]) =

2 [ (1) 1 = [ g } So this function does not satisfy L(ct)) = cL(7).



Problem 4

-1 —4
LetA:[_1 2}.

(a) Find the characteristic polynomial of A,
ANSWER:

A0 -1 4| | A+1 4 . .
M — A= { 0 )\] — [ 1 2] = [ 1 )\_2} The characteristic polynomial of

A is the determinant of that matrix, i.e. (A +1)(A—2) —4x 1 =X — X —6.
(b) What are the eigenvalues of A?
ANSWER:
We can factor A — X\ — 6 as (A — 3)(\ + 2), so the eigenvalues are A = 3 and A\ = —2.

(c) For each of the eigenvalues, describe all of the eigenvectors.
ANSWER:

We substitute each value of A into the matrix AI — A above and solve the corresponding
homogeneous equations.

For A = 3:
4 4 z1 | |0 . _ . . 1
{ 11 } [ . 1 = [ 0 1 has solutions 1 = —xq, i.e. all multiples of [ 1 ], so the

. . 1
eigenvectors are all the non-zero multiples of 1

For A\ = —2:

{ -1 4 } { Zy ] _ [ 8 ] has solutions z; = z5, i.e. all multiples of [ :

1 4 . 1],Sothe

. . 1
eigenvectors are all the non-zero multiples of 1

Problem 5
Assume L is a linear transformation from a vector space V to a vector space W.

Prove that the range of L is a subspace of W.

ANSWER:

The range, the set of all vectors @ in W such that @ = L(¥) for some ¥ in V', is by definition a
subset of W. We need to show (a) it is not empty, (b) it is closed under addition, and (c) it is
closed under multiplication by scalars.

(a) Since L(0y) = Oy for any linear transformation from V to W, we have that Oy is
L(something in V'), so the range of L contains 6W, so the range is not empty.

(b) We need to show that the sum of any two vectors in the range produces a vector in the
range. Suppose w; and wy are any two vectors in the range of L. Since they are in the
range, there must be vectors v; and ¢, in V' such that @, = L(¥;) and Wy = L(¢3). But then
wh + Wy = L(U7) + L(¥,), and since L is a linear transformation that must be L(¥) 4 03), so
U1 + Uy is a vector in V' that L takes to w; + ws, hence w; + W, is in the range of L.



(c) We need to show that any scalar multiple of a vector in the range of L is in the range of
L. Let @ be any vector in the range of L, and let ¢ be any scalar. Since @ is in the range,
w = L(7) for some ¥ € V. Then cw = ¢L(¥) = L(c?) (since L is a linear transformation), hence
cw is “L of something in V7, i.e. ¢ is in the range of L.

Problem 6

Let L be the linear transformation from P, (the space of polynomials of degree at most two) to
P, defined by L(p(t)) = p/(t), the derivative of the polynomial function. Using the “standard”
ordered basis B = {1,t,*} (with the vectors in that order!):

(a) Find the matrix A representing L with respect to B and B.

ANSWER:

We apply L to (i.e. take the derivative of) each vector in B, and find the coordinate
vector of the result with respect to B.

For the first vector 1 in B, the derivative gives 0 which is 0 x 1 4+ 0 x ¢t + 0 x t2, so the

0
coordinate vector is | 0 |. For the second vector ¢, the derivative is 1, so the coordinate
0
1
vectoris | 0 |. Lastly, the derivative of t? is 2t = 0 x 1+2x 2+0x 2, and the coordinate
0
0 010
vector of that is | 2 |. Putting these together, the matrixis A= | 0 0 2
0 000

(b) For the polynomial p(t) = 3 — 2t + 2¢*, what is the coordinate vector [p(t)];?

ANSWER:

Since 3 — 2t + 2t? is already written as a linear combination of 1, ¢, and 2, we can read
3

off the coordinate vector | —2
2

(c) What is the coordinate vector [L(p(t))]5 for L(p(t)?

ANSWER:
-2
Taking the derivative, L(3 — 2t 4 2t?) = —2 + 4¢, so its coordinate vector is 4
0

(d) Use the matrix from (a) and the vectors from (b) and (c) to show that the matrix “does
the right thing”, i.e. that multiplying a coordinate vector by the matrix does give you
the coordinates for the result of applying L.

ANSWER:

010 3 -2
00 2| x| -2]|= 4
000



Problem 7

Suppose that L is a linear transformation from a vector space V to a vector space W, and that
the kernel of L contains only the zero vector of V. Show that L must be 1 — 1.

ANSWER:

Assume that L is a linear transformation from V' to W and that only Oy is in the kernel of L,
ie. 6V is the only vector in V' that L takes to 6W.

Then if L(@) = L(¥), L(@) — L(¥) = O, and since L is linear that tells us L(@ — ) = Oy, i.e.
@ — ¥ is in the kernel of L. But the only vector in the kernel is 0y, so we must have @ — @ = ¥y
Then @ = . So we have shown that whenever L takes two vectors to the same result in W,
the two were really the same to begin with, i.e. Lis 1 — 1.

Problem 8
1 1 1
For the vector space V = R3, with ordered bases S = Of,]11],]1 and T =
0 1

1 -1 1

1, 01,10

1 2 1
Find the matrix Pg. 7 for changing coordinates from T to S.
ANSWER:

1
For each vector in T, we find its coordinates with respect to S. For the first vector, | 1 |, we
1
1 1 1 1
needtosolve | 1 | =a| 0 |+b| 1| +c| 1| fora,b, and c. You can set that up as a
1 0 0 1
system of equations, but we can also just see the answer: That last vector in S is exactly what
0
we want, so a = b= 0 and ¢ = 1, and the coordinate vector is | 0
1
-1 1 1 1
Now for the second vector, 0 |, solving tomakea | O | +0| 1 [ +¢c| 1 | give that
2 0 0 1

vector: The vectors multiplied by a and by b have 0 in the third entry, so ¢ must be 2 to make
the third place work out. But that puts a 2 in the middle place: We fix that by making b = —2.

—1
So far that puts a 0 in the top position, so we let a = —1 and get the coordinates as | —2
2
1 1 1 1
Moving to the third vector, in the same way wefind | O [ =1 | 0 | —1] 1 (+1] 1 |,so
1 0 0 1
1
the coordinate vector is | —1
1
0o -1 1
We assemble these as the matrix, getting Ps,. 7= | 0 —2 —1

1 2 1



Problem 9

2 2 -1
The set of vectors B = 11,121, 1 is a basis for R3,
2 3 0

the vector space of three element column vectors.
Using the ordinary “dot product” as an inner product on R?:

(a) Use the Gram-Schmidt process starting with B to find an orthogonal basis for R3, i.e. a
basis where each pair of distinct vectors is orthogonal.
ANSWER:
To make the notation match both our textbook and my online description, I will give
2 2 -1
names to the three vectors making up S, u; = | 1 |,y = | 2 |, and u3 = 1
2 3 0
We create new vectors v7, U5, and o3 that are orthogonal as follows. Start by letting
2
=t = |1

2

dl

(12,
(v1,

Now make v, by starting with @, and subtracting its projection onto v7: vp = iy — ) Uy
2

We are to use the dot product for those inner products: (i, 07) = s - ) = 1

2

=2Xx242Xx1+3x2=12. In the same way we get (171,171):2><2—|—1><1+2><2—9

So we want to compute vy = Uy — %171 = Uy — %171. But for now all we care about is

orthogonality, not magnitude, so we could instead use 3 times that result, 3us — 47,, and

not have to deal with fractions: (You did not need to do that, it just makes the arithmetic

f '@1

2 2 6 8 -2
easier to follow!) Weget b, =3 | 2 | —4| 1 | =6 | —| 4| = 2
3 2 9 8 1

(As a check, the dot product of v; and vy is now (2 x —2) 4 (1 x2) 4+ (2x 1) = 0, so these
are indeed orthogonal!)

Now we construct v3 by starting with w3 and subtracting its projections onto each of

v; and Uy, U3 = Uz — ((gffi)) U Eg;fz)) Us. Computing those inner (dot) products: We
already had v, -7 = 1. U3 -0 = =2+ 1+0=—1. U3 -0y =242 =4. Uy -7y =
-1 2 —2
44441 =9. So the formula above gives us v3 = 11— _71 1] - g 2 |. Again
0 2 1
we can simplify things bu using 9 times that vector for 3 to eliminate fractions, getting
-1 2 —2 1
U3 =9 11+ 1] -4 2 | = 2 |, and again we can check that this does
0 2 1 —2
give 0 for the dot product with either ¢, or v5. Summarizing, our new, orthogonal, basis
2 —2 1
isd | 1|,] 21, 2

2 1 -2



(b) Continue from what you found in (a) to get a basis which is orthonormal, i.e. in addition
to being orthogonal it now has the magnitude (norm, size) of each vector equal to 1.

ANSWER:
We multiply each of these vectors by 1/||7]|: Each has magnitude ||]| = v/9 = 3, so the
3

resulting vectors are

)

SISOV EdVIT )
Ll how |
O 1D [ DO | =

Problem 10

Suppose L is a linear transformation from V' to W. Prove:

If Lis1—1 and {03, ¥,,..., U} is a linearly independent set in V', then {L(v}), L(v2), ..., L(Uk)}
is a linearly independent set in W.

ANSWER:
We are given that L is a linear transformation from V to W which is 1 — 1, so its kernel
is just Oy. For the given linearly independent set {#},0s,..., 7} in V, consider the vectors

L(vy), L(s), ..., L(Ug) in W and suppose some linear combination a;L(v)) 4+ asL(U2) + - -+ +
ap L (V) gives the zero vector Oy in W. Since L is linear we can rewrite that as L(a;0; + asth +
oo+ apty) = Ow. But that says a19) + ag¥Us + -+ - + ax is in the kernel of L, so it must be

Oy, i.e. a1¥y + aoly + + -+ + apty = 6V, but the vectors U7, ¥, ..., U} are linearly independent,
so the coefficients a; = a; = -+ = ap = 0. Recapping, any linear combination of the vectors
L(v1), L(va),. .. ,L(vg) that gives Oy must have all zero coeeficients, so the vectors are linearly

independent.



