
Mathematics 340, Spring 2011 Lectures 1 & 2 (Wilson)

First Midterm Exam February 24, 2011 Answers

Problem 1 (10 points)
Suppose, for some system of equations, the augmented matrix is row equivalent to

1 0 2 0 0 −1 2
0 1 −1 0 0 −2 1
0 0 0 1 0 2 −3
0 0 0 0 1 3 4
0 0 0 0 0 1 5


Give all solutions to the system of equations.
ANSWER:
The coefficient matrix is in REF but not RREF. We could either read the solutions from the matrix
as it is, or convert it to RREF. I will do it from the matrix as it is: The last row says x6 = 5 so there
is no choice about that. The next-to-last row says x5 + 3x6 = 4, and we have x6 = 5, so we must have
x5 = 4 − 3 × 5 = −11. The third row says x4 + 2x6 = −3, so again using our value for x6 we have
x4 = −3− 2× 5 = −13. The third column has no leading entry, so the value for x3 is arbitrary: Let it
be some number α. The second row says x2− x3− 2x6 = 1, so putting in α for x3 and 5 for x6 we get
x2 = 1 +α+ 2× 5 = 11 +α. Finally, the first row says x1 + 2x3−x6 = 2, so x1 = 2− 2α+ 5 = 7− 2α.

You could also write this in vector form, ~x =



7− 2α
11 + α
α
−13
−11

5

, for all numbers α.

Problem 2 (10 points)

Let A =

 1 1 0 0 2
0 2 −4 0 6
1 0 2 1 3


Find a matrix in Reduced Row Echelon Form that is row equivalent to A.
ANSWER:
There are many different sequences of row operations could choose to apply, but if done correctly the
resulting matrix in RREF will be the same. Here is one way to get there:

Subtract (1 times) the first row from the third row, getting

 1 1 0 0 2
0 2 −4 0 6
0 −1 2 1 1

 .

Multiply the second row by 1
2 , which gives

 1 1 0 0 2
0 1 −2 0 3
0 −1 2 1 1

 .

Now add (1 times) the second row to the third:

 1 1 0 0 2
0 1 −2 0 3
0 0 0 1 4
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(That is in REF but not RREF.)

Finally, subtract the second row from the first and have

 1 0 2 0 −1
0 1 −2 0 3
0 0 0 1 4

 .
as the answer.

Problem 3 (10 points)

For both (a) and (b) below, let A =
[

1 −1
2 −2

]
(a) How many solutions does the system of equations A~x = ~0 have?

ANSWER:

There are several ways to proceed.

Perhaps the most abstract is: The determinant of A is (1 × (−2) − (−1) × 2) which is zero, so
this homogeneous system does not have only the trivial solution. But any homogeneous system
has at least that trivial solution, so this must have more solutions, hence infinitely many. (Any
system has zero, one, or infinitely many solutions.)

At the other extreme, very concrete: Each equation boils down to x1 = x2, so you can choose
any value for one and give the other that same value and have a solution. Since there were
infinitely many choices for the value we gave the first one, there are infinitely many solutions.

(b) Let ~b =
[

2
3

]
.

How many solutions does the system of equations A~x = ~b have?

ANSWER:

You could row-reduce the system and find a row that had zeros in the first two entries but
non-zero in the third. Or, think about what the equations say: The first says x1 − x2 = 2. The
second says 2x1−2x2 = 3, so x1−x2 = 3

2 . But x1−x2 can’t be both 2 and 3
2 , so these equations

are inconsistent, there are no solutions.

Problem 4 (10 points)

Let A =

 1 −1 2
0 1 −1
0 0 1

 .
Find A−1.
ANSWER:
The most straightforward way to do this at this point (we will get another way in §3.4) is to make a
3× 6 matrix with A in the left three columns and I3 in the right three columns, and row reduce that
matrix.

We have

 1 −1 2 1 0 0
0 1 −1 0 1 0
0 0 1 0 0 1

 to row reduce.
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If we add the second row to the first we get

 1 0 1 1 1 0
0 1 −1 0 1 0
0 0 1 0 0 1

 .

Add 3rd row to 2nd, subtract 3rd from 1st, and get

 1 0 0 1 1 −1
0 1 0 0 1 1
0 0 1 0 0 1

 .
Since the first three columns are now I3, the last three must be the inverse, i.e.

A−1 =

 1 1 −1
0 1 1
0 0 1

 , which you can check by multiplying by A.

Problem 5 (10 points)
Theorem 1.1, part (b), says that matrix addition is associative, i.e.:

For any m× n matrices A, B, and C, A+ (B + C) = (A+B) + C.

Prove this fact.
ANSWER:
This is really an exercise in what equality of matrices means and how the sum of matrices is defined.
A + (B + C) and (A + B) + C, to be equal, (i) must be the same size and (ii) must have the same
number at each entry. We check these:
We are given that A, B, and C are all m×n. The definition of the sum of matrices then gives us that
A+B and B +C are also m× n, and then it gives us that A+ (B +C) and (A+B) +C will also be
m× n. That takes care of (i).
Since each of A+ (B + C) and (A+ B) + C now is known to have m rows and n columns, there are
m · n entries in each. We look at the entry in row i and column j for each, for i from 1 to m and j
from 1 to n: If all of those entries agree, then we will have (ii) above.
In A + (B + C) the entry in row i and column j will be (again by the definition of matrix addition)
the sum of aij and the entry in row i and column j of B + C, which (yet again by the definition!) is
bij + cij . So the entry in row i and column j of A+ (B + C) is aij + (bij + cij).
Now on the other side: In (A+B) + C the entry in row i and column j will be the sum of the entry
in row i and column j of A + B with cij . The entry in row i and column j of A + B is aij + bij . So
the entry in row i and column j of (A+B) + C is (aij + bij) + cij .
But aij + (bij + cij) is a sum of numbers, which we know we can reassociate as (aij + bij) + cij , so for
each i and j the entries do agree and the result is proved.

Problem 6 (10 points)

Find the determinant of


1 0 −3 0
2 4 4 0
0 0 2 0
3 5 2 6

 .
ANSWER:
There are several ways we can do this, e.g. reduce to triangular form and keep track of the effect of
each row operation, but I think the easiest will be to expand by cofactors either across the third row,
where there is only one non-zero element, or down the last column. Using the third row: Calling the
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matrix A, we want the sum of a3jA3j for j from 1 to 4 (where Aij means the cofactor going with row i
and column j). Since a31 = a32 = a34 = 0, the first, second, and fourth of those four terms will be zero
regardless of what the cofactors are. The cofactor A33 is found by (i) deleting the third row and third
column and taking the determinant of the resulting 3× 3 matrix to get the minor and then (ii) giving

it an appropriate ± sign. The 3× 3 matrix will be

 1 0 0
2 4 0
3 5 6

. We need to take the determinant of

that to get the minor. You could use the “draw lines across the matrix” technique since this is just
3 × 3, but we could also use expansion by cofactors of the first row in this matrix since that row is
mostly zero. The only cofactor that will matter (the only one that won’t be multiplied by zero) is
the one going with the upper left entry: Deleting the first row and column gives us the 2× 2 matrix[

4 0
5 6

]
, and the determinant of that is 4× 6 = 24. The sign going with row 1 and column 1 comes

from (−1)1+1 = 1, i.e. it is positive, so the cofactor is +24 and the determinant of the 3× 3 matrix is
(since its 1, 1 entry is 1) 1× 24 = 24.
Now back to the cofactor of the 3, 3 entry in the original matrix: We now have the determinant of
the 3× 3 matrix that comes from deleting the third row and column is 24. So the cofactor going with
that position is (−1)3+3 × 24 = +24. The determinant of A will then be 0 + 0 + 2× 24 + 0 = 48.

Problem 7 (10 points)
Theorem 3.4 says:

If a row (or column) of A consists entirely of zeros, then det(A) = 0.

Prove this, for either rows or columns: You do not need to do both, but be sure to say what it is that
you are proving.
ANSWER:
I choose to do it for rows, and I will assume it is the ith row of A that is entirely zero. I.e., I will prove
“if A is an n× n matrix with aij = 0 for some fixed i and for j = 1, 2, . . . , n, then det(A) = 0”.
Assume A is such a matrix. The definition of the determinant tells us that det(A) is a sum of n!
numbers. Each number is a product of n entries from A, one from each row and one from each
column, with a sign attached that was derived from a permutation that picked out how the rows and
columns were paired. Any of those products has to include one factor from the ith row: No matter
which column that entry comes from in the ith row, the entry will be 0, since all entries in that row
are 0. So the product, with one of the things being multiplied equal to 0, must be 0. So the sum of
all n! products is just ±0± 0 · · · ± 0 = 0, and hence det(A) = 0.

Problem 8 (10 points)

The matrix A =

 1 1 1
0 2 0
1 0 0

 is nonsingular.

Find a sequence of elementary matrices Ei such that A = E1 · E2 · · ·En.

ANSWER:
We apply row operations that convert A to In, and keep track of the elementary matrices that effect
those operations. There are many sequences of operations that you could choose, here is one. (For
each elementary row operation I will let Di be the corresponding elementary matrix, i.e. the result of
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applying the same elementary row operation to In.)

First I will swap the first and third rows, getting

 1 0 0
0 2 0
1 1 1

 :

The elementary matrix is D1 =

 0 0 1
0 1 0
1 0 0

 .

Now I will multiply the second row by 1
2 , which gives

 1 0 0
0 1 0
1 1 1

 ,

with D2 =

 1 0 0
0 1

2 0
0 0 1

 .
(If we were just row-reducing and only cared about the final results, I might now combine subtracting
the 1st and 2nd rows from the third. But we need elementary matrices, so we need to stick to elementary
row operations. So we do those in two separate steps.)

Subtracting the 1st row from the third gives

 1 0 0
0 1 0
0 1 1

 ,

and corresponds to D3 =

 1 0 0
0 1 0
−1 0 1

 .

Subtracting the 2nd row from the third gives

 1 0 0
0 1 0
0 0 1

 ,

and corresponds to D4 =

 1 0 0
0 1 0
0 −1 1

 .
Since those row operations transformed A to I3, we have matrices Di such that D4D3D2D1A = I3. To
get A as a product of elementary matrices we need to get the Di’s to the other side. To do that, we first
find the inverses of the matrices Di: Since Di was an elementary matrix, its inverse will be what we get
from I3 by applying the “undoing” elementary operation. E.g., D3 corresponded to “subtract the first

row from the third”, so its inverse would add the first row to the the third and (D3)−1 =

 1 0 0
0 1 0
1 0 1

,

which I will call E3. In the same way we get Ei by finding the inverse of Di, for i = 1, 2, and 4:

E1 = (D1)−1 =

 0 0 1
0 1 0
1 0 0

 , E2 = (D2)−1 =

 1 0 0
0 2 0
0 0 1

 , and E4 = (D4)−1 =

 1 0 0
0 1 0
0 1 1

 . Now

we can multiply the equation D4D3D2D1A = I3 on the left, first by E4 = (D4)−1, then by E3, etc.,
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to get A = E1E2E3E4I3, and of course we can drop the I3, so we are through. We could also write it
all out as

A =

 0 0 1
0 1 0
1 0 0

 1 0 0
0 2 0
0 0 1

 1 0 0
0 1 0
0 1 1

 1 0 0
0 1 0
1 0 1

 .
(I actually did multiply those out, it works! But since there would be many choices of row operations
to convert A to I3, there would be many possible answers, not all consisting of 4 matrices.)

Problem 9 (10 points) Prove:

If the n× n matrix A is nonsingular, then the system of n equations in n unknowns

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an1x1 + an2x2 + · · ·+ annxn = bn

has one and only one solution no matter what the numbers bi are.
ANSWER:
We just consider the system in matrix form, A~x = ~b. Since A is nonsingular, we can multiply each
side of that equation (on the left) by A−1 and get A−1 (A~x) = A−1~b, and we can reassociate to get(
A−1A

)
~x = A−1~b or In~x = ~x = A−1~b. So (i) that collection of numbers ~x must be a solution, since

we could now multiply on the left by A and get back to A~x = ~b, and (ii) it must be the only solution
since no matter what ~x was claimed to be a solution we could do this same set of operations and get
~x = A−1~b as the only possibility.
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