Some formulas, identities, and numeric values you might find useful:

Values of trig functions:

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$
0	0	1	0
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	1	0	_

Trig facts:

1.
$$\sec^2 \theta = \tan^2 \theta + 1$$

2.
$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

3.
$$cos(x+y) = cos(x)cos(y) - sin(x)sin(y)$$

4.
$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

5.
$$\cos^2 x = \frac{1}{2}(1 + \cos 2x)$$

Derivative formulas:

$$1. \ \frac{d}{dx} \tan x = \sec^2 x$$

$$2. \ \frac{d}{dx} \sec x = \sec x \, \tan x$$

3.
$$\frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1-x^2}}$$

4.
$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2}$$

5.
$$\frac{d}{dx} \sec^{-1} x = \frac{1}{|x|\sqrt{x^2-1}}$$

$$6. \ \frac{d}{dx} \ln x = \frac{1}{x}$$

Integral formulas:

1.
$$\int \frac{du}{\sqrt{1-u^2}} = \sin^{-1} u + C$$

$$2. \int \frac{du}{1+u^2} = \tan^{-1} u + C$$

3.
$$\int \sec(u) \, du = \ln|\sec(u) + \tan(u)| + C$$

$$4. \int u \, dv = uv - \int v \, du$$

Trial functions for Undetermined Coefficients:

For a term in $f(x)$	If	Then use a term like
which is a multiple of		
$\sin(kx) \text{ or } \cos(kx)$	ki is not a root of the characteristic equation	$A\cos(kx) + B\sin(kx)$
	ki is a root of the characteristic equation	$Ax\cos(kx) + Bx\sin(kx)$
e^{nx}	n is not a root of the characteristic equation	Ce^{nx}
	n is a single root of the characteristic equation	$\int Cx e^{nx}$
	n is a double root of the characteristic equa-	Cx^2e^{nx}
	tion	
A polynomial $ax^2 +$	0 is not a root of the characteristic equation	a polynomial $Dx^2 + Ex + F$
bx+c of degree at most		of the same degree as $ax^2 +$
2		bx + c
	0 is a single root of the characteristic equation	a polynomial $Dx^3 + Ex^2 + Fx$
		of degree one more
	0 is a double root of the characteristic equa-	a polynomial $Dx^4 + Ex^3 +$
	tion	Fx^2 of degree two more