
Approximation worksheet Math 222, Section 1 Wilson March, 2004

Solutions

1. Calculate e with an error of at most 10−7.

I will use part of the Maclaurin series ex = 1+x+ x2

2 + x3

6 · · · with x = 1. We need to determine how
many terms we need to include in order to meet the accuracy requirement. We use the remainder term
Rn(x) = f (n+1)(c)

(n+1)! xn+1 that corresponds to a = 0, since this is a Maclaurin series. We use x = 1, and

0 < c < 1, to estimate how big Rn(x) might be. The derivatives of ex are all just ex, so f (n+1)(c) = ec.
The largest ec can be for 0 < c < 1 is e1 = e < 3, since ex is an increasing function. xn+1 = 1n+1 = 1,
so |Rn(x)| ≤ 3

(n+1)! × 1. We want |Rn(x)| ≤ 10−7 so we make |Rn(x)| ≤ 3
(n+1)! < 10−7 and solve

for n. We get (n + 1)! > 3
10−7 = 3 × 107 = 30, 000, 000. Trying values of n we get eventually that

10! = 3, 628, 800 and 11! = 39, 916, 800 so the first value of n satisfying (n + 1)! > 30, 000, 000 is
n = 10. Hence we know that if we use the terms 1 + x + · · · + x10

10! , with x = 1, we should have
sufficient accuracy. That gives us 1 + 1 + 1

2 + 1
6 + · · · + 1

10! ≈ 2.718281801. The actual value of e
through that many places is 2.718281828, and these do agree to within ±0.0000001 as required. If
we had used only the terms through 1

9! we would get 2.718281526, which does not meet the required
accuracy.

2. If we use x − x3

3! to approximate sin(x), for what values of x is the approximation correct to within
±0.0003?

I will do this one in two ways. First, using the remainder term Rn(x): The terms given are the first
two non-zero terms of the Maclaurin series for sin(x). But since the even-power terms are all zero,
this is in fact the same as the terms through the 4th power of the series. Hence we can get our most
accurate results if we think of this as approximation by the terms 0 + x + 0x2 + x3

3! + 0x4, i.e. n = 4.
The remainder term R4(x) requires the 5th derivative of sin(x), which is cos(x). We need to find
what x values make | cos(c)5! x5| ≤ 0.0003 for every c between 0 and x. We can’t even be sure what c is
when we know what x is, so certainly we don’t know c here. But we can say that | cos(c)| ≤ 1 since
that is true for any c. Hence we want to know what x values make | cos(c)5! x5| ≤ | 1

120x5| ≤ 0.0003. We
can solve that last inequality to get |x5| ≤ 120× 0.0003 = 0.036, or (since |x5| increases as we move
away from 0) |x| ≤ 5

√
0.036 ≈ 0.514352. Thus if −0.514352 ≤ x ≤ 0.514352 the approximation will

be within the required tolerance. (If you use a calculator or computer to plot (x − x3

6 − sin(x) for
−0.6 < x < 0.6, you will see this works!)

But in this case we have another method available. The Maclaurin series for sin(x), x− x3

3! + x5

5! + · · ·,
is an alternating series for any (non-zero) value of x: If x > 0 the terms go +, −, +, etc., while for
x < 0 they reverse and go −, +, −, etc. but in either case the signs alternate. So we can use the
alternating series error estimation process instead of Taylor’s theorem. This says the error will be
(in size) at most the size of the first omitted term. If we ignore the zero terms, the first omitted
term is x5

5! = x5

120 . So we find what values of x make | x5

120 | ≤ 0.0003. As you can see in the previous
paragraph, that is exactly what we solved to find the usable x values in the other approach, so we
get the same conclusion! (The moral is that if the series alternates you may be able to save some
work. . . )

3. If cos(x) is replaced by 1 − x2

2 , for |x| < 0.5, estimate the error resulting. Does this approximation
tend to be larger or smaller than the actual value of cos(x) for these x values?

We think of this as 1 + 0x − x2

2! + 0x3, i.e. the terms of the Maclaurin series for cos(x) through the
third degree term. We could use the Taylor remainder term R3(x), but this time we note the series
is an alternating series and use that to reduce the work. The first omitted term is x4

24 , so we know
the error is at most whatever is the biggest x4

24 can be for −0.5 < x < 0.5. Since x4 increases (in
absolute value or “size”) as we move away from 0, the largest value will be at x = −0.5 or at x = 0.5:
in fact they give the same result, (0.5)4

24 = 1
384 ≈ 0.0026. Hence we can say the error will be at most



0.0026. The alternating series test also said the sum of the terms we use will be too small if the first
omitted term is positive, and too large if the first omitted term is negative. Since x4

24 is certainly
positive except at x = 0, the approximation will be smaller than cos(x) except at x = 0 where it is
exactly right.

4. The approximation sin(x) ≈ x is sometimes used for small values of x. How good is it, if we only use
it for |x| < 0.001? For which of those values of x will x be less than sin(x)? greater?

x is the first (non-zero) term in the Maclaurin series for sin(x), 0+x+0x2+· · ·. We could use either the
Taylor remainder term, with n = 2 since this is really the series through the 2nd degree term, or we can
view the series as an alternating series. Since the latter is simpler I will use that: The error will be the
magnitude of the first omitted term,

∣∣∣x3

6

∣∣∣. For |x| < 0.001, that is at most (0.001)3

6 = 1.6666 . . .×10−10,

so the approximation is within that error bound for all the x’s involved. The first omitted term, −x3

6 ,
is negative when x > 0 and positive when x < 0. Hence the approximation is too big (i.e. x > sin(x))
when x > 0 and too small (x < sin(x)) when x < 0.

5. (a) Use the remainder term in Taylor’s theorem to estimate the error that results if we replace ex

by 1 + x + x2

2! for |x| < 0.1.

The polynomial 1 + x + x2

2! is the terms through the 2nd degree term of the Maclaurin series
for ex. The remainder term R2(x) will involve the 3rd derivative of ex which is still ex, so we
have R2(x) = ec

3! x
3. For the x values involved, using the fact that c is between 0 and x, ec is at

most e0.1. Now in fact e0.1 is about 1.105, but it would be hard to justify that if we could not
compute ex and if we could compute ex this problem would be senseless! So I will use the much
looser bound that e0.1 < e1 < 3. The |x3| part of |R2(x)| will be at most (0.1)3 = 0.001, so we
have |R2(x)| < 3×0.001

6 = 0.0005. Hence the error in replacing ex by 1 + x + x
2 , for |x| < 0.1, is

at most 0.0005.

(b) For x < 0, the series 1+x+ x2

2! +. . . is an alternating series. Use the Alternating Series estimation
process to estimate the error that results if we replace ex by 1 + x + x2

2! for −0.1 < x < 0.

The first term omitted is x3

6 so the error is at most
∣∣∣x3

6

∣∣∣, which will be largest (among the x

values involved) at x = −0.1. Hence the error is at most 0.001
6 = 0.0001666 . . ..

Compare your answers to (a) and (b): How can they be different and both be correct?

The estimate of the error we got in (b) is only 1
3 as big as the estimate in (a). There are two differences

between what we are doing in (a) and (b). For one thing we are solving a different problem: Over
a more restricted range of x values we might well be able to say that the error would be smaller.
In addition we used a different method to solve the problem, alternating series vs. Taylor’s theorem
remainder term. Since each method just says ”the error is at most such-and-such”, they can give
different answers and both be correct. I might also say in this case the error is at most 1: That
happens to be true, since both methods got much smaller bounds, but it is not as useful.

6. (Continuing from our quiz of 3/5/04. . . ) The first two terms of the Taylor series for
√

x at a = 1
are 1 + 1

2(x − 1) = 1
2 + x

2 . If we approximate
√

0.95 using that polynomial, how accurate will the
results be? Use one of the theorems we have had, and then compare the answers you get from the
polynomial and

√
0.95 using a calculator. Are these consistent with the theoretical results?

Using x = 0.95 in the polynomial we get 1 + 1
2(0.95 − 1) = 1 − 0.025 = 0.975 as our approximate

value for
√

0.95. The series is not alternating (at least through these terms) so we have to use the
remainder term R1(x) (1 since this polynomial took us through the 1st degree term of the series) to
estimate the error. We have R1(x) = f ′′(c)

2 (x−1)2, where f(x) =
√

x, x = 0.95 and c is between 1 and
x. The second derivative of f(x) is −1

4x−
3
2 = − 1

4(x)
3
2
. The power in the denominator is an increasing

function on 0.95 < c < 1, so the fraction will be largest (in absolute value) when the denominator is
smallest, i.e. |f ′′(c)| = | − 1

4c
3
2
| < 1

4(0.95)
3
2
. Thus |R1(0.95)| ≤ 1

8×(0.95)
3
2
(0.05)2 = 0.0025

8×(0.95)
3
2

= 0.0003125
(
√

0.95)3
.

But if we had to use a polynomial to approximate
√

0.95, surely we don’t know (
√

0.95)3 ! Since



we want to be able to say that 1
(
√

0.95)3
is less than something, we want to find a number M such

that 1
(
√

0.95)3
< M , i.e. (

√
0.95)3 > 1

M . We want M as small as we can conveniently make it: E.g.

( 1√
0.95)3

is surely less than 1000 but that would hardly be useful. The nearest “obvious” number is

1, but it is not true that 1
(
√

0.95
< 1 so we can’t use that. To construct a number we can easily find

the 3
2 power of, start with something that is a nice square. If we pick 0.81 = (0.9)2, we get the 3

2

power of 0.81 will be (0.9)3 = 0.729. So now we have (a) (0.81)
3
2 = 0.729 and (b) (0.81)

3
2 < (0.95)

3
2

so 1
(
√

0.95)3
< 1

(
√

0.81)3
= 1

0.729 ≈ 1.3717. Now we go back to the remainder term and have the

error bounded by (0.0003125)× (1.3717) ≈ 0.0004287. Hence the difference between
√

0.95 and our
approximation 0.975 should be at most 0.0004287. Using a calculator I get

√
0.95 ≈ 0.97468, so the

difference is actually about 0.00032, which is indeed less than 0.0004287.

7. How many terms of the Maclaurin series for ln(x + 1) should you include to be sure of calculating
ln(1.1) with an error of magnitude less than 10−8?

First, what is the series? You can take derivatives and find the coefficients that way, or do as we did
with one of our very first examples of power series: Note that ln(1+x) =

∫ dx
1+x =

∫
(1−x+x2−x3−

x4 + · · ·) dx = x− x2

2 + x3

3 − x4

4 + x5

5 + · · ·. (I dropped the absolute value signs, we will be applying
this only where 1 + x > 0. In evaluating ln(1.1) using ln(1 + x) we must be using x = 0.1, and at
that value of x this is an alternating series. (You could also do this with the remainder term.) Using
alternating series error estimation we use the terms through the point where the first term omitted
is in magnitude less than 10−8. The terms in general are ±xn

n = ± (0.1)n

n . Hence we want to find n

such that (0.1)n

n < 10−8. Note that this amounts to 10−n

n < 10−8: If we choose n = 8 that must be
true but conceivably it is true for smaller smaller n. If we try n = 7 we get 10−7

7 ≈ 1.42857 × 10−8

which is not smaller than 10−8, so we use enough of the series that ± (0.1)8

8 is the first term omitted.

Thus we compute ln(1.1) as approximately (0.1) − (0.1)2

2 + (0.1)3

3 + · · · + (0.1)8

8 which works out to
about .09531018095. (And a calculator gives ln(1.1) as about .09531017980, for comparison, so they
certainly do agree to the precision requested.)

8. Use the Alternating Series test to decide how many terms of the Maclaurin series for arctan(x)
(tan−1(x)) should be included to get π

4 within 10−3.

Again you can find the arctangent series either by using the formula for coefficients in a Maclaurin
series or by working from the geometric series 1

1+x2 = 1 − x2 + x4 − x6 + · · · and integrating to get

tan−1(x) = x− x3

3 + x5

5 − x7

7 + · · ·. To use this to get π
4 we evaluate tan−1(1) = π

4 , so we want to use
x = 1 in enough terms of the series to make the error less than 0.001. For any x other than zero the
even powers would all be positive so with the ± signs included this is an alternating series. Hence we
use enough terms that the first one omitted is less than 0.001 in size, i.e. we go up to an odd number
n such that (1)n

n = 1
n is less than 0.001 = 1

1000 . That happens when n = 1001, so we use the terms
through ± 1

999 . (Since the terms where the denominator is one less than a multiple of 4 get minus
signs, that is more specifically − 1

999 . This is as much as you were asked to do. If I ask a computer to
add up those terms, 1− 1

3 + 1
5 + · · · − 1

999 , I get 0.7848981639, and the difference between that and
π
4 is about 0.0004999996 which is indeed less than 10−3.


