
Notes and Extra Problems
using Taylor’s Theorem

Our text does not have many examples or problems illustrating error estimation for truncated Taylor
(Maclaurin) series. The situation where you might need to do this is typically something like this: For
whatever reason you need to replace some function by a polynomial which approximates it, and you
need to control the error introduced by using the polynomial (only a finite number of terms) rather
than a full series representation of the function. There are several common forms of this problem,
e.g. (a) If I use a given polynomial, how close will the results be to the values of the function? (b)
Given that I need some prescribed precision in my approximation, what polynomial can I use that is
guaranteed to provide that precision?

We can produce a polynomial which might be a useful approximation to f(x) in several ways, but
there is one specific way that we consider here. Given a function f(x) that is “nice enough” (typically
this means it can be differentiated as many times as we want at some point a) we can produce its
Taylor series at a. (If a = 0 the series is what we call the Maclaurin series.) Unless the function f(x)
was itself a polynomial (so that its derivatives would be zero after some point) the series will have
infinitely many terms. We could arbitrarily pick some number n and use just the terms up through
degree n, what the book calls the nth degree Taylor polynomial for f(x). (We could also call it the
nth degree Maclaurin polynomial for f(x) in the case a = 0.) But clearly that choice of n must not
be made quite so arbitrarily. If we choose n = 0, for example, we do get a very simple polynomial to
work with (just the constant f(a), i.e. we are approximating what might be a very complex graph
with a horizontal straight line) but for x’s other than a the polynomial might be far different from
f(x). (I.e. the graph might rapidly get far from the straight line as we move away from x = a.) Hence
we would not get much accuracy. (Note that any Taylor polynomial is perfectly accurate at x = a.
When we say we don’t get much accuracy we mean the accuracy is not sufficient at some other values
of x that we care about.) So we need to choose n with care.

Here is a setting in which this may make more sense. Suppose that you are working on a team
designing a new video game, which will involve graphics on the video screen that move as the player
proceeds through the game. As the game moves along, the viewpoint of the screen picture changes.
So the coordinate system has to be rotated. (Remember section 8-8 in the text?) That involves trig
functions. But, the design of the game has to use the minimal amount of computing hardware so
as to achieve a low price point! So you can’t assume there is a lot of computing power the game
program can call upon. Every computer instruction that will be in the game will be something your
team wrote, not coming from some monstrous library of math functions. So when you need to use
cos x, for example, you have to know how to compute it using simple add/subtract/multiply/divide
commands. Now in the video game the image on screen does not need to be perfectly accurate: The
resolution of the monitor, limits in the player’s visual acuity, etc., imply that dots making up the
image on the screen need only be placed with a certain accuracy, not exactly. So you can get by with
computing cos x to some accuracy depending on the needed screen precision. (A good thing: Although
the processor in the game may be fast it is certainly not infinitely fast, so summing all the terms in a
series is not an option!) Thus you conclude (a) I need to calculate cos x, (b) I will need to do this for
x’s in some range α < x < β (which might be a whole circle like 0 < x < 2π but if you can restrict
it you may be able to use a simpler calculution and save needed resources), and (c) you need to get
the answers accurate to within some tolerance ε. If the game goes slowly enough around corners, so
that each individual screen rotation is at most 30◦, you might find you needed to compute cos x for
−Π

6 < x < Π
6 and that you needed the result to be within 0.001 (to pick a number) of the actual

value of cos x. (I have know people who had to do almost exactly this in a slightly different setting,
constructing special purpose computers for navigating in space.)

Taking the hypothetical problem above as an example, we know that the Maclaurin series for cos x
is 1 − x2

2! + x4

4! −
x6

6! + · · ·. The 0th degree polynomial approximation to cos x we get from this is just
cos x ≈ 1, the 2th degree polynomial is 1 − x2

2! , etc. We need to decide what degree would insure



accuracy of 0.001 throughout the interval (−π
6 , π

6 ). We might say “I’ll bet that the 1000th degree
polynomial would be good enough,” but (even assuming that we were right) that would probably take
a lot of extra computing. So we want to find some n such that (a) the nth degree polynomial can be
shown to be good enough, but (b) n is not larger than it needs to be. We may not completely satisfy
(b) but we will try to make n at least not much larger than the minimum it could be to achieve (a).

We have a couple of tools we may be able to use, one of which the book presents in two different
forms. These are: (i) Taylor’s Theorem as given in the text on page 792, where Rn(x, a) (given there
as an integral) tells how much our approximation might differ from the actual value of cos x; (ii) The
variation of this theorem where the remainder term Rn(x, a) is given in the form on page 795, labelled
as Lagrange’s Form of the Remainder; (iii) the Alternating Series Estimation Theorem given on page
783. (Another tool would be the Estimation of Remainders by Integrals starting on page 769, but I
will not consider that further since we skipped it in class.)

When the Alternating Series Estimation process applies, it is frequently the easiest to use, so I
check that first. Since even powers of x cannot be negative, the series 1 − x2

2! + x4

4! −
x6

6! + · · · is an
alternating series for any x. For any fixed x we can compare adjacent terms an and an+1 in the series:
If we compute their ratio

x2n+2

(2n+2)!

x2n

2n!

=
x2

(2n + 1)(2n + 2)

we see that the terms are decreasing. (Note that x is not changing in that expression so it shows that
each term is the previous one multiplied by a number less than 1.) Hence we have that the difference
between the sum of just the first n terms of the series, which will become our polynomial, and the
whole series which would give the actual value cos x, is in size at most as the first term we don’t
include. Since we need to make sure that difference is at most 0.001 we can use terms so that the
first one left out is less than that number. But a term like x2n+2

(2n+2)! depends on x. So we have to make
sure that this is less than 0.001 for any x in the interval (−π

6 , π
6 ). The largest that x2n+2 can get on

that interval is for x’s near the ends of the interval: We can safely say that for any x in the interval,
x2n+2 <

(
π
6

)2n+2. But what is
(

π
6

)2n+2? Here we can be somewhat creative: We want to find a good
value of n but we can get by without knowing our value is the best possible. We can simplify our
arithmetic if we note that π < 6 so π

6 < 1, so
(

π
6

)2n+2
< 12n+2 = 1. Hence what we need to make

sure of, that we choose n so that x2n+2

(2n+2)! < 0.001 for all the relevant x’s, can be guaranteed if we make
1

(2n+2)! < 0.001. Now we try different factorials: 6! = 720, and 7! = 5040, so if we make 2n + 2 at
least 7 we will have (2n + 2)! > 1000 and so 1

(2n+2)! < 0.001. There is no whole number n that makes
2n + 2 = 7, that would require n = 21

2 , so we use the next higher value of n. So we can say that using
2n + 2 = 8 (n = 3) we get the needed accuracy. This says we use as our polynomial the terms up to
but not including the one with x8

8! , since what we were looking at was the first term omitted. So the
polynomial 1− x2

2 + x4

24 −
x6

720 is what we use for our approximation.
In this case the series really was an alternating series with decreasing terms, so the alternating

series estimation process worked. I will still go ahead and use Taylor’s theorem so that you can
compare the results and also the effort involved. For other functions you may have to use Taylor’s
theorem in one or the other form: Suppose the function to be approximated had been sinx. In that
case the terms of the Maclaurin series have odd powers of x, which changes the signs in the series
when we use a negative x. For other series the terms might not even look like they have alternating
signs, or might not be consistently decreasing in size.

I personally prefer almost always to use the Lagrange form of the remainder term, the one given as
equation (15) on page 795 in our text. In our example, a = 0. So we have that the difference between
the sum of the terms of the series through the one with xn and the full sum is Rn(x, 0) = f (n+1)(c) xn+1

(n+1)!

where the function f(x) = cos x and c is some number between x and 0. We can’t generally determine
c. What we have to do is to choose n so that this expression gives at most 0.001 no matter what x
is chosen in (−π

6 , π
6 ) and no matter what value c takes between x and 0. Since f(x) = cos x, all of its

derivatives are either ± cos x or ± sinx, so no matter what value c has we can say that f (n+1)(c) is



between −1 and 1. Hence

|Rn(x, 0)| =
∣∣∣∣∣f (n+1)(c)

xn+1

(n + 1)!

∣∣∣∣∣ ≤
∣∣∣∣∣ xn+1

(n + 1)!

∣∣∣∣∣ .
But just as in the version using alternating series estimation, for the x’s in our interval we can say∣∣xn+1

∣∣ < 1n+1 = 1, so we have

|Rn(x, 0)| ≤
∣∣∣∣∣ xn+1

(n + 1)!

∣∣∣∣∣ ≤ 1
(n + 1)!

.

So again we can choose n so as to make 1
(n+1)! < 0.001, satisfied when we get to 1

7! < 0.001, and again

we use the terms through x6

6! , so we use the same polynomial as before.
It can happen that one theorem turns out to guarantee sufficient precision using a smaller n than

what you get from one of the other theorems. So if you really need to get the best possible results you
should try all possibilities. But for this class all we will require of you is that you find an answer that
can be justified using one of these theorems, not the best possible answer.

As mentioned in the first paragraph of this note, there are several variants of this form of problem:
The others are usually easier, so I have illustrated the “worst case”. One other form is to give you the
polynomial, i.e. tell you we use the terms up through some specified degree, and an interval of x’s,
and ask you to tell how accurate an approximation the polynomial will give on that inteval, or ask you
to show that it at least meets some specified accuracy. A different form is to give you a polynomial
and an accuracy and ask what x’s may be used in the polynomial and be sure of meeting the accuracy
requirement. Each of these uses the same kind of reasoning shown above. Even easier problems ask
you just to work with one value of x, e.g. the first problem below.

Additional problems to work on using this material:

(a) Determine how many terms of the Maclaurin series for ex are needed to estimate e0.1 within
0.00001.

(b) Find the range of x values for which x− x3

6 + x5

120 gives a number within 0.0001 of sinx.

(c) Find the 4th degree Taylor polynomial for cos x at a = π
3 . Use some form of Taylor’s theorem to

estimate the accuracy when this polynomial is used to approximate cos x, where x ranges over
0 ≤ x ≤ 2π

3 .

(d) How many terms of the Maclaurin series for ln(1+x) are needed to estimate ln 1.4 within 0.0001?

(e) Use a polynomial to approximate
∫ 1
0

√
1 + x4 dx to two decimal places.

(f) For f(x) =
√

x find the fourth degree Taylor polynomial at a = 1 approximating f(x). Find an
estimate of the error involved in using this approximation for 0.9 ≤ x ≤ 1.1.

(g) Use a polynomial approximation to find cos 69◦ to five decimal places.


