1. $e^{y-2} - \frac{dy}{dx}e^{x+2y} = 0$ with y(0) = -2

You can separate the variables in this equation and get the general solution as $y(x) = \ln |C - e^{-x}| - 2$. When you use the initial condition to solve for C you get C = 2, so the solution is $y(x) = \ln |2 - e^{-x}| - 2$.

2. $(x+1)\frac{dy}{dx} + 2y = x$ with y(0) = 1

Rearranging the equation as $\frac{dy}{dx} + \frac{2}{x+1}y = \frac{x}{x+1}$ we see this as first order linear with $P(x) = \frac{2}{x+1}$ and $Q(x) = \frac{x}{x+1}$. Straightforward application of the standard technique for first order linear gives us $y(x) = \frac{1}{(x+1)^2} \left(\frac{x^3}{3} + \frac{x^2}{2} + C\right)$. Using y(0) = 1 gives C = 1.

3. $x\frac{dy}{dx} + 2y = x^2 + 1$ with y(1) = 1

Again this is first order linear, with $P(x) = \frac{2}{x}$ and $Q(x) = \frac{x^2+1}{x}$. We get for the general solution $y = \frac{x^2}{4} + \frac{1}{2} + \frac{C}{x^2}$, and using y(1) = 1 gives $C = \frac{1}{4}$.

4. $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 3y = 0$ with y(0) = 2 and y'(0) = -2

This is second order with constant coefficients, and homogeneous. The characteristic equation is $r^2 - 4r + 3 = 0$ which yields r = 3 and r = 1. Thus the general solution is $y = C_1 e^{3x} + C_2 e^x$. Using y(0) = 2 we get $C_1 + C_2 = 2$, and y'(0) = -2 gives $3C_1 + C_2 = -2$. Solving these gives $C_1 = -2$ and $C_2 = 4$, so the solution is $y(x) = -2e^{3x} + 4e^x$.

5. $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 0$ with y(0) = 0 and y'(0) = 7

Again this is second order, constant coefficients, homogeneous. The characteristic equation $r^2 + 4r + 4 = 0$ factors as $(r+2)^2 = 0$ so the solution is r = -2, repeated. Thus the general solution to the differential equation is $y = C_1 e^{-2x} + C_2 x e^{-2x}$. Using y(0) = 0 we get immediately that $C_1 = 0$, so the solution simplifies to $y = C_2 x e^{-2x}$. Then $y' = C_2 e^{-2x} - 2C_2 x e^{-2x}$, and y'(0) = 7 gives $C_2 = 7$. So the solution is $y(x) = 7x e^{-2x}$.

6. $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 4x$ with y(0) = 1 and y'(0) = -3

This is still second order, constant coefficients, but no longer homogeneous. We first solve the homogeneous equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 0$. The characteristic equation $r^2 + 2r = 0$ gives r = 0 and r = -2, so the general solution to this homogeneous equation is $y_h = C_1 e^{0x} + C_2 e^{-2x} = C_1 + C_2 e^{-2x}$.

Using the method of undetermined coefficients to find a particular solution y_p to the original equation, we see the right hand side 4x is a polynomial of degree one. Since zero is a (single) root of the characteristic equation we use $Ex^2 + Fx$ for y_p . (We can ignore the possibility of a cubic term Dx^3 since we only have to go to degree one higher than that of the polynomial 4x.) Using $y_p = Ex^2 + Fx$ we have $y'_p = 2Ex + F$ and $y''_p = 2E$. Putting these into the original differential equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 4x$ we get 2E + 2(2Ex + F) = 4x or 4Ex + (2E + 2F) = 4x. From the terms with x we get 4E = 4, E = 1, and then from the constant terms we get 2E + 2F = 0 with E = 1 so F = -1. Thus $y_p = x^2 - x$.

Now we combine y_h and y_p to get $y(x) = C_1 + C_2 e^{-2x} + x^2 - x$ as the general solution to the differential equation, and we have to find the values of C_1 and C_2 to make this fit the initial conditions. Putting in x = 0 gives $y(0) = C_1 + C_2$ so this must be 1. Taking the derivative we

have $y'(x) = -2C_2e^{-2x} + 2x - 1$ so $y'(0) = -2C_2 - 1$, which must give -3, so $C_2 = 1$. Then from $C_1 + C_2 = 1$ we get $C_1 = 0$. So the solution is $y(x) = e^{-2x} + x^2 - x$.

7. $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 3e^{2x}$ with y(0) = -2 and y'(0) = -2

This time when we solve the homogeneous equation the characteristic equation gives r = 2 and r = -1. So the homogeneous solution is $y_h = C_1 e^{2x} + C_2 e^{-x}$.

Since the right hand side $3e^{2x}$ is a multiple of e^{nx} for n = 2, and 2 is a single root of the characteristic equation, we use $y_p = Cxe^{2x}$. From this we get $y'_p = Ce^{2x} + 2Cxe^{2x}$ and $y''_p = 4Ce^{2x} + 4Cxe^{2x}$. Putting these into the differential equation we get $4Ce^{2x} + 4Cxe^{2x} - Ce^{2x} - 2Cxe^{2x} = 3e^{2x}$ which simplifies to $3Ce^{2x} = 3e^{2x}$, or C = 1. Hence our particular solution is $y_p = xe^{2x}$.

Combining, we get $y = C_1 e^{2x} + C_2 e^{-x} + x e^{2x}$ as the general solution. Now we use the initial conditions. We have $y' = 2C_1 e^{2x} - C_2 e^{-x} + e^{2x} + 2x e^{2x}$ so $y'(0) = 2C_1 - C_2 + 1$, forcing $2C_1 - C_2 + 1 = -2$ or $2C_1 - C_2 = -3$. From y(0) = -2 we get $C_1 + C_2 + -2$. Solving these two equations we get $C_1 = -\frac{5}{3}$ and $C_2 = -\frac{1}{3}$. Hence the solution we are after is $y(x) = -\frac{5}{3}e^{2x} - \frac{1}{3}e^{-x} + xe^{2x}$.

8. $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 5y = 4e^{-x}$ with y(0) = 1 and $y'(0) = -\frac{1}{2}$

The characteristic equation for the homogeneous equation is $r^2 - 2r + 5 = 0$, so $r = \frac{2\pm\sqrt{4-20}}{2} = 1 \pm 2i$. Thus the homogeneous general solution is $y_h = e^x(C_1 \cos 2x + C_2 \sin 2x)$.

Since the right hand side of the original equation, $4e^{-x}$, is a multiple of e^{nx} where n = -1 is not a root of the characteristic equation, we can use $y_p = Ce^{-x}$. That makes $y'_p = -Ce^{-x}$ and $y''_p = Ce^{-x}$, and putting those in the differential equation gives $Ce^{-x} + 2Ce^{-x} + 5Ce^{-x} = 4e^{-x}$, from which we get 8C = 4 and so $C = \frac{1}{2}$. Hence the general solution to the real equation is $y(x) = e^x(C_1 \cos 2x + C_2 \sin 2x) + \frac{1}{2}e^{-x}$.

Now we use the initial conditions. We have $y(0) = C_1 + \frac{1}{2}$, and y(0) = 1, so $C_1 = \frac{1}{2}$. We get $y'(x) = e^x(C_1 \cos 2x + C_2 \sin 2x) + e^x(-2C_1 \cos 2x + 2C_2 \cos 2x) - \frac{1}{2}e^{-x}$, so $y'(0) = C_1 + 2C_2 - \frac{1}{2}$, and since $y'(0) = -\frac{1}{2}$ we get the equation $C_1 + 2C_2 - \frac{1}{2} = -\frac{1}{2}$. Solving for C_2 (we already know C_1) we get $C_2 = -\frac{1}{4}$. Hence the solution is $y(x) = e^x(\frac{1}{2}\cos 2x - \frac{1}{4}\sin 2x) + \frac{1}{2}e^{-x}$.

Solve the following differential equations:

 $1. \ e^x \frac{dy}{dx} + 2e^x y = 1$

Multiply by e^{-x} to get $\frac{dy}{dx} + 2y = e^{-x}$. This is first order linear with P(x) = 2 and $Q(x) = e^{-x}$. Then the integrating factor $\rho = e^{\left(\int P(x)dx\right)}$ is e^{2x} , so the solution can be written as $y = e^{-2x} \int e^{2x} e^{-x} dx = e^{-2x} \int e^x dx = e^{-2x} (e^x + C)$. This can be slightly simplified as $y(x) = e^{-x} + Ce^{-2x}$.

2. $x\frac{dy}{dx} + 3y = \frac{\sin x}{x^2}$

Divide by x to put this in the form $\frac{dy}{dx} + \frac{3}{x}y = \frac{\sin x}{x^3}$. This is first order linear with $P(x) = \frac{3}{x}$ and $Q(x) = \frac{\sin x}{x^3}$. We get $y = \frac{1}{x^3} \int x^3 \frac{\sin x}{x^3} dx = \frac{1}{x^3} \int \sin x \, dx = \frac{1}{x^3} (-\cos x + C) = -\frac{\cos x}{x^3} + \frac{C}{x^3}$. 3. $(x-1)^3 \frac{dy}{dx} + 4(x-1)^2 y = x+1$

After dividing by $(x-1)^3$ we get $\frac{dy}{dx} + \frac{4}{x-1}y = \frac{x+1}{(x-1)^3}$ which is first order linear in standard form. The integrating factor $\rho(x)$ works out to be $(x-1)^4$ so we get $y = \frac{1}{(x-1)^4} \int (x-1)(x+1)dx = \frac{1}{(x-1)^4} \int (x^2-1)dx = \frac{1}{(x-1)^4} \left(\frac{x^3}{3} - x + C\right).$

4.
$$\frac{d^2y}{dx^2} + y = \cos x$$

The homogeneous equation y'' + y = 0 has characteristic roots $r = \pm i$ and solutions $C_1 \cos x + C_2 \sin x$. The right hand side of the real equation, $\cos x$, is of the form $\cos kx$ where k = 1. Since 1 *i* is a root of the characteristic equation we use $y_p = Ax \cos x + Bx \sin x$. Then $y'_p = A \cos x - Ax \sin x + B \sin x + Bx \cos x$ and $y''_p = -Ax \cos x - Bx \sin x + 2B \cos x - 2A \sin x$. Putting these into the differential equation we get $-Ax \cos x - Bx \sin x + 2B \cos x - 2A \sin x + Ax \cos x + Bx \sin x = \cos x$. From this we can read off that A = 0 and 2B = 1, so $B = \frac{1}{2}$. Thus the solution is $C_1 \cos x + C_2 \sin x + \frac{1}{2}x \sin x$.

5.
$$\frac{d^2y}{dx^2} - \frac{dy}{dx} = \sin x$$

The characteristic equation $r^2 - r = 0$ for the homogeneous equation has roots r = 0 and r = 1. Using the fact that $e^{0x} = 1$ we get the general solution to the homogeneous equation as $y_h = C_1 + C_2 e^x$.

The right hand side of the non-homogeneous equation, $\sin x$, is of the form $\sin kx$ where k = 1. While 1 is a root of the characteristic equation, *i*1 is not, so we use $y_p = A\cos x + B\sin x$. Then $y'_p = -A\cos x + B\sin x$ and $y''_p = -A\cos x - B\sin x$. In the differential equation these give us $-A\cos x - B\sin x + A\sin x - B\cos x = \sin x$, or $-(A+B)\cos x + (A-B)\sin x = \sin x$. Thus A + B = 0 and A - B = 1, from which we get $A = \frac{1}{2}$ and $B = -\frac{1}{2}$. The solution is $y(x) = C_1 + C_2 e^x + \frac{1}{2}\cos x - \frac{1}{2}\sin x$.

6.
$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 20\cos x$$

Solving the homogeneous version of the equation we find characteristic roots r = 2 and r = -1, so $y_h = C_1 e^{2x} + C_2 e^{-1}$.

Since the right hand side $20 \cos x$ is a multiple of $\cos kx$ where k = 1 and 1i is not a root of the characteristic equation, we use $y_p = A \cos x + B \sin x$. Taking derivatives and plugging into the original equation we get $-A \cos x - B \sin x + A \sin x - B \sin x - 2A \cos x - 2B \sin x = 20 \cos x$ which simplifies to $(-3A - B) \cos x + (A - 3B) \sin x = 20 \cos x$. Solving -3A - B = 20 and A - 3B = 0 we get A = -6 and B = -2. Putting the pieces together gives $C_1 e^{2x} + C_2 e^{-x} - 6 \cos x - 2 \sin x$ as the solution.