Information Theory and Phylogenetic trees

MATH 833 - Fall 2012

Presenter: Daniel Pimentel

1 Introduction

Consider transmitting symbols from an alphabet $\mathcal{A} := \{1, ..., k\}$ over a noisy *d*-ary tree $T = \{V, E\}$ from its root ρ to its nodes $v \in V$ over the i.i.d. channels (edges) $e \in E$ with transition probabilities given by the $k \times k$ matrix **M**. That is, for any $v \in V$ parent of $w \in V$.

$$\mathbf{M}_{i,j} := \mathbb{P}(\sigma(w) = j | \sigma(v) = i),$$

where $\sigma(v)$ denotes the symbol observed at node v.

Let L_{ℓ} denote the set of all the nodes in V at level ℓ . We are interested on determining whether or not we can estimate $\sigma(\rho)$ from $\sigma(L_{\ell})$ for some ℓ . Specifically, we are interested in knowing whether or not the reconstruction problem is *solvable*, i.e. if there exist $i, j \in A$ s.t.

$$\lim_{n \to \infty} |\mathbb{P}(\sigma(L_n)|\sigma(\rho) = i) - \mathbb{P}(\sigma(L_n)|\sigma(\rho) = j)| > 0$$

Intuitively, this condition would imply that in the limit, we would be able to make a sensible decision about which symbol was most likely sent at the root.

2 Mossel's Approach

In [1], Mossel is particularly interested in determining solvability by analyzing the second largest eigenvalue of \mathbf{M} , λ_2 . It is known that reconstruction is possible if $d\lambda_2^2 > 1$; he now shows that under certain conditions the reconstruction is also possible even if $d\lambda_2^2 < 1$, in particular for the cases of the binary asymmetric channel (Figure 1) and the symmetric channel on q symbols. This can be summarized in the following theorem.

Main Result. Consider the asymmetric binary channel in Figure 1. Suppose that $0 \le \lambda \le 1$ and $d\lambda \ge 1$; then there exists a $\delta \ge 0$ s.t. if λ is the second largest eigenvalue of M and $\delta_1 < \delta$, then the reconstruction problem is solvable for the *d*-ary tree and the channel determined by M.

Figure 1: Binay Asymmetric Channel

Sketch of the proof

Several lemmas about ℓ -diluted b-regular trees, λ -percolations, and components¹ (Figure 2) are used, but fundamentally all are based on one:

Lemma 7. Let T be a d-ary tree, with percolation parameter² $0 \le \lambda \le 1$ such that $d\lambda > 1$. There exists a number $\epsilon > 0$ such that, for all b, there exists a number ℓ s.t.

$$\mathbb{P}(|\mathscr{C}(\rho) \cap L_{\ell}| \ge b) \ge \epsilon.$$

SKETCH OF THE PROOF. The condition that $d\lambda > 1$ is equivalent to $\lambda > 1/d$. Since λ is the percolation parameter of T, we get that on average, more than 1/d of all the edges will be open. Since at level ℓ we have d^{ℓ} edges, we only need to find the right ℓ for which $\frac{1}{d}d^{\ell} \ge b$.

Figure 2: A *d*-ary tree *T*, where ρ is its root, each edge is an i.i.d. channel characterized by **M**, and blue edges are open. Red vertices represent $\mathscr{C}(\rho)$, and the subtree *T'* formed by the vertices marked with \circ is an ℓ -diluted *b*-regular open tree with $\ell = 1$ and b = 2

References

[1] Mossel, E. (2001). Reconstruction on trees: beating the second eigenvalue. *The Annals of Applied Probability*, Vol. 11, No. 1, 285-300.

 $^{{}^{1}\}mathscr{C}(v)$:=The set of all the vertices in V connected to v by a path of open edges.

²A percolation parameter on a tree is the i.i.d. probability that an edge is open. An edge connecting v and w is open if $\sigma(v) = \sigma(w)$