Waiting Time for the Occurrence of a Pattern

MATH285K - Spring 2010 *Presenter: Pejman Mahboubi*

Let Z be a discrete random variable. Let Σ the set of all values of Z. Let ${Z_n}_{n=1}^{\infty}$ be a sequence of iid random variables with distribution as Z.

Let A and B to finite sequences over Σ , such that B is not a connected subsequence of A. Define

 $N_B = \min\{k : B \text{ is a connected subsequence of } (Z_1, \dots, Z_k)\},\$

Then N_B is a stopping times. The goal is to fine EN_B and EN_{AB} for a given sequence A.

Notice that since B is finite, and every finite sequence has a positive probability, then $N_B \leq G$, for some geometric random variable. (G for example could be the smallest *n*, such that Z_{nk} , Z_{nk+1} , \cdots , $Z_{(n+1)k-1}$ matches the pattern we want.

Example 1 Let a die, which shows x, y and z with respective probabilities $\frac{1}{2}, \frac{1}{3}$ $\frac{1}{3}$, and $\frac{1}{6}$ *be rolled repeatedly. Let B be the sequence* (x, z, x) *. Compute* N_B *.* Solution :

We introduce the following fair game. A gambler bets 1 dollar. At the first roll if x *appears, he receives* 2 *dollars (including his bet) and must parlay the 2 dollars on the occurrence of* z *at the second roll. If he wins, he receives 12 dollars and must parlay the whole amount of 12 dollars on the occurrence of* x *at the third roll. If he wins three times in a row, he receives 24 dollars and the game is over.*

Now suppose that, before each roll, a new gambler joins the game and starts betting 1 dollar on the same sequence B*. We continue the game until the first person wins. For example if the rolls turn out to be* $(y, x, x, z, y, x, x, z, x)$ *, then we have* 9 *participants. The gambler 7 wins 24, and the gambler 9 wins 2 dollars. Since this game is a martingale, then the sequence of the participants gain* $\{X_{N_B \wedge n}\}$ *forms a martingale. Therefore*

$$
EX_{N_B \wedge n} = 0
$$

We will argue that

$$
EX_N = \lim_{N \to \infty} EX_{N \wedge n} = 0 \tag{1}
$$

Equation(1) will let us to calculate EN . This is because of the following relation between the net gain X of the participants and N_B . Given $N_B = n$, then all

n participants except for $n - 2$ th who wins 24 and nth who wins 2 dollars, the rest of n participants lose 1 dollar, therefore

$$
0 = EX = E(E(X|N)) = E[24 + 2 - (N_B)]
$$

Therefore

$$
EN=26
$$

In General we can design a fair game by defining the random net gain of the j th gambler at the time k as

$$
M_k^{(j)} = \begin{cases} 0 & \text{if } k < j \\ \frac{1}{P(Z=b_1)\cdots P(Z=b_{k-j+1})} - 1 & \text{if } k - j + 1 \text{ terms in } \omega_k \text{ are indential with } b_1, \cdots, b_{k-j+1} \\ -1 & \text{otherwise} \end{cases}
$$

where ω_k denote the sequence (Z_1, \dots, Z_k) . Therefore if add the net gain for the all participants we get

$$
\sum_{j=1}^{\infty} M_k^{(j)} = \sum_{j=1}^k M_k^{(j)} = \omega_k * B - k
$$
 (2)

where $\omega_k * B$ is define as follows

Definition 1 Let $A = (a_1, \dots, a_m)$ and $B = (b_1, \dots, b_n)$ be a sequence over Σ . *For every pair* (i, j) *of integers, write*

$$
\delta_{ij} = \begin{cases} P(Z = b_j)^{-1} & \text{if } 1 \le i \le m, \ 0 \le j \le n, \text{ and } a_i = bj \\ 0 & \text{otherwise} \end{cases}
$$

and define

$$
A * B = \delta_{11}\delta_{22}\cdots\delta_{mm} + \delta_{21}\delta_{32}\cdots\delta_{m,m-1} + \delta_{m1}
$$

Lemma 1 *Given a starting sequence* B*, the expected waiting time for a sequence B* is $EN_B = B * B$. *Proof. Define* $X_k = \omega_k * B - k$ *. Then by* (2)

$$
\{X_{k\wedge N_B}\}_{k=0,1,2,\cdots}
$$

is a martingale. Let $k \rightarrow \infty$ *, to get*

$$
X_{N_B} = B * B - N_B
$$

Since $EX_{N_B} \leq B*B - N_E B < \infty$, and on the set $\{N_B > k \text{ we have } |X_k| \leq k \}$ $B * B + N_B$ *Then* $EN_B = B * B$.

Let A_1, \dots, A_n be sequences over Σ . For each i, we want to calculate the probability that A_i precedes all the remaining $n-1$ sequences in a realization of the process Z_1, Z_2, \cdots . Naturally we assume that none of the sequences contain any other as a connected subsequence. Write N_i for N_{A_i} . Let N be the minimum among N_1, \dots, N_n . We want to compute $P(N = N_j)$ for each j.

Theorem 1 Let Z, Z_1, Z_2, \cdots be discrete iid random variables and A_1, \cdots, A_n *be finite sequences of possible values of* Z *not containing one another. Let* A *be* another such sequence not containing any A_i . Let p_i be the probability that A_i *precedes the remaining* $n - 1$ *sequences in a realization of the process* Z_1, Z_2, \cdots *The for every* i*,*

$$
\sum_{j=1}^{n} p_j A_j * A_i = EN,
$$

where N *is the stopping time when any* A_j *'s occurs.*