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1 Introduction

In biology and bioinformatics, it is often necessary to identify homologous sites
in two or more molecular sequences of DNA or amino acid residues. There exist
many deterministic, probablistic, and heuristic methods for finding a gapless align-
ment that achieves a good match given a sceme for giving each alignment a score.
Choosing a “good” alignment depends on a probablistic interpretation of the se-
rial scoring process. To conduct a statistical test of significance, it is necessary to
determine the (asymptotic) distribution of alignment scores under a null model.

2 The Main Result

Suppose two aligned sequences give rise to an independent score Xi at each site i
with E(X) < 0 and Pr(X > 0) > 0. Let Sm =

∑m
i=1Xi with S0 = 0, and note

that S has negative drift. Additionally let

M(n) = sup
0≤k<l≤n

(Sl − Sk) = sup
0≤k<l≤n

l∑
j=k

Xj

be the maximum segmental score. Define the stopping timesK0 = 0 and generally
Kν = min{k ≥ Kν−1 + 1, Sk − SKν−1 ≤ 0}, with ν = 1, 2, . . .. Kν is called
a ladder point. Since the process Sm has negative drift, the random variables Kν

are finite-valued. Further define the stopping times

Tν(y) = inf{k : k > Kν−1 s.t. either Sk − SKν−1 ≤ 0 or Sk − SKν−1 ≥ y}

for y > 0, so Tν(y) is the time of first exit from the interval (0, y) since Kν−1.
The interval (Kν−1, Tν(y)) is called a y-excursion. Let Lν(y) = Tν(y) −Kν−1
be the length of the νth y-excursion. Let It(y) = 1 if at time t, Sk − SKν−1 ≥ y
be the indicator that an excursion attains height y or more. We seek to characterize
the asymptotic distribution of Lv(y) for large y-excursions during the epoch of the
maximal M(n)-excursion.
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Theorem 1.
Lν(y)

y
→ 1

w∗

almost surely as y → ∞, where w∗ = E(Xeθ∗X), and θ∗ is the unique positive
root of the equation E(eθX) = 1.

The proof is very long, so we present a rough sketch. First, there is a unique
θ∗ > 0 satisfying E(eθ∗X) = 1 by the convexity of

∑
Pr(X = x)eθx. Further-

more, w∗ = E(Xeθ∗X) > 0.
Let ψ(θ) = E

(
eθX

)
be the moment-generating function of X . The family of

random variables

Pm =
eθSm

[ψ(θ)]m
, m = 0, 1, . . .

is a Wald martingale [KT75]. Note that this does not mean that S is a martingale.
The optional sampling theorem implies that for m = L,

E[eθSL−L log(ψ(θ))] = E[P1] ≡ 1. (1)

This equation for the expected state of the Wald martingale P at a time L is used to
show that the probability an excursion reaches a height greater than y has roughly
exponential tail decay:

0 < δ ≤ eθ∗y Pr(I(y) = 1) ≤ 1. (2)

Differentiating Eq 1 with respect to θ with θ = θ∗ (recall ψ(θ∗) = 1 and ψ′(θ∗) =
w∗) yields

E
[
(SL − w∗L)eθ

∗SL
]
= 0

and differentiating again gives

E
[
(SL − w∗L)2eθ

∗SL
]
=

d

dθ

[
ψ(θ)

ψ′(θ)

]
θ∗
E[Leθ

∗SL ]

These yield the sum of expectations conditional on whether the walk is greater than
y,

w∗E
[
Leθ

∗SL
]
= eθ

∗y Pr(I(y) = 1)E
[
SLe

θ∗(SL−y)
∣∣∣ I(y) = 1

]
+Pr(I(y) = 0)E

[
SLe

θ∗SL
∣∣∣ I(y) = 0

] (3)

Applying Eq 2, we obtain

E[(SL − w∗L)2eθ
∗SL ] = O(y) (4)
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and
E[S2

Le
θ∗SL ] = O(y2)

Expanding the square in Eq 4 and applying Eq 2, we eventually arive at

E
[
(SL − w∗L)4eθ

∗(SL−y)
∣∣∣ I(y) = 1

]
= O(y2) (5)

and substituting SL = y, we get

E
[
(y − w∗L(y))4

∣∣ I(y) = 1
]
= O(y2) (6)

Let τν(n) be the νth time at which the process Sk starting at κν(y) first departs
from (0, y). Then τν(y) − κν(y) has the distribution of L(y)|{I(y) = 1}. Then
rearranging terms in Eq 6, we find that

E

[(
τj(n)− κj(n)

n
− 1

w∗

)4
]
≤ C

n2
(7)

Now consider the event that the quantity in parenthesis above is greater than ε.
Applying Markov’s inequality to Eq 7, we have for every ε > 0 and some Cε <∞,

∞∑
n=1

[A log(n)]∑
j=1

Pr

(∣∣∣∣τj(n)− κj(n)n
− 1

w∗

∣∣∣∣ > ε

)
≤ CεA

∞∑
n=1

log n

n
<∞. (8)

Then since this sum is finite, by the Borel-Cantelli lemma,

lim
n→∞

max
j

∣∣∣∣τj(n)− κj(n)n
− 1

w∗

∣∣∣∣ = 0 almost surely. (9)

Replacing τν(n)− κν(n) by Ln(y) completes the proof.

3 An Application

Suppose two sequences A and B are aligned so that the letter Ai is regarded as
homologous to the letter Bi for all i. The sequences A and B are realizations of
iid variables taking values in some set, such as C = {A,G,C, T}. Under our
null model, the probability of observing letters a and b in the two sequences is
Pr(Ai = a,Bi = b) = papb. Let Xi = X(Ai = a,Bi = b) = sab be the score at
site i. We stipulate that mismatches have a negative score so that there is negative
drift in the scoring process:

E(X) =
∑
{a,b}

sabpapb < 0
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but positive scores are possible: Pr(X > 0) > 0. We define the partial sum of the
scores as

Sm =
m∑
i=1

X(Ai, Bi)

In the diagram below, two aligned sequences provide a realization of the walk S.
It reaches the ladder point Kν−1 at the C/T site and climbs beyond y, shown
as a horizontal line. Vertical lines identify the matching sites which contribute a
positive score. Tν(y) is the C/C match where S reaches y.
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Theorem 1 applies directly to the quantities introduced above. This, along with
other results relating to the asymptotic distribution of maxima can be used to de-
rive the asymptotic distribution function ofM(n) for use in statistical tests of align-
ments.
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