Genealogical Interpretation of PCA - Gil McVean

MATH285K - Spring 2010 *Presenter: Darren Kessner*

1 Genotype Matrix

zero-center the rows \Rightarrow normalized matrix X

$$
X_{si} = Z_{si} - \frac{1}{n} \sum_{j=1}^{n} Z_{si}
$$

2 Principal Components Analysis (PCA)

direction of maximum variance $\hat{\psi}$ maximize $|X^t v|$ on $|v| = 1$ \mathcal{I} maximize $v^t X X^t v$ on $v^t v = 1$ \updownarrow $XX^tv = \lambda v$ $\hat{\mathbb{I}}$ find eigenvectors of XX^t

3 PCA and Singular Value Decomposition (SVD)

In practice,

of SNPs
$$
\approx 500,000
$$

of individuals ≈ 1000

So XX^t is really big. Instead, calculate eigenvectors V of X^tX :

$$
X^tX=V\Lambda V^t
$$

Letting $\Sigma = \Lambda^{1/2}$ and $U = XV\Sigma^{-1}$ gives us the SVD of X:

$$
X = U\Sigma V^t
$$

Then the columns of U are eigenvectors of XX^t :

$$
XX^{t} = (U\Sigma V^{t})(V\Sigma U^{t})
$$

$$
= U\Lambda U^{t}
$$

4 Kinship Matrix and Pairwise Coalescence Times

The entries in the matrix X^tX can be seen as the degree of relatedness, or *kinship* between individuals.

$$
M = \frac{1}{L} X^t X
$$

$$
E(M_{ij}) = \frac{1}{L} \sum_{s=1}^{L} E(X_{si} X_{sj})
$$

= $\frac{1}{L} \sum_{s=1}^{L} E[(Z_{si} - \bar{Z}_s)(Z_{sj} - \bar{Z}_s)]$
= $E(Z_i Z_j) - E_k(Z_i Z_k) - E_k(Z_j Z_k) + E_{kl}(Z_k Z_l)$
:
= $\frac{1}{\bar{T}}(\bar{t}_i + \bar{t}_j - \bar{t} - \bar{t}_{ij})$

The expectation $E(Z_i Z_j)$ can be considered to be the probability that i and j both share the derived allele at some locus. This happens when a mutation occurs on the branch that i and j share before splitting apart. Hence,

$$
E(Z_i Z_j) = \frac{E(T_{MRCA}) - E(t_{ij})}{E(T)}
$$

where $E(T)$ is the expected total branch length of the coalescence tree.

The main result is that the expected kinship matrix can be expressed in terms of expected coalescence times.

5 Example: Two Populations

We consider the example of two populations A and B, with proportions ϕ and $1 - \phi$ of the samples, respectively. We suppose that the two populations have been separated for time Δ .

We can calculate the expected coalescence times, e.g.:

$$
\bar{t}_{ij} = \begin{cases}\n0 & \text{if } i = j \\
1 & \text{if } i, j \text{ in same population} \\
1 + \Delta & \text{if } i, j \text{ in different populations}\n\end{cases}
$$

$$
\bar{t}_i = \begin{cases} \phi + (1 - \phi)(1 + \Delta) & \text{if } i \text{ in population A} \\ (1 - \phi) + \phi(1 + \Delta) & \text{if } i \text{ in population B} \end{cases}
$$

$$
\bar{t} = [\phi^2 + (1 - \phi)^2] + (1 + \Delta)[2\phi(1 - \phi)]
$$

In this case, the kinship matrix has a block structure.

$$
E(M) \approx \frac{1}{T} \left[\begin{array}{ccc|ccc} 1+\alpha & \alpha & -\sqrt{\alpha\beta} & -\sqrt{\alpha\beta} \\ \alpha & 1+\alpha & -\sqrt{\alpha\beta} & -\sqrt{\alpha\beta} \\ \hline -\sqrt{\alpha\beta} & -\sqrt{\alpha\beta} & 1+\beta & \beta \\ -\sqrt{\alpha\beta} & -\sqrt{\alpha\beta} & \beta & 1+\beta \end{array} \right]
$$

The expected projections of individuals onto the first principal component can then be expressed in terms of ϕ .

Genealogical Interpretation of PCA - Gil McVean 4

6 Admixture

Admixture is the mixing of two populations that have been isolated for some amount of time.

We consider an admixed individual – in this case, we can express the individual's expected projection onto the first principal component in terms of coalescence times, and with some more algebra, in terms of the admixture proportion θ_j of the individual's genome.

Expected projection of individual j on $PC1$:

$$
E(y_{1j}) = \sqrt{\frac{1}{c\bar{T}}} \left[\bar{t}_{jB} - \bar{t}_{jA} + \frac{1}{2} \left(t_{AA} - t_{BB} + (1 - 2\phi) c \right) \right]
$$

$$
= \sqrt{\frac{c}{\bar{T}}} \left(\theta_j - \phi \right)
$$

where $c = 2t_{AB} - t_{AA} - t_{BB}$

The final formula is obtained by calculating coalescence times based on ancestry proportion:

$$
t_{jA} = \theta_j t_{AA} + (1 - \theta_j) t_{AB}
$$

$$
t_{jB} = \theta_j t_{AB} + (1 - \theta_j) t_{BB}
$$

References

- [1] McVean G (2009) A Genealogical Interpretation of Principal Components Analysis. PLoS Genet 5(10): e1000686.
- [2] Novembre et al. (2008) Genes mirror geography within Europe. Nature 456: 98-101.