Lecture 8 : Tree-metric theorem

MATH285K - Spring 2010

Lecturer: Sebastien Roch

References: [SS03, Chapter 7]

Previous class

DEF 8.1 (Four-point condition) A dissimilarity map δ satisifies that four-point condition (4PC) if for all $x, y, w, z \in X$ (not necessarily distinct)

$$\delta(w, x) + \delta(y, z) \le \max\{\delta(w, y) + \delta(x, z), \delta(w, z) + \delta(x, y)\}.$$
(1)

DEF 8.2 (Ultrametric) A dissimilarity map δ on X is an ultrametric if for every three distinct $x, y, z \in X$,

$$\delta(x, y) \le \max\{\delta(x, z), \delta(y, z)\}.$$
(2)

DEF 8.3 (Gromov Product) Let δ be a dissimilarity map on X and fix $r \in X$. The Gromov product of x and y in $X \setminus \{r\}$ is

$$\delta_r(x,y) = \begin{cases} \frac{1}{2} (\delta(x,y) - \delta(r,x) - \delta(r,y)) & x \neq y \\ 0 & o.w. \end{cases}$$
(3)

LEM 8.4 A nonnegative dissmilarity map δ satisfies the 4PC if and only if δ_r is an ultrametric for all $r \in X$.

We prove the nontrivial direction of the Tree-Metric Theorem:

THM 8.5 (Tree-Metric Theorem) Let δ be a nonnegative dissimilarity map. Then, δ is a tree metric if and only if δ satisfies the 4PC.

1 Equidistant Representation

We begin with a result about ultrametrics.

DEF 8.6 (Equidistant Representation) Let δ be a dissimilarity map on X. An equidistant representation of δ is a rooted phylogenetic tree $T = (T, \phi)$ with T = (V, E) and root ρ , and an edge weight function $w : E \to \mathbb{R}$ such that:

1. For all $x, y \in X$

$$d_{T,w}(\rho,\phi(x)) = d_{T,w}(\rho,\phi(y)).$$

(By definition of a path metric, the equality then holds with ρ replaced with $u \in V$ as long as $u \leq_T \phi(x), \phi(y)$, that is, u is a common ancestor of $\phi(x)$ and $\phi(y)$.)

2. If $u \leq_T v \leq_T \phi(x)$ for $u, v \in \mathring{V}$ and $x \in X$ then

 $d_{T,w}(\phi(x), v) \le d_{T,w}(\phi(x), u).$

(In particular, all interior edge weights are non-negative.)

It is straighforward to check that a dissimilarity map admitting an equidistant representation is an ultrametric. There is also a converse:

THM 8.7 If δ is an ultrametric on X, then it has an equidistant representation.

Proof: The proof is based on a simple reconstruction algorithm.

DEF 8.8 (Cherry) A cherry is a pair of leaves (u, v) with a common neighbour.

Let δ be an ultrametric on X. Consider the following recursive procedure:

function EQUIDISTANT

Input: Dissimilarity map δ on *X*

Output: Equidistant representation (\mathcal{T}, w) of δ

- If |X| = 2, return a cherry with edge weights $\frac{1}{2}\delta(a, b)$.
- Otherwise:
 - * Find $a, b \in X$ minimizing $\delta(a, b)$.
 - * Set $\delta^{(ab)}$ to be δ restricted to $X \setminus \{b\}$.
 - * Compute $(\mathcal{T}^{(ab)}, w^{(ab)}) = \text{EQUIDISTANT}(\delta^{(ab)}).$
 - * Let $l^{(ab)} = \phi^{(ab)}(a)$. Let \mathcal{T} be $\mathcal{T}^{(ab)}$ where $l^{(ab)}$ is replaced with a new cherry (l_a, l_b) with $l_a = \phi(a)$ and $l_b = \phi(b)$ and edge weights $\frac{1}{2}\delta(a, b)$. Let $e^{(ab)}$ be the edge adjacent to $\phi^{(ab)}(a)$ in $\mathcal{T}^{(ab)}$. Let \mathring{e} be interior edge of \mathcal{T} adjacent to the common neighbour of l_a and l_b . Set $w_{\mathring{e}} = w_{e^{(ab)}} - \frac{1}{2}\delta(a, b)$.

* Return
$$(\mathcal{T}, w)$$
.

The correctness of this procedure follows by induction on $|X| \ge 2$. The case |X| = 2 is trivial. Assume the reconstruction is correct for |X| - 1. The choice of a, b above guarantees that

$$\delta(a,b) \le \delta(a,x) = \delta(b,x)$$

for all $x \in X \setminus \{a, b\}$ and $w_{e} \geq 0$.

2 **Proof of Tree-Metric Theorem**

Proof:(of Theorem 8.5) Choose $r \in X$. Since δ satisfies the 4PC, δ_r is an ultrametric on $X' = X \setminus \{r\}$ and there exists an equidistant representation (\mathcal{T}', w') of δ_r with $\mathcal{T}' = (T', \phi')$ and root ρ' . Define

$$p = -d_{T',w'}(\rho',\phi'(x)),$$

which is independent of $x \in X'$.

To obtain a tree metric representation (\mathcal{T}, w) of δ , we add a leaf edge e_r to ρ' with a new leaf r. Guided by the formula

$$\delta(x, y) = \delta(r, x) + \delta(r, y) + 2\delta_r(x, y),$$

for $r \notin \{x, y\}$, we set

$$w_e = \begin{cases} 2w'_e & \text{if } e \in \mathring{E}(T') \\ 2w'_e + \delta(r, x) & \text{if } e = \{\phi'(x), u\} \text{ for some } u \in V(T') \text{ and } x \in X' \\ 2p & \text{if } e = e_r. \end{cases}$$
(4)

The choice of w_{e_r} in (4) is justified by

$$d_{T,w}(x,r) = 2p + 2d_{T',w'}(\phi'(x),\rho') + \delta(r,x) = \delta(r,x).$$

To see that the weights in (4) are non-negative, note that, since δ satisfies the 4PC, it satisfies the triangle inequality so

$$\delta_r(x,y) = \frac{1}{2}(\delta(x,y) - \delta(r,x) - \delta(r,y)) \le 0.$$

Hence, taking $x, y \in X'$ such that the path between $\phi'(x)$ and $\phi'(y)$ goes through ρ' in T', we have

$$2p = -\delta_r(x, y) \ge 0.$$

Similarly, since δ satisfies the triangle inequality, leaf edges in any tree metric representation of δ must have non-negative weight (see the proof of the Uniqueness of Tree Representation Theorem). Finally, by definition of an equidistant representation, $w'(e) \geq 0$ for $e \in \mathring{E}(T')$.

Contracting zero-weight edges, we obtain a tree metric representation with positive edge weights.

Further reading

The definitions and results discussed here were taken from Chapter 7 of [SS03]. Much more on the subject can be found in that excellent monograph. See also [SS03] for the relevant bibliographic references.

References

[SS03] Charles Semple and Mike Steel. *Phylogenetics*, volume 24 of *Oxford Lecture Series in Mathematics and its Applications*. Oxford University Press, Oxford, 2003.