Lecture 6 : Quartet Theorem

MATH285K - Spring 2010 *Lecturer: Sebastien Roch*

References: [SS03, Chapter 6]

Previous class

DEF 6.1 (Refinement) Let $\mathcal{P}(X)$ be the set of X-trees. For $\mathcal{T}, \mathcal{T}' \in \mathcal{P}(X)$, we *write* $\mathcal{T} \leq \mathcal{T}'$ *when* $\Sigma(\mathcal{T}) \subseteq \Sigma(\mathcal{T}')$ *and we say that* \mathcal{T}' *refines* \mathcal{T} *.*

It can be checked that $(\mathcal{P}(X), \leq)$ is a partial order. (Recall that a partial order on a set S is a relation \leq such that for all $x, y, z \in S$:

- 1. (Reflexivity) $x \leq x$.
- 2. (Antisymmetry) If $x \leq y$ and $y \leq x$ then $x = y$.
- 3. (Transitivity) If $x \leq y$ and $y \leq z$ then $x \leq z$.)

1 Restricted subtrees

Here, an X-tree is also called a *semi-labelled tree*. If two X-trees T , T' are isomorphic, we write $T \cong T'$.

DEF 6.2 (Restricted subtree) *Let* T *be an* X -tree and $X' \subseteq X$ *. The* restriction $\mathcal T$ to X' , denoted $\mathcal T | X'$, is the X' -tree such that

$$
\Sigma(\mathcal{T}|X') = \{A \cap X'|B \cap X' : A|B \in \Sigma(\mathcal{T})\}.
$$

 $T|X'$ is obtained from $T = (T, \phi)$ by taking the minimal subtree of T including $\phi(X')$ and suppressing degree-two vertices not in $\phi(X')$.

DEF 6.3 (Displaying a semi-labelled tree) *Let* $X' \subseteq X$ *. An* X-tree T displays *an* X' -tree T' if $T' \leq T|X'$. Similarly, T displays a collection P of semi-labelled *tree if it display every tree in* P*.*

2 Quartet theorem

The following theorem indicates that X -trees are characterized by their restricted subtrees on sets of size at most 4.

THM 6.4 (Quartet theorem) Let $\mathcal{T}, \mathcal{T}'$ be X-trees. Then, $\mathcal{T} \cong \mathcal{T}'$ if and only if $\mathcal{T}|S \cong \mathcal{T}'|S$ for all $S \subseteq X$ with $|S| \leq 4$.

Proof: We prove a slightly more general statement:

 $\mathcal{T} \leq \mathcal{T}'$ if and only if $\mathcal{T}|S \leq \mathcal{T}'|S$ for all $S \subseteq X$ with $|S| \leq 4$.

Note that $T \cong T'$ if and only if $T \leq T'$ and $T' \leq T$.

One direction is trivial. We prove the other direction. Assume $T|S \leq T'|S$ for all $S \subseteq X$ with $|S| \leq 4$. Let $A|B \in \Sigma(\mathcal{T})$. We seek to prove that $A|B \in \Sigma(\mathcal{T}')$. First, note that for all $a, a' \in A$ and $b, b' \in B$, by definition of restriction we have

$$
\{a,a'\}|\{b,b'\}\in\Sigma(\mathcal{T}|\{a,a',b,b'\})\subseteq\Sigma(\mathcal{T}'|\{a,a',b,b'\}),
$$

where the inclusion follows by assumption. We proceed by contradiction. Suppose $A|B$ is not a split of \mathcal{T}' . There are two cases:

- *There is a split* $A'|B'$ *of* T' *incompatible with* $A|B$ *.* Then there is $a \in$ $A \cap A', a' \in A \cap B', b \in B \cap A', b' \in B \cap B'$. But then $\{a, b\} | \{a', b'\} \in$ $\Sigma(T'|\{a, a', b, b'\})$, contradicting the pairwise compatibility of the latter.
- $A|B$ *is compatible with every split in* T' . Recall the following lemma from the proof of the Splits-Equivalence theorem:

LEM 6.5 (Label Painting Lemma) Let $T' = (T', \phi')$ be an X-tree with $T' = (V', E')$. Let $\sigma = A|B$ be an X-split such that $\sigma \notin \Sigma(T')$ but σ *is compatible with all splits in* $\Sigma(T')$ *. Colour red (respectively green) the vertices of* T' in $\phi(A)$ (respectively $\phi(B)$). Then, there is a unique vertex $w \in V'$ such that the connected components of $T' \setminus w$ are monochromatic.

Let w be as in the statement of the lemma. There are three cases:

- 1. w has labels from A and B. Let $a \in \phi^{-1}(w) \cap A$ and $b \in \phi^{-1}(w) \cap B$. Then, $\{a\}|\{b\} \notin \Sigma(T'|\{a,b\})$, a contradiction. (Take $a = a'$ and $b = b'$ above.)
- 2. w has a label from A but not from B (and the symmetric case). Let $a \in$ $\phi^{-1}(w) \cap A$. By the uniqueness of w, there must be $b, b' \in \phi(B)$ in two distinct components of $T'\setminus w$. But then, $\{a\}|\{b, b'\}\notin \Sigma(T'|\{a, b, b'\})$, a contradiction.

3. w *is unlabelled.* Again by the uniqueness of w, there must be $a, a' \in$ $\phi(A)$ (resp. $b, b' \in \phi(B)$) in two distinct components of $\mathcal{T}'\setminus w$. But then, $\{a, a'\}|\{b, b'\} \notin \Sigma(T'|\{a, a', b, b'\})$, a contradiction.

3 Strong Quartet Evidence

We now restrict our attention to phylogenetic trees. Let Σ_X^0 be the set of trivial splits on X (i.e., where one side of the partition is a singleton).

DEF 6.6 (Quartet trees) *A* quartet tree $q = ab|cd$ *is a binary phylogenetic tree on four distinct labels* $\{a, b, c, d\}$ *where* $\{a, b\}$ $\{c, d\}$ *is the corresponding nontrivial split. For an* X-*split* $\sigma = A|B$ *, let*

$$
\mathcal{Q}_{\sigma} = \{aa'|bb': a \neq a' \in A, b \neq b' \in B\}.
$$

For a collection Q *of quartet trees, let*

$$
\Sigma(\mathcal{Q}) = \{\sigma = A | B : \mathcal{Q}_{\sigma} \subseteq \mathcal{Q}\}.
$$

THM 6.7 *Let* Q *be a collection of quartet trees on* X *such that for all* S *with* $|S| = 4$ *at most one quartet tree of* \mathcal{Q} *has label set* S. Then there is a phylogenetic *tree* T *on* X *such that* $\Sigma(Q) \cup \Sigma_X^0 = \Sigma(T)$ *.*

Proof: It suffices to show that $\Sigma(\mathcal{Q})$ is pairwise compatible. We proceed by contradiction. Assume $A_1|B_1, A_2|B_2 \in \Sigma(\mathcal{Q})$ are incompatible. Then there is $a \in A_1 \cap A_2$, $b \in A_1 \cap B_2$, $c \in B_1 | A_2$ and $d \in B_1 \cap B_2$. But then $ab | cd \in \mathcal{Q}$ and $ac|bd \in \mathcal{Q}$, a contradiction.

There is an efficient algorithm for computing $\Sigma(\mathcal{Q}) \cup \Sigma_X^0$ given a collection $\mathcal Q$ satisfying the assumptions of the previous theorem. W.l.o.g. assume $X = [n]$. For $i \in [n]$, let

$$
\mathcal{Q}_{[i]} = \{ab|cd \in \mathcal{Q} \,:\, a, b, c, d \in [i]\},\
$$

and $\Sigma_{[i]} = \Sigma(\mathcal{Q}_{[i]}) \cup \Sigma_{[i]}^0$. The algorithm constructs the tree by adding labels in X one by one. It is based on the following observation:

LEM 6.8 For all nontrivial $\sigma = A|B \in \Sigma_{[i]}$, there is $\sigma' = A'|B' \in \Sigma_{[i-1]}$ such *that either* $\sigma = A' \cup \{i\} | B'$ *or* $\sigma = A' | B' \cup \{i\}$ *.*

Proof: W.l.o.g., assume $i \in A$. If $|A - \{i\}| = 1$, σ' is trivial and we are done. Otherwise, by assumption for all distinct $i \neq a, a' \in A$ and $b, b' \in B$, we have $aa'|bb' \in \mathcal{Q}_{[i]}$ and hence $\in \mathcal{Q}_{[i-1]}.$

Let $\mathcal{Q}_i = \mathcal{Q}_{[i]} \backslash \mathcal{Q}_{[i-1]}$. The algorithm to build $\Sigma_{[n]}$ proceeds as follows:

- *Initialization*. $\Sigma_{[4]}$ is the union of $\Sigma_{[4]}^0$ and the split corresponding to the unique quartet tree in $\mathcal{Q}_{[4]}$ if any.
- *Main loop.* For $i = 5$ to n:
	- $-$ Set $\Sigma_{[i]} = \Sigma_{[i]}^0$.
	- For each $\sigma' = A'|B' \in \Sigma_{[i-1]}$, add $\sigma = A' \cup \{i\}|B'$ to $\Sigma_{[i]}$ if $\mathcal{Q}_{\sigma} \backslash \mathcal{Q}_{\sigma'} \subseteq \mathcal{Q}_i$ and similarly for $\sigma = A'|B' \cup \{i\}.$

Further reading

The definitions and results discussed here were taken from Chapter 6 of [SS03]. Much more on the subject can be found in that excellent monograph. See also [SS03] for the relevant bibliographic references.

References

[SS03] Charles Semple and Mike Steel. *Phylogenetics*, volume 24 of *Oxford Lecture Series in Mathematics and its Applications*. Oxford University Press, Oxford, 2003.