
Lecture 5 : Approximating Maximum Parsimony

MATH285K - Spring 2010 Lecturer: Sebastien Roch

References: [SS03, Chapters 2, 5], [DPV06, Chapters 5, 9]

Previous class

Recall:

THM 5.1 (Complexity of Maximum Parsimony) The search problem correspond-
ing to Maximum Parsimony is NP-complete.

1 Coping with NP-completeness

Local search heuristics. We restrict our attention to the binary phylogenetic
tree case with X = [n]. Fix a metric δ on a character state space C. Recall
that, on a fixed tree T ∈ B(n), the parsimony score `δ(C, T) of a collection
C = {χ1, . . . , χk} of characters on X with |X| = n can be computed efficiently
by dynamic programming. Therefore, a natural heuristic for minimizing the parsi-
mony score of C is to perform a local search on the space of trees. Several defini-
tions of local moves on the space of trees have been considered. A typical example
is as follows:

DEF 5.2 (Nearest-Neighbour Interchange) Let T = (T, φ) ∈ B(n) with T =
(V,E). A nearest-neighbour interchange (NNI) operation is obtained by choosing
an interior edge e = {u, v} ∈ E and two vertices u0 6= v, v0 6= u adjacent
respectively to u, v and interchanging the two subtrees rooted at u0, v0.

THM 5.3 (Tree Space is Connected under NNI) Let T 6= T ′ ∈ B(n). Then T
can be transformed into T ′ by a sequence of NNI operations.

Proof: Because NNI operations are reversible, it suffices to take T ′ to be a cater-
pillar tree on n leaves. The theorem then follows easily from the following lemma.

LEM 5.4 Let T1 6= T2 ∈ B(n) be such that both can be obtained by adding a leaf
edge with label n to T0 ∈ B(n − 1). Then T1 can be transformed into T2 by a
sequence of NNI operations.

1

Lecture 5: Approximating Maximum Parsimony 2

Proof: Let e1 = {u1, v1} (respectively e2 = {u2, v2}) be the edge of T0 on which
leaf edge n is added to obtain T1 (respectively T2). Let v1, . . . , vm be the path
connecting e1 and e2 (without crossing either edge). Let v0 be the neighbour of
leaf n in T1. Then it is easy to see that T2 is obtained from T1 by performing
successively NNI operations around edges {v0, v1}, . . . , {v0, vk}.

Intelligent exhaustive search. See [DPV06] for a discussion of branch-and-
bound algorithms.

Approximation algorithms. Little can be proved about the performance of the
two approaches discussed above—unless one runs them for an exponential amount
of time. In the next sections, we derive an efficient algorithm which is guaranteed
to output a solution whose objective is within a given factor of the optimal solution.
Such an algorithm is called an approximation algorithm.

2 Minimum Spanning Trees

We will need the following definition:

DEF 5.5 (Minimum Spanning Tree (MST)) LetG = (V,E) be a connected graph
with edge weights {we}e∈E . A spanning tree for G is a tree T = (V ′, E′) such
that V ′ = V and E′ ⊆ E. A minimum spanning tree (MST) is a spanning tree
T = (V ′, E′) minimizing

w(T) =
∑
e∈E′

we.

It turns out that MSTs are easy to compute using a so-called greedy approach.
Kruskal’s algorithm works as follows:

• Start with the forest F ∗ = (V,E∗) on V with empty edge set E∗ = ∅.

• Repeat until F ∗ = (V,E∗) is connected:

– Add to F ∗ the lightest edge e in E\E∗ such that e does not create a
cycle in F ∗.

Kruskal’s algorithm is clearly efficient. The correctness of Kruskal’s algorithm
follows immediately from the following lemma:

Lecture 5: Approximating Maximum Parsimony 3

LEM 5.6 (Cut Property) Suppose the edges in Z ⊆ E are part of some MST of
G = (V,E). Let S ⊆ V be such that no edge in Z connects S and V \S. Let e be
the lightest edge connecting S and V \S. Then Z ∪ {e} is part of some MST of G
(not necessarily the same as above).

Proof: By assumption, Z ⊆ E1 for some MST T1 = (V,E1). If e in the statement
is also in E1, there is nothing to prove. Assume e /∈ E1. Since adding e to T1

creates a cycle and e connects S and V \S, there must be another edge e′ in that
same cycle that also connects S and V \S. Replace e′ with e in T1 to obtain T2.
Since T2 is connected and has the same number of edges as T1, it must be a tree.
Also, since we ≤ we′ by construction, we have w(T2) ≤ w(T1) and we are done.

Going back to the analysis of Kruskal’s algorithm, suppose by induction that the
forest F ∗ so far constructed is part of an MST. The next edge chosen e connects
two subtrees of F ∗ (otherwise it would create a cycle), say T ∗1 = (V ∗1 , E

∗
1) and

T ∗2 . Clearly, e is a lightest edge connecting V ∗1 and V \V ∗1 , and the induction goes
through by Lemma 5.6.

3 Approximation

Our main result is the following:

THM 5.7 (Approximating Maximum Parsimony) Let C = {χ1, . . . , χk} be a
collection of characters on X with state space C. Let δ be a metric on C. Let
G = (X,E) be the complete graph on X with edge weights

w{u,v} =
k∑
i=1

δ(χi(u), χi(v)).

If w(C) is the weight of an MST on G then

1
2
w(C) ≤ `δ(C) ≤ w(C).

Proof: Let T ′ be an MST for G. Using the identity labeling map φ′, T = (T ′, φ′)
is an X-tree achieving `δ(C, T) = w(C) and therefore `δ(C) ≤ w(C).

To prove the other direction, let T = (T, φ) be a Maximum Parsimony tree and
assume w.l.o.g. that T is a phylogenetic tree. Let ~T be the directed graph obtained
by replacing each edge of T with two edges in opposite directions. A walk in a
directed graph is a sequence of edges (~e1 = (u1, u2), . . . , ~em = (um−1, um)). A
walk is closed if u1 = um. An Eulerian tour is a closed walk such that each edge
of the graph appears exactly once in the sequence.

Lecture 5: Approximating Maximum Parsimony 4

LEM 5.8 ~T has an Eulerian tour.

Proof: It is well-known that a directed graph whose underlying undirected graph
is connected and such that every vertex has an equal number of ingoing edges
(in-degree) and outgoing edges (out-degree)—such as ~T—has an Eulerian tour.
Indeed, consider the longest walk W = (~e1 = (u1, u2), . . . , ~em = (um−1, um))
such that each edge appears at most once in W . By assumption W cannot be
extended, hence all outgoing edges of um have been used. Since the in-degree and
out-degree of um are equal, it must be that u1 = um so that W is closed. By
connectedness, if W is not Eulerian, there is an edge e not in W but incident to
a vertex visited by W , say u1. Then adding e to W (to the beginning or the end
depending on its orientation) produces a longer path, a contradiction.

We return to the proof of Theorem 5.7. Let W = (~e1 = (u1, u2), . . . , ~em =
(um−1, u1)) be an Eulerian tour of ~T . Let x1, . . . , xn be the elements of X in the
order that their corresponding leaves are first visited by W . (Each leaf is visited
exactly once because it has in-degree and out-degree 1.) The path (x1, x2, . . . , xn)
is a spanning tree of G with weight

w∗ =
n−1∑
j=1

k∑
i=1

δ(χi(xj), χi(xj+1)).

By the triangle inequality, δ(χi(xj), χi(xj+1)) is less than the sum of the weights
on the subwalk ofW between the leaves corresponding to xj and xj+1. Since each
undirected edge of T is visited exactly twice by W , we get finally

w(C) ≤ w∗ ≤ 2
∑
e∈E

we = 2`δ(C, T) = 2`δ(C),

because T is a Maximum Parsimony tree.

Further reading

The definitions and results discussed here were taken from Chapter 5 of [SS03]
and Chapters 5 and 9 of [DPV06].

References

[DPV06] S. Dasgupta, C. Papadimitriou, and U. Vazirani. Algorithms. McGraw-
Hill, 2006.

Lecture 5: Approximating Maximum Parsimony 5

[SS03] Charles Semple and Mike Steel. Phylogenetics, volume 24 of Oxford
Lecture Series in Mathematics and its Applications. Oxford University
Press, Oxford, 2003.

