
Lecture 25 : Fixation in the diffusion limit

MATH285K - Spring 2010 Lecturer: Sebastien Roch

References: [Dur08, Chapter 7], [KT81, Chapter 15].

Previous class

Recall, we consider diffusions defined on a closed interval I = [l, r] that satisfy
the following properties:

• For every ε > 0,

lim
h↓0

1
h

P[|X(t+ h)− x| > ε |X(t) = x] = 0, (1)

for all x ∈ I . (All diffusions satisfy this version of “continuity,” unlike jump
chains for instance.)

• Let ∆hX(t) = X(t+ h)−X(t). For all l < x < r and t ∈ R+,

lim
h↓0

1
h

E[∆hX(t) |X(t) = x] = µ(x), (2)

and
lim
h↓0

1
h

E[(∆hX(t))2 |X(t) = x] = σ2(x), (3)

where µ, the infinitesimal drift (not to be confused with genetic drift), and
σ2, the infinitesimal variance, are continuous functions of x. In particular,
the process is time-homogeneous. Moreover for r = 3, 4, . . .

lim
h↓0

1
h

E[|∆hX(t)|r |X(t) = x] = 0. (4)

• The process is regular, that is, for all x, y in the interior of I

P[T (y) <∞|X(0) = x] > 0, (5)

where T (y) is the hitting time of y, that is, the first time y is reached. (See
e.g. [Dur96, (3.1) in Chapter 6])
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1 Wright-Fisher diffusion model for diploids

We generalize slightly the model we derived in the previous lecture by considering
a diploid population with N individuals. Suppose we have two alleles A and a at
a locus where the genotypes have the following relative fitness (one way to think
about this is that each genotype survives to maturity with the given probability):

AA Aa aa
1− s0 1− s1 1− s2.

Moreover, we have mutations A → a (respectively a → A) with probability µ1

(respectively µ2). Assume the parameters scale with N as

γi = 2Nsi, βi = 2Nµi.

Following [Dur08], we also use the notation δ = γ2 − γ2 and η = 2γ1 − γ0 − γ2.
The infinitesimal drift and variance are enough to characterize the behaviour of

the diffusion limit—except for the boundary conditions which we will discuss in
the next lecture. Denoting the rescaled state by x (frequency ofA), the infinitesimal
drift and variance are given by

µ(x) = [β1(1− x)− β2x] + x(1− x)[δ + ηx], (6)

and
σ2(x) = x(1− x). (7)

The latter comes from the binomial sampling scheme. The first term of (6) re-
flects the mutation pressure and is straightforwardx to interpret. To understand the
second term it is useful to look at examples (where we take β1 = β2 = 0).

EX 25.1 (Additive selection) Here s0 = 0, s1 = s, s2 = 2s and we let γ = 2Ns.
Then

µ(x) = δx(1− x).

EX 25.2 (Balancing selection) Here s1 = 0. Then

µ(x) = x(1− x) [γ2 − (γ0 + γ2)x] = (γ0 + γ2)x(1− x)
[

γ2

γ0 + γ2
− x
]
.

EX 25.3 (Dominant A) Here s0 = s1 = 0, s2 = s and we let γ = 2Ns. Then

µ(x) = x(1− x)[γ − γx] = γx(1− x)2.
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EX 25.4 (Recessive A) This case is symmetric to the previous one. Here s0 = 0,
s1 = s2 = s and γ = 2Ns. Then

µ(x) = γx2(1− x).

See [Dur08, Figure 7.1] for an illustration of the mean behavior in each case. How-
ever, the variance term cannot in general be ignored as it reflects genetic drift, a key
factor in shaping the genetic variation of a population. For instance, a positively
selected allele can be lost due to chance. We now turn to the analysis of this type
of phenomenon.

2 Hitting times

Let l < a < b < r and
T ∗ = min{Ta, Tb},

where Ty the first time y is reached.

Problem Statement. We consider the following two problems. For a < x < b,
we seek to compute

u(x) = P[Tb < Ta |X(0) = x], (8)

and
v(x) = E[T ∗ |X(0) = x]. (9)

Problem Solution. Under the assumptions above, it can be shown that u and v
are bounded and twice continuously differentiable. Moreover, they satisfy

0 = Lu, u(a) = 0, u(b) = 1, (10)

and
−1 = Lu, v(a) = 0, v(b) = 0, (11)

where the infinitesimal generator is

Lf(x) = µ(x)f ′(x) +
1
2
σ2(x)f ′′(x). (12)
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Heuristic justification. We give a heuristic argument for the first problem. (The
second one is similar.) Fix a < x < b. By (1), as h ↓ 0 the probability of reaching
a or b in time h is o(h). Hence

u(x) ≈ Ex[u(X(h))] + o(h)
≈ Ex[u(x+ ∆hX)] + o(h)

≈ Ex
[
u(x) + u′(x)∆hX +

1
2
u′′(x)(∆hX)2 + o(∆hX)2

]
+ o(h)

≈ u(x) + µ(x)u′(x)h+
1
2
σ2(x)u′′(x)h+ o(h).

For a formal proof using martingales, see [Dur96, (3.2) and (4.2) in Chapter 6].

3 Solving the equations

To solve an equation of the form

Lf(x) = C,

it useful to let g = f ′ and multiply both sides by an integrating factor w

Cw(x) = µ(x)g(x)w(x) +
1
2
σ2(x)g′(x)w(x)

=
1
2
σ2(x)

[
2µ(x)
σ2(x)

g(x)w(x) + g′(x)w(x)
]

=
1
2
σ2(x)

d
dx

[g(x)w(x)],

where we need

w′(x) =
2µ(x)
σ2(x)

w(x),

that is,

w(x) = exp
(∫ x 2µ(y)

σ2(y)
dy
)
.

Then the solution can be found by integrating twice.
From this argument, it is natural to re-write the equations in the following way.

Let

s(x) = exp
(
−
∫ x 2µ(y)

σ2(y)
dy
)
, S(x) =

∫ x

s(y)dy,

and
m(x) =

1
σ2(x)s(x)

, M(x) =
∫ x

m(y)dy.



Lecture 25: Fixation in the diffusion limit 5

The functions S andm are called the scale function and speed density respectively.
Then we have

Lf(x) =
1
2

1
m(x)

d
dx

[
1

s(x)
d

dx
f(x)

]
=

1
2

d
dM

[
d

dS
f(x)

]
.

To solve the first problem, integrate twice to obtain

u(x) = C1S(x) + C2.

The boundary conditions give

u(x) =
S(x)− S(a)
S(b)− S(a)

=
S[a, x]
S[a, b]

.

Similarly, the solution of the second problem is

v(x) =
∫ b

a
G(x, y)dy,

where

G(x, y) =

{
2S[a,x]S[y,b]

S[a,b] m(y), a ≤ x ≤ y ≤ b,
2S[a,y]S[x,b]

S[a,b] m(y), a ≤ y ≤ x ≤ b,

is the Green function.

4 Applications to the Wright-Fisher diffusion

EX 25.5 (No mutation/selection.) Since µ(x) = 0, we have

s(x) = C1, S(x) = C1x+ C2, m(x) =
1

x(1− x)C1
,

so that

G(x, y) =

{
2x
y , 0 < x < y < 1,
2(1−x)
(1−y) , 0 < y < x < 1,

and

v(x) = 2(1− x)
∫ x

0

1
1− y

dy + 2x
∫ 1

x

1
y

dy

= −2[(1− x) log(1− x) + x log x].
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EX 25.6 (Additive selection) Consider the case with additive selection and no
mutation. Fix 0 < a < x < b < 1. Then

s(x) = exp
(
−
∫ x 2δy(1− y)

y(1− y)
dy
)

= C1e
−2δx,

and
S(x) =

∫ x

C1e
−2δydy = C1e

−2δx + C2.

Hence

u(x) =
e−2δx − e2δa

e−2δb − e−2δa
.

Taking limits a ↓ 0 and b ↑ 1, we have

Px[T1 < T0] =
1− e−2δx

1− e−2δ
≈ 2s,

where the last expression uses x = 1
2N (for a new mutation) and δ large enough.

In comparison, recall that a neutral mutation fixates with probability 1/2N .

EX 25.7 (One-way mutation) Assume β2 = 0, β1 = β and that there is no selec-
tion. Fix 0 < a < x < b < 1. Then

s(x) = exp
(∫ x 2βy

y(1− y)
dy
)

=
C1

(1− x)2β
,

and
S(x) =

∫ x C1

(1− y)2β
dy = C1

1
(1− x)2β−1

+ C2.

Hence

u(x) =
(1− x)−2β+1 − (1− a)−2β+1

(1− b)−2β+1 − (1− a)−2β+1
.

Taking limits a ↓ 0, we have

Px[Tb < T0] =
(1− x)−2β+1 − 1
(1− b)−2β+1 − 1

.

So if 2β ≥ 1, this probability goes to 0 as b → 1. In other words, the mutation
pressure is strong enough that the 1 boundary cannot be attained. For 2β < 1, the
limit is positive.
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Further reading

The material in this section was taken from Chapter 15 of [KT81] and Chapter 7
of [Dur08].
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