
Lecture 23 : Estimating the recombination rate

MATH285K - Spring 2010 Lecturer: Sebastien Roch

References: [Dur08, Chapter 3.2].

Previous class

Recall that for a two-locus recombination process without mutation (the loci are
called a and b):

THM 23.1 (Tree-Length Covariance: Recursion) Let x = (i, j, k) be the initial
state where i (respectively j, and k) is the number of lineages with only a (respec-
tively only b, and both a and b) material ancestral to the samples with na = i+ k,
nb = j + k, and ` = i + j + k. Let F (x) be the covariance of the tree lengths τa
and τb started at x. If X is the state after the first jump. Then

F (x) = Ex[F (X)] +
2k(k − 1)

βx(na − 1)(nb − 1)
,

where

βx =
`(`− 1) + kρ

2
,

and ρ/2 is the recombination rate per lineage.

An application of this theorem to the 2-sample case gives:

THM 23.2 (Covariance: Two-Sample Case) We have

F (0, 0, 2) = 4
ρ+ 18

ρ2 + 13ρ+ 18
,

F (1, 1, 1) = 4
6

ρ2 + 13ρ+ 18
,

and
F (2, 2, 0) = 4

4
ρ2 + 13ρ+ 18

.

(The factor of 4 comes from the difference between coalescence time and tree
length.)
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1 Mutation model

It is not entirely obvious to extend the infinite-sites model to the case with recom-
bination. Indeed, the linear order of the sites is now important. One way to deal
with this is to arrange m infinite-sites loci linearly with mutation rates θ

2m and re-
combination rate ρ

2(m−1) between any two consecutive loci. There is no intra-locus
recombination. We then take a limit m→ +∞.

Our goal in this lecture is to estimate the recombination rate. To do so, we
must also estimate the mutation rate. We describe an approach based on pairwise
differences. Let

∆n ≡
m∑
a=1

∆a
n ≡

1(
n
2

) ∑
{i,j}

∆i,j ≡
m∑
a=1

1(
n
2

) ∑
{i,j}

∆a
i,j ,

where ∆a
i,j is the number of differences between sequences i and j at locus a.

Recall that

E[∆n] = mE
[
∆1
n

]
= m

(
θ

m

)
= θ.

(Recall also that (as proved in [Dur08])

Var
[
∆1
n

]
=
(
θ

m

)
n+ 1

3(n− 1)
+
(
θ

m

)2 2(n2 + n+ 3)
9n(n− 1)

.) (1)

So θπ = ∆n provides an estimate of θ. To estimate ρ, we need a quantity involving
correlations between sites. A natural idea is to consider the sample variance of the
pairwise differences, that is,

S2
π =

1(
n
2

) ∑
{i,j}

(∆i,j −∆n)2.

We will prove the following:

THM 23.3 In the limit m→∞

E[S2
π] = θ

2(n− 2)
3(n− 1)

+ θ2g(ρ, n),

where g is a function given in [Dur08].

Recall that θπ is not a consistent estimator of θ. Hence, to estimate θ2 we use a
corrected version θ2

π. This will follow from:
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THM 23.4 In the limit m→∞,

Var[∆n] = θ
n+ 1

3(n− 1)
+ θ2f(ρ, n),

where

f(ρ, n) =
1(
n
2

) ∫ 1

0
2(1− x)

(ρx) + (2n2 + 2n+ 6)
(ρx)2 + 13(ρx) + 18

dx,

can be computed explicitly (see [Dur08]).

In particular, note that

E[θ2
π] = Var[θπ] + (E[θπ])2 = θ

n+ 1
3(n− 1)

+ θ2(f(ρ, n) + 1).

Hence, an unbiased estimator of θ2 is

γπ(ρ) =
θ2
π − [(n+ 1)/(3(n− 1))]θπ

f(ρ, n) + 1
.

Putting all this together, an estimate of ρ is given by the solution of

S2
π = θπ

2(n− 2)
3(n− 1)

+ γπ(ρ)g(ρ, n).

2 Proofs

We prove the two previous theorems. We begin with the second one.
Proof:(Theorem 23.4) Expanding the variance of ∆n, the first term gives the term
not depending on ρ

Var[∆n] =
m∑
a=1

Var

 1(
n
2

) ∑
{i,j}

∆a
i,j


+
∑
a6=b

Cov

 1(
n
2

) ∑
{i,j}

∆a
i,j ,

1(
n
2

) ∑
{k,`}

∆b
k,`

 ,
and

m∑
a=1

Var

 1(
n
2

) ∑
{i,j}

∆a
i,j

→ θ
n+ 1

3(n− 1)
,
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as m→∞, where we used (1). Rewriting the second term as

∑
a6=b

Cov

 1(
n
2

) ∑
{i,j}

∆a
i,j ,

1(
n
2

) ∑
{k,`}

∆b
k,`

 =
1(
n
2

)2 ∑
a6=b

∑
{i,j}

∑
{k,`}

Cov
[
∆a
i,j ,∆

b
k,`

]
,

we need to compute Cov
[
∆a
i,j ,∆

b
k,`

]
. By conditioning on the tree lengths τai,j of

locus a between i and j and τ bk,`, we get

Cov
[
∆a
i,j ,∆

b
k,`

]
=
(
θ

2m

)2

Cov
[
τai,j , τ

b
k,`

]
.

Let
z = |b− a| ρ

m− 1
,

be the total recombination rate between loci a and b. Then, using an argument
similar to the one we used to compute the variance of the homozygosity,∑
{i,j}

∑
{k,`}

Cov
[
∆a
i,j ,∆

b
k,`

]
=
(
θ

2m

)2 4
(
n
2

)
z2 + 13z + 18

[
(z + 18) · 1 + 6 · 2(n− 2) + 4 ·

(
n− 2

2

)]
=
(
θ

m

)2(n
2

)
z + (2n2 + 2n+ 6)
z2 + 13z + 18

.

Summing over all values of h = |b− a| and noting that there are 2(m− h) possi-
bilities for each,

1(
n
2

)2 ∑
a6=b

∑
{i,j}

∑
{k,`}

Cov
[
∆a
i,j ,∆

b
k,`

]

= θ2 1(
n
2

) m∑
h=1

1
m

2(m− k)
m

ρh
m−1 + (2n2 + 2n+ 6)

( ρh
m−1)2 + 13 ρh

m−1 + 18
.

Taking a limit m → ∞ and using a Riemann integral approximation gives the
result. To compute the integral, factor the denominator.

We can now prove the first theorem.
Proof:(Theorem 23.3) This calculation is rather straightforward (up to a “miracle”;
see [Dur08]). Rewrite

S2
π =

 1(
n
2

) ∑
{i,j}

∆2
i,j

−∆2
n.
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Using E[∆i,j ] = E[∆n] = θ, we have

E[S2
π] = Var[∆2]−Var[∆n]

= θ − θ n+ 1
3(n− 1)

+ θ2[f(ρ, 2)− f(ρ, n)],

and we are done.

Further reading

The material in this section was taken from Chapter 3 of the excellent mono-
graph [Dur08].
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