Lecture 23 : Estimating the recombination rate

MATH285K - Spring 2010 Lecturer: Sebastien Roch

References: [Dur08, Chapter 3.2].

Previous class

Recall that for a two-locus recombination process without mutation (the loci are
called a and b):

THM 23.1 (Tree-Length Covariance: Recursion) Let x = (i, j, k) be the initial
state where 1 (respectively j, and k) is the number of lineages with only a (respec-
tively only b, and both a and b) material ancestral to the samples withng = 1 + k,
ny=j+k and { =i+ j+ k. Let F(x) be the covariance of the tree lengths T,
and Ty, started at x. If X is the state after the first jump. Then

2h(k — 1)
Bm(na — 1)(711, — 1)’

where
—1)+kp
B = -5

and p/?2 is the recombination rate per lineage.
An application of this theorem to the 2-sample case gives:

THM 23.2 (Covariance: Two-Sample Case) We have

18
F(0,0,2) —4— P+t
p? 4+ 13p + 18
F(1,1,1) = 4*,
p? +13p+ 18
and
4
F(2,2,0) =4—5———.
p? +13p + 18

(The factor of 4 comes from the difference between coalescence time and tree
length.)
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1 Mutation model

It is not entirely obvious to extend the infinite-sites model to the case with recom-
bination. Indeed, the linear order of the sites is now important. One way to deal
with this is to arrange m infinite-sites loci linearly with mutation rates 5 - and re-
combination rate ﬁ between any two consecutive loci. There is no mtra locus
recombination. We then take a limit m — +-o0.

Our goal in this lecture is to estimate the recombination rate. To do so, we
must also estimate the mutation rate. We describe an approach based on pairwise
differences. Let

e 1
A”EZAZE(T)ZAW_Z ZAJ’
2/ {i,5} {u}

where Af ; is the number of differences between sequences ¢ and j at locus a.
Recall that

_ (9 _
E[A,] =mE [A,] =m (m) =4.
(Recall also that (as proved in [Dur08])
[0\ n+1 0\”2(n®+n+3)
Var [A;] = <m> =1 + <m> “on(n—1) ) (1)

So 0, = A, provides an estimate of f. To estimate p, we need a quantity involving
correlations between sites. A natural idea is to consider the sample variance of the
pairwise differences, that is,

1
S2 = @] Z(AM- — A%
2/ {i.g}
We will prove the following:
THM 23.3 In the limit m — oo
2(n — 2)
E[S2] = 0= ——% + 6%g

where g is a function given in [Dur08].

Recall that 6, is not a consistent estimator of §. Hence, to estimate #2 we use a
corrected version 62. This will follow from:
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THM 23.4 In the limit m — oo,

n—+1

Var[A,] = GW

+6°f(p,n),

where

ot (pr) 4 (20 4 20+ 6)
f(p,n) = (TQL) /0 2(1 ) (px)? 4 13(px) + 18

can be computed explicitly (see [Dur08]).
In particular, note that

n+1

E[67] = Var(t] + (E6:])° = 037 —;

+0%(f(p,n) + 1).

Hence, an unbiased estimator of 62 is

02 —[(n+1)/(3(n — 1)))6x
flp,n) +1

Putting all this together, an estimate of p is given by the solution of

Ya(p) =

2(n —2)

S2 = O s 1) T v=(p)g(p, ).

2 Proofs

We prove the two previous theorems. We begin with the second one.
Proof:(Theorem 23.4) Expanding the variance of A,,, the first term gives the term
not depending on p

Var[A Z Var Z A

{zJ}
1 a 1 b
+ Z Cov N Z Ai,j’ N Ak7£ N
asb (2) {i,j} (2) {k, 0}

and

" n+1
;Var ( ZA — 7(11_1),

{i.5}
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as m — oo, where we used (1). Rewriting the second term as

ZCOV ZAJ’WZ k. QZZZCOV[ i B }

a#b {z j} {k,l} (2 a#b {i,j} {k,0}

we need to compute Cov [Al > A } By conditioning on the tree lengths 7}, of

locus a between ¢ and j and Tk7 s> We get

0 \2
Cov [A%,AZ’@} = <2m> Cov [T{fj,ﬁ?e] .

Let
p

-1’
be the total recombination rate between loci a and b. Then, using an argument
similar to the one we used to compute the variance of the homozygosity,

ZZCOV[ ERTRAY }

{i.g} {k.}
0\ 4() n—2
=—| 5=—7FF—— 18)-14+6-2(n—2)+4-
<2m> 22+ 132 + 18 [(Z+ ) 146-2(n-2)+ < 2 )]
(0 2\ z + (2n2 + 2n + 6)
S \m/) \2) 22+13z+18
Summing over all values of & = |b — a| and noting that there are 2(m — h) possi-
bilities for each,

ZZZZCW[ L Al

(2)" o (i3} (k)
_ g2 L Z 1 2(m — k) 25 + (20° + 20+ 6)
G imm w18 18

z=1b—aq|

Taking a limit m — oo and using a Riemann integral approximation gives the

result. To compute the integral, factor the denominator. |
We can now prove the first theorem.

Proof:(Theorem 23.3) This calculation is rather straightforward (up to a “miracle”;

see [Dur08]). Rewrite

52 = é) S AL - AL

{i.g}
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Using E[A; ;] = E[A,] = 0, we have
E[S2] = Var[As] — Var[A,]

n+1
—0— em +0%[f(p,2) — f(p.n)],

and we are done. [ ]

Further reading

The material in this section was taken from Chapter 3 of the excellent mono-
graph [Dur0O8].
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