
Lecture 21 : Tests of neutrality

MATH285K - Spring 2010 Lecturer: Sebastien Roch

References: [Dur08, Chapter 2].

Previous class

Recall:

THM 21.1 (Watterson’s estimator) The estimator

θW =
Sn
hn
,

is unbiased for θ. Its variance is

Var[θW ] = θ
1
hn

+ θ2 gn
h2
n

,

which converges to 0.

Also we will need the following result about the structure of the coalescent:

THM 21.2 Assume that Πn
i has sets of size λ1, . . . , λi where the sets are ordered

such that the first one contains 1, the second contains the smallest remaining el-
ement, etc. Let π be a permutation on {1, . . . , i} and define µ` = λπ(`), for
` = 1, . . . , i. Then the vector (µ1, . . . , µi) is distributed uniformly over vectors
summing to n.

1 A class of θ estimators

A standard way to test whether the data is consistent with our model is to look at
the difference between two different θ estimators. Most estimators in the literature
can be expressed as follows. Let ηk be the number of segregating sites where
the mutated alleles has frequency k, for k = 1, . . . , n − 1. This is known as the
site frequency spectrum. (One can also define a similar notion when the ancestral
states are not known, using the least common allele as a reference—leading to
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the folded site frequency spectrum. See [Dur08, Section 1.4].) For constants cn,k,
k = 1, . . . , n− 1, consider the estimator

θ̂ =
n−1∑
k=1

cn,kηk.

For instance, taking cn,k = 1/hn for all k gives θW . (Recall that hn =
∑n−1

i=1 1/i.)
Other important examples include:

• Choosing cn,k = 1 if k = 1 and 0 otherwise gives θFL = η1.

• Choosing

cn,k =
k(n− k)(

n
2

) ,

leads to θπ, the pairwise differences.

To see that these are unbiased and potentially derive more estimators, we compute:

THM 21.3 We have
E[ηk] =

θ

k
.

For instance

E[θπ] =
1(
n
2

) n−1∑
i=1

i = 1.

Proof:(Theorem 21.3) Imagine that at each level of the coalescent, the individuals
are numbered uniformly at random. Let Jk` be the number of descendants of edge
` on level k. Letting Lm be the total branch length with m sampled descendants,
note that

Lm =
n−m+1∑
k=2

tk

k∑
`=1

1{Jk` = m},

where tk is the time duration of level k. (Note that since each edge on level k has
at least one sampled descendant, k must be smaller or equal to n−m+ 1 for ` to
possibly have m sampled descendants.) So

E[Lm] =
n−m+1∑
k=2

2
k(k − 1)

kP[Jk1 = m].

By Theorem 21.2,

P[Jk1 = m] =

(
n−m−1
k−2

)(
n−1
k−1

) ,
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that is, the number of ways k− 1 numbers sum to n−m divided by the number of
ways k numbers sum to n. Hence,

E[Lm] =
n−m+1∑
k=2

2
k(k − 1)

k

(
n−m−1
k−2

)(
n−1
k−1

)
= 2

(n−m− 1)!
(n− 1)!

n−m+1∑
k=2

(n− k)!
(n−m− k + 1)!

= 2
(n−m− 1)!(m− 1)!

(n− 1)!

n−m+1∑
k=2

(
n− k
m− 1

)
= 2

(n−m− 1)!(m− 1)!
(n− 1)!

(
n− 1
m

)
=

2
m
,

where we used that the sum on the third line counts the number of ways to pick i
elements from n− 1 when the smallest one has index m− 1.

To compute the variance of the difference statistics, we also need the covari-
ance between ηi and ηj . This is done in [Dur08, Section 2.1]. However, since the
distribution of the statistics is not known, the tests are performed based on simula-
tions.

2 Tajima’s D and related statistics

Two common difference statistics are θπ − θW and θW − θFL. The former (stan-
dardized) is known as Tajima’s D statistic, the latter, as Fu and Li’s D. Under a null
hypothesis of neutral evolution in a homogeneously mixing population of constant
size, both statistics should be roughly 0. (However, their variance does not go to
0 as n → ∞ because, unlike θW , θπ and θFL are no consistent. Since we are
not interested in estimating θ, this will not matter here.) Any significant deviation
indicates the possibility that our assumptions may not be satisfied. To understand
the effect of selection or population structure/growth on the difference statistics,
we note that

θπ − θW =
n−1∑
k=1

(
k(n− k)(

n
2

) − 1
hn

)
ηk
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and

θW − θFL =
n−1∑
k=1

(
1
hn
− 1{k = 1}

)
ηk.

In both cases, the coefficient of ηk is

• negative for small enough k;

• positive for middle k’s.

In other words, an excess of singletons will tend to produce negative values and an
excess of middle frequencies will tend to produce positive values.

Typical examples of phenomena creating these effects are:

• Population growth tends to produce a coalescent with long pendant edges
(star-shaped genealogy), and therefore, an excess of singletons.

• Deleterious mutations will tend to produce very low frequency alleles, and
thefore, an excess of singletons.

and

• Population isolation will tend to produce a delayed deepest coalescence
(chicken-legs genealogy), and therefore, to create an excess of middle fre-
quencies.

• Balancing selection will tend to produce an excess of heterozygotes, and
therefore, an excess of middle frequencies.

Further reading

The material in this section was taken from Chapter 2 of the excellent mono-
graph [Dur08].
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