Lecture 2 : Counting X-trees

MATH285K - Spring 2010

Lecturer: Sebastien Roch

References: [SS03, Chapter 1,2]

1 Trees

We begin by recalling basic definitions and properties regarding finite trees.

DEF 2.1 (Graph) A (finite, undirected, simple) graph G = (V, E) is an ordered pair consisting of a non-empty finite set of vertices V and a set of E of edges each of which is an element of

$$\{\{x, y\} : x, y \in V, \ x \neq y\}.$$

Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there is a bijection $\Psi : V_1 \to V_2$ such that $\{u, v\} \in E_1$ exactly when $\{\Psi(u), \Psi(v)\} \in E_2$. The map Ψ is a graph isomorphism.

Let G = (V, E) be a graph:

- If $e = \{u, v\} \in E$ then u and v are *neighbors* and e is *incident* with u, v.
- The *degree* d(v) of v ∈ V is the number of neighbors of v. A vertex of degree 0 is *isolated* and 1 is *pendant*. An edge incident with a pendant vertex is a *pendant edge*.
- We sometimes write V(G) and E(G) for the vertex and edge sets of G. A graph H is a *subgraph* of G if V(H) ⊆ V(G) and E(H) ⊆ E(G).

DEF 2.2 (Connectedness) A (simple) path in G is a sequence of distinct vertices v_1, \ldots, v_k such that for all $i \in \{1, \ldots, k-1\}$ $\{v_i, v_{i+1}\} \in E$. If $\{v_k, v_1\} \in E$ then the subgraph C = (V(C), E(C)) with $V(C) = \{v_1, \ldots, v_k\}$ and $E(C) = \{v_1, v_2\} \cup \cdots \cup \{v_k, v_1\}$ is a cycle. A graph G = (V, E) is connected if for all $u, v \in V$, there is a path between u and v. If G is not connected, the maximal connected subgraphs of G are called its connected components.

DEF 2.3 (Tree) A forest is a cycle-free graph. A tree T = (V, E) is a connected forest.

Let T = (V, E) be a tree:

- A vertex of T with degree 1 is a called a *leaf*. All other vertices of T are *interior* vertices.
- An edge of T is *interior* if both its end vertices are interior. We denote by \mathring{V} and \mathring{E} the sets of interior vertices and edges.
- A tree is *binary* if all interior vertices have degree 3.

THM 2.4 (Characterization of Trees) Let G = (V, E) be a graph. Then the following are equivalent:

- 1. G is a tree.
- 2. For all $u_1, u_2 \in V$ there is a unique path between u_1 and u_2 .
- 3. *G* is connected and |V| = |E| + 1.

Before giving the proof, we define graph operations that are useful in induction proofs.

DEF 2.5 (Deletion and Contraction) Let G = (V, E) be a graph and $v \in V$, $e \in E$.

- $G \setminus e$ is the graph obtained from G by deleting e.
- *G*/*e* is the graph obtained from *G* by contracting *e*.
- $G \setminus v$ is the graph obtained from v by deleting v and all incident edges.

Proof: The equivalence of 1. and 2. is clear from the connectedness and cycle-freeness of the tree.

 $1. \Rightarrow 3.$) We proceed by induction on the number of vertices. Clearly, 3. is true when |V| = 1. Suppose |V| > 1. Since the graph is finite and cycle-free, it must be that there is at least one leaf v. Then $G \setminus v = (V', E')$ satisfies 3. and we are done.

 $1. \Leftarrow 3.$) We begin with a lemma.

LEM 2.6 If G = (V, E) is connected then $|V| \le |E| + 1$.

Lecture 2: Counting X-trees

Proof: Clear if |V| = 1. Assume |V| > 1. Contract any edge and use induction to deduce

$$|V| - 1 \le |E| - 1 + 1.$$

We return to the proof. We proceed by contradiction. Suppose 3. holds but G is not a tree. Then there is an edge e in a cycle and $G \setminus e = (V', E')$ is connected. But then

$$|V| = |V'| \le |E'| + 1 = |E| - 1 + 1 < |E| + 1,$$

a contradiction.

2 X-trees

We come to the fundamental graph-theoretic definition of this course.

DEF 2.7 (*X*-tree) An *X*-tree $\mathcal{T} = (T, \phi)$ is an ordered pair where *T* is a tree and $\phi : X \to V$ is such that *X* is finite and $\phi(X)$ contains all vertices with degree at most 2. (Note: It is neither surjective nor injective.) Two *X*-trees $\mathcal{T}_1 = (T_1, \phi_1)$ and $\mathcal{T}_2 = (T_2, \phi_2)$ are isomorphic if there is a graph isomorphism Ψ between T_1 and T_2 such that $\phi_2 = \Psi \circ \phi_1$.

Let \mathcal{T} be an X-tree:

- We sometimes write $T(\mathcal{T})$ and $\phi(\mathcal{T})$ for T and ϕ .
- ϕ is called the *labeling map* of T and T is called the underlying tree.

A special class of X-trees, phylogenetic trees, will be our main object of study. It will become clear when we cover the Splits-Equivalence Theorem and the Tree-Metric Theorem why we need to consider the more general setup of X-trees.

DEF 2.8 (Phylogenetic tree) A phylogenetic tree \mathcal{T} is an X-tree whose labeling map ϕ is a bijection into the leaves of its underlying tree T. \mathcal{T} is binary if all interior vertices of T have degree 3. We denote by B(n) the set of all binary phylogenetic trees where |X| = n. Unless stated otherwise, we let $X = \{1, \ldots, n\} \equiv [n]$.

THM 2.9 Every $T \in B(n)$ has n pendant edges and n - 3 interior edges.

Proof: Summing over the degrees amounts to counting each edge twice so that

$$n + 3(|V| - n) = 1 \cdot (|V| - |V|) + 3 \cdot (|V|) = 2|E| = 2|V| - 2$$

by Theorem 2.4. Hence |V| = 2n - 2, |E| = 2n - 3.

Lecture 2: Counting X-trees

THM 2.10 (Counting phylogenetic trees) Letting b(n) = |B(n)|, for all $n \ge 3$

$$b(n) = 1 \times 3 \times \dots \times (2n-5) \equiv (2n-5)!! \sim \frac{1}{2\sqrt{2}} \left(\frac{2}{e}\right)^n n^{n-2}$$

Proof: We proceed by induction. The result is clear for n = 3. Assume n > 3. Consider the map from B(n) to B(n - 1) which removes leaf n and its incident edge and suppresses the resulting degree 2 node. The result follows from Theorem 2.10. The asymptotic formula is obtained from Stirling's formula,

 $n! \sim \sqrt{2\pi} e^{-n} n^{n+1/2}.$

(Recall that $f(n) \sim g(n)$ indicates $\lim_{n \to \infty} f(n)/g(n) = 1$.)

3 Rooted *X*-trees

DEF 2.11 (Rooted trees) A rooted tree is a tree T = (V, E) with a single distinguished vertex ρ . A rooted X-tree is an X-tree $\mathcal{T} = (T; \phi)$ whose tree T is rooted and whose labeling map ϕ is such that $v \in \phi(X)$ for all $v \in V - \{\rho\}$ of degree at most 2. A rooted phylogenetic tree is a phylogenetic tree $\mathcal{T} = (T, \phi)$ whose root has degree at least 2. A rooted binary phylogenetic tree is a rooted phylogenetic tree such that every interior vertex has degree 3 except the root which has degree 2. We denote by RB(n) the set of all rooted binary phylogenetic trees where |X| = n.

Recall that a partial order on a set S is a relation \leq such that for all $x, y, z \in S$:

- 1. (Reflexivity) $x \leq x$.
- 2. (Antisymmetry) If $x \leq y$ and $y \leq x$ then x = y.
- 3. (Transitivity) If $x \leq y$ and $y \leq z$ then $x \leq z$.

Let $\mathcal{T} = (T, \phi)$ be a rooted X-tree:

- A partial order ≤_T on the vertex set V of T is obtained by letting v₁ ≤_T v₂ if the path between the root ρ and v₂ goes through v₁. We say that v₁ is an *ancestor* of v₂ and v₂ is a *descendant* of v₁.
- The most recent common ancestor (MRCA) of A ⊆ X is the greatest lower bound of φ(A) under ≤_T.

THM 2.12 (Counting rooted trees) For all $n \ge 3$

$$|RB(n)| = (2n - 3)!!$$

Proof: There is a natural bijection between B(n + 1) and RB(n): remove leaf n + 1 and the edge incident to it, and root the tree at the degree 2 node so created.

Further reading

The definitions and results discussed here were taken from Chapter 2 of [SS03]. Much more on the subject can be found in that excellent monograph. See also [SS03] for the relevant bibliographic references.

References

[SS03] Charles Semple and Mike Steel. *Phylogenetics*, volume 24 of *Oxford Lecture Series in Mathematics and its Applications*. Oxford University Press, Oxford, 2003.