MATH285K - Spring 2010 *Lecturer: Sebastien Roch*

References: [SS03, Chapter 1,2]

1 Trees

We begin by recalling basic definitions and properties regarding finite trees.

DEF 2.1 (Graph) *A* (finite, undirected, simple) graph $G = (V, E)$ *is an ordered pair consisting of a non-empty finite set of vertices* V *and a set of* E *of edges each of which is an element of*

$$
\{\{x,y\} : x,y \in V, x \neq y\}.
$$

Two graphs $G_1 = (V_1, E_1)$ *and* $G_2 = (V_2, E_2)$ *are* isomorphic *if there is a bijection* $\Psi : V_1 \to V_2$ *such that* $\{u, v\} \in E_1$ *exactly when* $\{\Psi(u), \Psi(v)\} \in E_2$ *. The map* Ψ *is a* graph isomorphism*.*

Let $G = (V, E)$ be a graph:

- If $e = \{u, v\} \in E$ then u and v are *neighbors* and e is *incident* with u, v.
- The *degree* $d(v)$ of $v \in V$ is the number of neighbors of v. A vertex of degree 0 is *isolated* and 1 is *pendant*. An edge incident with a pendant vertex is a *pendant edge*.
- We sometimes write $V(G)$ and $E(G)$ for the vertex and edge sets of G. A graph H is a *subgraph* of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

DEF 2.2 (Connectedness) *A* (simple) path *in* G *is a sequence of distinct vertices* v_1, \ldots, v_k such that for all $i \in \{1, \ldots, k-1\}$ $\{v_i, v_{i+1}\}$ ∈ E. If $\{v_k, v_1\}$ ∈ E *then the subgraph* $C = (V(C), E(C))$ *with* $V(C) = \{v_1, \ldots, v_k\}$ *and* $E(C)$ = ${v_1, v_2}$ ∪ · · · ∪ ${v_k, v_1}$ *is a cycle. A graph* $G = (V, E)$ *is connected if for all* $u, v \in V$, there is a path between u and v. If G is not connected, the maximal *connected subgraphs of* G *are called its* connected components*.*

DEF 2.3 (Tree) *A* forest *is a cycle-free graph. A* tree $T = (V, E)$ *is a connected forest.*

Let $T = (V, E)$ be a tree:

- A vertex of T with degree 1 is a called a *leaf*. All other vertices of T are *interior* vertices.
- An edge of T is *interior* if both its end vertices are interior. We denote by \tilde{V} and E the sets of interior vertices and edges.
- A tree is *binary* if all interior vertices have degree 3.

THM 2.4 (Characterization of Trees) Let $G = (V, E)$ be a graph. Then the fol*lowing are equivalent:*

- *1.* G *is a tree.*
- *2. For all* $u_1, u_2 \in V$ *there is a unique path between* u_1 *and* u_2 *.*
- *3. G is connected and* $|V| = |E| + 1$.

Before giving the proof, we define graph operations that are useful in induction proofs.

DEF 2.5 (Deletion and Contraction) *Let* $G = (V, E)$ *be a graph and* $v \in V$ *,* $e \in E$.

- G\e *is the graph obtained from* G *by* deleting e*.*
- G/e *is the graph obtained from* G *by* contracting e*.*
- G\v *is the graph obtained from* v *by deleting* v *and all incident edges.*

Proof: The equivalence of 1. and 2. is clear from the connectedness and cyclefreeness of the tree.

 $1. \Rightarrow 3.$) We proceed by induction on the number of vertices. Clearly, 3. is true when $|V| = 1$. Suppose $|V| > 1$. Since the graph is finite and cycle-free, it must be that there is at least one leaf v. Then $G\backslash v = (V', E')$ satisfies 3. and we are done.

 $1 \leftarrow 3$.) We begin with a lemma.

LEM 2.6 *If* $G = (V, E)$ *is connected then* $|V| \leq |E| + 1$ *.*

Proof: Clear if $|V| = 1$. Assume $|V| > 1$. Contract any edge and use induction to deduce

$$
|V| - 1 \le |E| - 1 + 1.
$$

We return to the proof. We proceed by contradiction. Suppose 3. holds but G is not a tree. Then there is an edge e in a cycle and $G \backslash e = (V', E')$ is connected. But then

$$
|V| = |V'| \le |E'| + 1 = |E| - 1 + 1 < |E| + 1,
$$

a contradiction.

2 X -trees

We come to the fundamental graph-theoretic definition of this course.

DEF 2.7 (X-tree) An X-tree $T = (T, \phi)$ *is an ordered pair where* T *is a tree and* $\phi: X \to V$ *is such that* X *is finite and* $\phi(X)$ *contains all vertices with degree at most* 2*.* (Note: It is neither surjective nor injective.) Two X-trees $\mathcal{T}_1 = (T_1, \phi_1)$ *and* $T_2 = (T_2, \phi_2)$ *are* isomorphic *if there is a graph isomorphism* Ψ *between* T_1 *and* T_2 *such that* $\phi_2 = \Psi \circ \phi_1$ *.*

Let T be an X -tree:

- We sometimes write $T(T)$ and $\phi(T)$ for T and ϕ .
- \bullet ϕ is called the *labeling map* of T and T is called the underlying tree.

A special class of X-trees, phylogenetic trees, will be our main object of study. It will become clear when we cover the Splits-Equivalence Theorem and the Tree-Metric Theorem why we need to consider the more general setup of X -trees.

DEF 2.8 (Phylogenetic tree) *A* phylogenetic tree T *is an* X*-tree whose labeling map* ϕ *is a bijection into the leaves of its underlying tree T. T is binary if all interior vertices of* T have degree 3. We denote by $B(n)$ the set of all binary phyloge*netic trees where* $|X| = n$ *. Unless stated otherwise, we let* $X = \{1, \ldots, n\} \equiv [n]$ *.*

THM 2.9 *Every* T ∈ $B(n)$ *has n pendant edges and* $n - 3$ *interior edges.*

Proof: Summing over the degrees amounts to counting each edge twice so that

$$
n + 3(|V| - n) = 1 \cdot (|V| - |\mathring{V}|) + 3 \cdot (|\mathring{V}|) = 2|E| = 2|V| - 2,
$$

by Theorem 2.4. Hence $|V| = 2n - 2$, $|E| = 2n - 3$.

 \blacksquare

 \blacksquare

 \blacksquare

THM 2.10 (Counting phylogenetic trees) *Letting* $b(n) = |B(n)|$ *, for all* $n \geq 3$

$$
b(n) = 1 \times 3 \times \cdots \times (2n - 5) \equiv (2n - 5)!! \sim \frac{1}{2\sqrt{2}} \left(\frac{2}{e}\right)^n n^{n-2}.
$$

Proof: We proceed by induction. The result is clear for $n = 3$. Assume $n > 3$. Consider the map from $B(n)$ to $B(n-1)$ which removes leaf n and its incident edge and suppresses the resulting degree 2 node. The result follows from Theorem 2.10. The asymptotic formula is obtained from Stirling's formula,

$$
n! \sim \sqrt{2\pi}e^{-n}n^{n+1/2}.
$$

(Recall that $f(n) \sim g(n)$ indicates $\lim_{n \to \infty} f(n)/g(n) = 1$.)

П

3 Rooted X-trees

DEF 2.11 (Rooted trees) A rooted tree is a tree $T = (V, E)$ with a single distin*guished vertex* ρ . A rooted X-tree *is an* X-tree $T = (T; \phi)$ whose tree T is rooted *and whose labeling map* ϕ *is such that* $v \in \phi(X)$ *for all* $v \in V - {\rho}$ *of degree at most* 2*.* A rooted phylogenetic tree *is a phylogenetic tree* $\mathcal{T} = (T, \phi)$ *whose root has degree at least* 2*. A* rooted binary phylogenetic tree *is a rooted phylogenetic tree such that every interior vertex has degree* 3 *except the root which has degree* 2*. We denote by* $RB(n)$ *the set of all rooted binary phylogenetic trees where* $|X| = n$ *.*

Recall that a partial order on a set S is a relation \leq such that for all $x, y, z \in S$:

- 1. (Reflexivity) $x \leq x$.
- 2. (Antisymmetry) If $x \leq y$ and $y \leq x$ then $x = y$.
- 3. (Transitivity) If $x \leq y$ and $y \leq z$ then $x \leq z$.

Let $\mathcal{T} = (T, \phi)$ be a rooted X-tree:

- A partial order \leq_T on the vertex set V of T is obtained by letting $v_1 \leq_T v_2$ if the path between the root ρ and v_2 goes through v_1 . We say that v_1 is an *ancestor* of v_2 and v_2 is a *descendant* of v_1 .
- The *most recent common ancestor (MRCA)* of $A \subseteq X$ is the greatest lower bound of $\phi(A)$ under \leq_T .

THM 2.12 (Counting rooted trees) *For all* $n \geq 3$

$$
|RB(n)| = (2n - 3)!!
$$

Proof: There is a natural bijection between $B(n + 1)$ and $RB(n)$: remove leaf $n + 1$ and the edge incident to it, and root the tree at the degree 2 node so created.

$$
\qquad \qquad \blacksquare
$$

Further reading

The definitions and results discussed here were taken from Chapter 2 of [SS03]. Much more on the subject can be found in that excellent monograph. See also [SS03] for the relevant bibliographic references.

References

[SS03] Charles Semple and Mike Steel. *Phylogenetics*, volume 24 of *Oxford Lecture Series in Mathematics and its Applications*. Oxford University Press, Oxford, 2003.