Lecture 12: Ancestral Reconstruction by Majority

MATH285K - Spring 2010 Lecturer: Sebastien Roch

References: [EKPS00, Mos01, MP03, BCMR06].

Previous class

DEF 12.1 (CFN Model) A CFN model is an MCT $(\mathcal{T}, \mathcal{P}, \mu_{\rho})$ on $C = \{0, 1\}$ with symmetric transition matrices with positive determinant and uniform μ_{ρ} . In particular, each transition matrix $P^e = \bar{P}^e$ is characterized by a single parameter $0 < p_e < 1/2$, the mutation probability along edge e.

1 Ancestral reconstruction

For simplicity, we begin by considering a special case. Let $T^{(\infty)}$ be the infinite complete binary tree where the root is denoted by 0. For $h \geq 0$, let $\mathcal{T}^{(h)} = (T^{(h)},\phi^{(h)})$ with $T^{(h)} = (V^{(h)},E^{(h)})$ be the first h levels of $T^{(\infty)}$ starting from the root where the leaves are labeled by $[2^h]$ (say, from left to right in a natural planar embedding). In particular, the tree $\mathcal{T}^{(0)}$ is simply the root. For $0 , we denote by <math>(\mathcal{T}^{(h)},p)$ the CFN model on $\mathcal{T}^{(h)}$ with state space $C = \{+1,-1\}$ where all edge mutation probabilities are fixed to p. We denote by $\sigma_V = \{\sigma_v\}_{v \in V^{(h)}}$ the vector of states of a sample from $(\mathcal{T}^{(h)},p)$. With a sligh abuse of notation, we let $\sigma_h = \{\sigma_\ell\}_{\ell \in [2^h]}$ be the vector of states at the leaves and we denote by μ_h the distribution of σ_h .

Recall that, under the CFN model, the root state σ_0 is assumed to be uniform in $\{+1,-1\}$. The ancestral reconstruction problem consists in trying to guess the value at the root σ_0 given the states σ_h at level h. We first note that in general we cannot expect an arbitrarily good estimator. Indeed, re-writing the transition matrix in its *random cluster* form

$$\begin{pmatrix} 1 - p & p \\ p & 1 - p \end{pmatrix} = (1 - 2p) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + (2p) \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$$

we see that the states σ_1 at the first level are completely randomized (i.e., independent of σ_0) with probability $(2p)^2$ —in which case we cannot hope to reconstruct

the root state better than a coin flip. Intuitively, the ancestral reconstruction problem is solvable if we can find an estimator of the root state which outperforms a random coin flip even as the tree grows to ∞ .

Formally:

DEF 12.2 (Ancestral reconstruction solvability) Let μ_h^+ be the distribution μ_h conditioned on the root state σ_0 being +1, and similarly for μ_h^- . We say that the ancestral reconstruction problem (under the CFN model) for 0 is solvable if

$$\lim \inf_{h} \|\mu_h^+ - \mu_h^-\|_1 > 0,$$

otherwise the problem is unsolvable. Recall that

$$\|\mu_h^+ - \mu_h^-\|_1 \equiv \sum_{\mathbf{s}_h \in \{+1, -1\}^h} |\mu_h^+(\mathbf{s}_h) - \mu_h^-(\mathbf{s}_h)|.$$

To see the connection with the description above, consider an arbitrary root estimator $\hat{\sigma}_0$. Then the probability of a mistake is

$$\mathbb{P}[\hat{\sigma}_{0}(\mathbf{s}_{h}) \neq \sigma_{0}] = \frac{1}{2} \sum_{\mathbf{s}_{h} \in \{+1,-1\}^{h}} \mu_{h}^{-}(\mathbf{s}_{h}) \mathbb{1}\{\hat{\sigma}_{0}(\mathbf{s}_{h}) = +1\} + \frac{1}{2} \sum_{\mathbf{s}_{h} \in \{+1,-1\}^{h}} \mu_{h}^{+}(\mathbf{s}_{h}) \mathbb{1}\{\hat{\sigma}_{0}(\mathbf{s}_{h}) = -1\}$$

This expression is minimized by choosing

$$\hat{\sigma}_0(\mathbf{s}_h) = \begin{cases} +1, & \mu_h^+(\mathbf{s}_h) \ge \mu_h^-(\mathbf{s}_h) \\ -1, & \text{o.w.} \end{cases}$$

This is simply the ML estimator which we will denote by $\hat{\sigma}_0^{\mathrm{ML}}$. Now note that

$$\mathbb{P}[\hat{\sigma}_{0}(\mathbf{s}_{h}) = \sigma_{0}] - \mathbb{P}[\hat{\sigma}_{0}(\mathbf{s}_{h}) \neq \sigma_{0}] = \frac{1}{2} \sum_{\mathbf{s}_{h} \in \{+1, -1\}^{h}} \mu_{h}^{+}(\mathbf{s}_{h}) \hat{\sigma}_{0}^{\mathrm{ML}}(\mathbf{s}_{h}) \\
-\frac{1}{2} \sum_{\mathbf{s}_{h} \in \{+1, -1\}^{h}} \mu_{h}^{-}(\mathbf{s}_{h}) \hat{\sigma}_{0}^{\mathrm{ML}}(\mathbf{s}_{h}) \\
= \frac{1}{2} \sum_{\mathbf{s}_{h} \in \{+1, -1\}^{h}} |\mu_{h}^{+}(\mathbf{s}_{h}) - \mu_{h}^{-}(\mathbf{s}_{h})| \\
= \frac{1}{2} |\|\mu_{h}^{+} - \mu_{h}^{-}\|_{1},$$

where the second line comes from

$$|a - b| = (a - b) \mathbb{1}\{a \ge b\} + (b - a) \mathbb{1}\{a < b\}.$$

2 Majority

It turns out that the accuracy of the ML estimator undergoes a phase transition at a critical p_* mutation probability.

THM 12.3 (Solvability) Let $\theta_* = 1 - 2p_* = 1/\sqrt{2}$. Then when $p \leq p_*$ the ancestral reconstrution problem is solvable.

Rather than analyzing maximum likelihood, we look at a simpler estimator first. We come back to the proof of Theorem 12.3 in the next section. The majority at level h is defined as

$$Z_h = \frac{1}{2^h \theta^h} \sum_{x \in [2^h]} \sigma_x,$$

where

$$\theta = 1 - 2p.$$

The normalization in Z_h turns it into an unbiased estimator:

THM 12.4 (Unbiasedness) Denoting by \mathbb{E}_h^+ the expectation operator under μ_h^+ , and similarly for \mathbb{E}_h^- , we have

$$\mathbb{E}_{h}^{+}[Z_{h}] = +1, \qquad \mathbb{E}_{h}^{-}[Z_{h}] = -1.$$

Proof: By applying the Markov transition matrix on the first level,

$$\mathbb{E}_{h}^{+}[\sigma_{1}] = (1-p)\mathbb{E}_{h-1}^{+}[\sigma_{1}] + p\mathbb{E}_{h-1}^{-}[\sigma_{1}]
= (1-2p)\mathbb{E}_{h-1}^{+}[\sigma_{1}],$$

where the second line follows from the +1/-1 symmetry. By iteration,

$$\mathbb{E}_h^+[\sigma_1] = \theta^h,$$

from which the result follows by linearity.

To locate the phase transition, we compute the variance of Z_h .

THM 12.5 (Phase transition for majority) We have

$$\operatorname{Var}[Z_h] \to \begin{cases} \frac{1/2}{1 - (2\theta^2)^{-1}}, & 2\theta^2 > 1\\ +\infty, & 2\theta^2 \le 1. \end{cases}$$

Proof: By the conditional variance formula

$$Var[Z_h] = Var[\mathbb{E}[Z_h \mid \sigma_0]] + \mathbb{E}[Var[Z_h \mid \sigma_0]]$$
$$= Var[\sigma_0] + \mathbb{E}[Var[Z_h \mid \sigma_0]]$$
$$= 1 + Var_h^+[Z_h],$$

where the last line follows from symmetry with Var_h^+ being the conditional variance at level h given that the root is +1. Writing $Z_h = Z_h^{(1)} + Z_h^{(2)}$ as a sum over the two subtrees below the root and using the conditional independence of these two subtrees given the root state we get

$$Var[Z_h] = 1 + 2Var_h^+[Z_h^{(1)}]$$

= 1 + 2(\mathbb{E}_h^+[(Z_h^{(1)})^2] - (\mathbb{E}_h^+[Z_h^{(1)}])^2).

Using $\mathbb{E}_h^+[Z_h^{(1)}]=1/2$ and applying the Markov transition matrix on the first level and re-normalizing $Z_h^{(1)}$, we get

$$\operatorname{Var}[Z_{h}] = 1 - 2(\mathbb{E}_{h}^{+}[Z_{h}^{(1)}])^{2} + 2\mathbb{E}_{h}^{+}[(Z_{h}^{(1)})^{2}]
= 1 - 1/2 + 2[(1 - p)(2\theta)^{-2}\mathbb{E}_{h-1}^{+}[Z_{h-1}^{2}] + p(2\theta)^{-2}\mathbb{E}_{h-1}^{-}[Z_{h-1}^{2}]]
= 1/2 + (2\theta^{2})^{-1}\mathbb{E}_{h-1}^{+}[Z_{h-1}^{2}]
= 1/2 + (2\theta^{2})^{-1}\operatorname{Var}[Z_{h-1}],$$
(1)

where we used that

$$\operatorname{Var}[Z_{h-1}] = \mathbb{E}[Z_{h-1}^2] = \mathbb{E}_{h-1}^+[Z_{h-1}^2] = \mathbb{E}_{h-1}^-[Z_{h-1}^2],$$

by symmetry and the fact that $\mathbb{E}[Z_{h-1}] = 0$. Solving the affine recursion (1) gives the result.

3 Solvability

In essence Theorem 12.5 says that majority is a useful root estimator when $2\theta^2 > 1$, that is, when $p < p_*$. (The proof below and a correlation inequality proved in [EKPS00, Theorem 1.4] gives a lower bound on the probability of reconstruction of majority. We leave the details to the reader.) We can now prove Theorem 12.3. **Proof:**(of Theorem 12.3) Let $\bar{\mu}_h$ be the dsitribution of Z_h and define $\bar{\mu}_h^+$ and $\bar{\mu}_h^-$ similarly. We give a bound on $\|\mu_h^+ - \mu_h^-\|_1$ through a bound on $\|\bar{\mu}_h^+ - \bar{\mu}_h^-\|_1$.

Indeed, letting $\bar{\mathbf{s}}_h$ be the majority estimator applied to $\mathbf{s}_h \in \{+1, -1\}$,

$$\sum_{z} |\bar{\mu}_{h}^{+}(z) - \bar{\mu}_{h}^{-}(z)| = \sum_{z} \left| \sum_{\mathbf{s}_{h}:\bar{\mathbf{s}}_{h}=z} (\mu_{h}^{+}(\mathbf{s}_{h}) - \mu_{h}^{-}(\mathbf{s}_{h})) \right|$$

$$\leq \sum_{z} \sum_{\mathbf{s}_{h}:\bar{\mathbf{s}}_{h}=z} |\mu_{h}^{+}(\mathbf{s}_{h}) - \mu_{h}^{-}(\mathbf{s}_{h})|$$

$$= \sum_{\mathbf{s}_{l}} |\mu_{h}^{+}(\mathbf{s}_{h}) - \mu_{h}^{-}(\mathbf{s}_{h})|.$$

To lower bound $\|\bar{\mu}_h^+ - \bar{\mu}_h^-\|_1$, we apply Cauchy-Schwarz and use the variance bound in Theorem 12.5. Note that $\frac{1}{2}\bar{\mu}_h^+ + \frac{1}{2}\bar{\mu}_h^- = \bar{\mu}_h$ so that

$$\frac{|\bar{\mu}_h^+(z) - \bar{\mu}_h^-(z)|}{2\bar{\mu}_h(z)} \le 1,$$

and we get

$$\sum_{z} |\bar{\mu}_{h}^{+}(z) - \bar{\mu}_{h}^{-}(z)| \geq 2 \sum_{z} \left(\frac{|\bar{\mu}_{h}^{+}(z) - \bar{\mu}_{h}^{-}(z)|}{2\bar{\mu}_{h}(z)} \right)^{2} \bar{\mu}_{h}(z)
\geq 2 \frac{\left(\sum_{z} z \left(\frac{\bar{\mu}_{h}^{+}(z) - \bar{\mu}_{h}^{-}(z)}{2\bar{\mu}_{h}(z)} \right) \bar{\mu}_{h}(z) \right)^{2}}{\sum_{z} z^{2} \bar{\mu}_{h}(z)}
= \frac{1}{2} \frac{\left(\mathbb{E}_{h}^{+}[Z_{h}] - \mathbb{E}_{h}^{-}[Z_{h}] \right)^{2}}{\operatorname{Var}[Z_{h}]}
\geq 4(1 - (2\theta^{2})^{-1})
> 0.$$

Further reading

Most of the material discussed here (and much more) can be found in [EKPS00]. See also [Mos01, MP03, BCMR06] for further results.

References

[BCMR06] Christian Borgs, Jennifer T. Chayes, Elchanan Mossel, and Sébastien Roch. The Kesten-Stigum reconstruction bound is tight for roughly symmetric binary channels. In *FOCS*, pages 518–530, 2006.

- [EKPS00] W. S. Evans, C. Kenyon, Y. Peres, and L. J. Schulman. Broadcasting on trees and the Ising model. *Ann. Appl. Probab.*, 10(2):410–433, 2000.
- [Mos01] E. Mossel. Reconstruction on trees: beating the second eigenvalue. *Ann. Appl. Probab.*, 11(1):285–300, 2001.
- [MP03] E. Mossel and Y. Peres. Information flow on trees. *Ann. Appl. Probab.*, 13(3):817–844, 2003.