
Lecture 11 : Asymptotic Sample Complexity

MATH285K - Spring 2010 Lecturer: Sebastien Roch

References: [DMR09].

Previous class

THM 11.1 (Strong Quartet Evidence) Let Q be a collection of quartet trees on
X such that for all S with |S| = 4 at most one quartet tree of Q has label set S.
Then there is a phylogenetic tree T on X such that Σ(Q) ∪ Σ0

X = Σ(T ).

Recall that the log-det distance is given by:

DEF 11.2 (Logdet Distance) For a, b ∈ X , let P ab be defined as follows

∀α, β ∈ C, P abα,β = P[Ξφ(b) = β |Ξφ(a) = α].

The logdet distance between a and b is the dissimilarity map

δ(a, b) = −1
2

log det[P abP ba].

In the case of the CFN model, we have

P ab =
(

1− pab pab

pab 1− pab
)

where pab is probability that the states at a and b differ—in particular, pab = pba.
Hence

−1
2

log det[P abP ba] = −1
2

log[det(P ab)2] = − log[1− 2pab].

For q = ab|cd, define

δ(q) =
1
2

[δ(a, c) + δ(b, d)− δ(a, b)− δ(c, d)].

1



Lecture 11: Asymptotic Sample Complexity 2

Recall that, if δ is a tree metric (as is the case for the log-det distance), then among
all 4-tuples over X ′ = {a, b, c, d} δ(q) takes three possible values

δ(q) ∈ {we0 , 0,−we0}, (1)

where e0 is the middle edge of T |X ′.
Consider the following algorithm.

• For all a, b ∈ X distinct, let

p̂ab =
1
k

k∑
i=1

1{Ξia 6= Ξib}.

and
δ̂(a, b) = − log[1− 2p̂ab].

(Make the last quantity +∞ if the term inside the log is negative.)

• Set Q = ∅.

• For all a, b, c, d ∈ X distinct,

– Setting X ′ = {a, b, c, d}, let

xy|wz = arg max{δ̂(xy|wz) : x, y, w, z ∈ X ′ distinct},

where δ̂(q) is defined similarly to δ(q) above.

– Add xy|wz to Q.

• Apply the Strong Quartet Evidence algorithm to Q to recover T .

Clearly, by (1), if we were to run the algorithm above with δ rather than δ̂, the
correct tree T would be reconstructed. However, δ̂ is only an approximation of δ.
By the strong law of large numbers, this approximation gets arbitrarily better as
k →∞ with probability 1. The consistency of the algorithm then follows from the
following inequality:

max
q
|δ(q)− δ̂(q)| ≤ 2 max

a,b
|δ(a, b)− δ̂(a, b)| < 1

2
min
e
we ≡

1
2
w∗, (2)

with probability 1 for all sufficiently large k.
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1 Concentration in the CFN Model

Basic definition. Statistical consistency is a coarse property which does not al-
low to distinguish different inference methods very well. A more quantitative
comparison between methods can be obtained from the following concept. For
simplicity, we restrict ourselves to estimating the tree.

DEF 11.3 (Asymptotic Sample Complexity (ASC)) Fix δ > 0. Let

Ξ = {Ξ1
X , . . .},

be a sequence of i.i.d. samples generated by a CFN model (T ,P). A sequence of
estimators {T̂k}k≥0 of T , where T̂k is based on k samples, has asymptotic sample
complexity (ASC) at confidence level δ (at most) k0 if for all k ≥ k0 the probability
that T̂k = T is at least δ.

Typically, the ASC is expressed as an asymptotic expression of structural parame-
ters of the model such as the number of leaves n, the shortest branch length f , or
the diameter of the tree.

Concentration bound. The law of large numbers itself is not enough to prove
ASC results. Rather we need concentration inequalities such as Chernoff’s bound.
We give a proof for completeness.

THM 11.4 (Chernoff’s bound) Let X be a binomial with parameters n and p.
Then, for all t > 0

P[|X − np| ≥ t] ≤ 2e−t
2/(2n).

Proof: Recall the following easy inequality.

LEM 11.5 (Markov’s inequality) If X ≥ 0 with finite mean then

P[X ≥ t] ≤ E[X]
t

,

for all t > 0.

Proof: Note that

E[X] ≥ E[X1{X ≥ t}] ≥ tP[X ≥ t].

Write X − np as a centered iid sum

X − np =
∑
i≤n

Yi,
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in the obvious way. By Markov and independence,

P[X − np ≥ t] = P[exp(h(X − np)) ≥ exp(ht)]
≤ exp(−ht)E[exp(h(X − np))]
= exp(−ht)E[exp(hYn + h

∑
i≤n−1

Yi)]

= exp(−ht)E[exp(hYn)]E[exp(h
∑
i≤n−1

Yi)]

= exp(−ht)E[exp(hY1)]n.

LEM 11.6 Assume E[Y ] = 0 and |Y | ≤ 1. Then, for all h

E[exp(hY )] ≤ exp(h2/2).

Proof: By convexity

ehy ≤ 1− y
2

e−h +
1 + y

2
eh,

for |y| ≤ 1. By Taylor expansion (check!),

E[exp(hY )] ≤ 1
2

(e−h + eh) ≤ eh2/2.

Choose h = t/n and apply the previous lemma to Y1.

ASC of Distance Methods. We apply the previous bound to the estimation of
distances. For simplicity, we state the result for binary phylogenetic trees, although
this is not necessary.

THM 11.7 (ASC of Distance Methods) Let

w∗ = min
e
w(e)

and
W∗ = max

a,b
δ(a, b).

Then, the algorithm above recovers the correct tree with probability 1 − o(1) as
n→∞ with

k = O

(
e2W∗

(1− e−w∗/4)2
log n

)
.
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Proof: Assume that for all a, b ∈ X

|pab − p̂ab| < ε.

For (2) to hold for all pairs of leaves, it must be that

1
4
w∗ > − log(1− 2(pab + ε)) + log(1− 2pab)

= − log
(

1− 2(pab + ε)
1− 2pab

)
= − log

(
1− 2ε

1− 2pab

)
,

and similarly for the other direction. Rewriting this equation, it is enough that

ε <
1
2

(1− e−w∗/4)e−W∗ ≡ W∗

≤ 1
2

(1− e−w∗/4)(1− 2pab).

Plugging this expression into Chernoff’s bound with t = W∗k gives a probability
of failure

≤ 2 exp
(
−W

2
∗k

2

)
,

which will be ≤ 1/n3 (so that we can apply a union bound over all pairs of leaves)
if

k = O

(
1
W2
∗

log n
)

= O

(
e2W∗

(1− e−w∗/4)2
log n

)
.

2 Depth v. Diameter

It turns out that Theorem 11.7 is not tight. In particular, the dependence of k in
the weighted diameter W∗ can be replaced by the weighted depth using a more
sophisticated algorithm:

DEF 11.8 (Weighted Depth) The depth of an edge e is the length (under δ) of the
shortest path between two leaves crossing e. The depth of a tree is the maximum
edge depth.
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In general, the depth can be much smaller than the diameter. Assume all branch
lengths are 1 (that is, consider the graphical distance). Then on the caterpillar tree,
the diameter O(n) while the depth is O(1). In fact, under the graphical distance,
the depth is always at most 2 log2 n + 2. Indeed, if the depth of an edge e was
2 log2 +3 then the path to the closest leaf on one side of ewould be at least log2 +1
which would imply that the number of leaves on that side of e would exceed n—a
contradiction.

For details, see e.g. [DMR09].
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