Lecture 20 : Path properties 11

MATH?275B - Winter 2012 Lecturer: Sebastien Roch

References: [Durl0, Section 8.1], [Ligl0, Section 1.6], [MP10, Section 1.3].

1 Previous class

THM 20.1 If < 1/2, then almost surely Brownian motion is everywhere locally
a-Hdolder continuous.

Recall:

THM 20.2 (Scaling invariance) Let a > 0. If B(t) is a standard Brownian mo-
tion, then so is X (t) = a~' B(a?t).

THM 20.3 (Time inversion) If B(t) is a standard Brownian motion, then so is

0, t=0,
X(t) = .
tB(t™Y), t>0.

LEM 20.4 (LLN) Almost surely, t 1 B(t) — 0 as t — +o0.

2 Non-differentiability

So B(t) grows slower than ¢. But the following lemma shows that its limsup grows
faster than v/t.

LEM 20.5 Almost surely

B
lim sup (n)

= —|—oo
n—-+4o00o \/ﬁ

Proof: By (FATOU),
P[B(n) > ¢y/ni.0.] > limsup P[B(n) > ¢y/n| = limsup P[B(1) > ¢] > 0,

n——+0oo n——+00
by the scaling property. Thinking of B(n) as the sum of X,, = B(n) — B(n — 1),
the event on the LHS is exchangeable and the Hewitt-Savage 0-1 law implies that
it has probability 1. |
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DEF 20.6 (Upper and lower derivatives) For a function f, we define the upper
and lower right derivatives as

D*f(t) = limsup w’
110 h

and
D,f(t) = hrlrzlfonf W

We begin with an easy first result.

THM 20.7 Fixt > 0. Then almost surely Brownian motion is not differentiable at
t. Moreover, D*B(t) = +oc and D, B(t) = —oc.

Proof: Consider the time inversion X. Then
X(n™ 1) —X(0
D*X(0) > limsup (n )_1 ©) = limsup B(n) = +o0,

n——+oo n n—-+4oo

by the lemma above. This proves the result at 0. Then note that X (s) = B(t+s)—

B(s) is a standard Brownian motion and differentiability of X at 0 is equivalent to

differentiability of B at t. u
In fact, we can prove something much stronger.

THM 20.8 Almost surely, BM is nowhere differentiable. Furthermore, almost
surely, for all t

D*B(t) = +o0,
or

D,B(t) = —o0,

or both.

Proof: Suppose there is ¢o such that the latter does not hold. By boundedness of
BM over [0, 1], we have
B(to+h) — B(t
sup‘ (O+ ) (O)|§M,
hel0,1] h

for some M < +oo. Assume tg is in [(k — 1)27", k27"] for some k, n. Then for
all 1 <5 < 2" — k, in particular, for j = 1,2, 3,

[B((k+7)27") = B((k+j —1)27")]
< [B((k+4)27") = B(to)| + |B(to) = B((k +j —1)27")]
<

M(2j+1)27",
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by our assumption. Define the events
Qe ={IB((k+4)27") = B((k+j—1)27")[ < M(2j +1)27", j = 1,2,3}.

It suffices to show that Uz:?’Qn’ % cannot happen for infinitely many ». Indeed,

B(to+h) — B(t
P |3ty € [0,1], sup |Bto + 1) — Blto)|

<M
he(o,1] h N ]

<P

2n—3
U €1, 1, for infinitely many n]
k=1

But by the independence of increments

3

Pl = TPIB(E+92) = Bk +j - )27 < M(2j + )27
< P'\B@—")rs?ﬂg
1 2 ™™ 13

- ‘ z—nBG 2] >’<¢T2]

- 3
O

T™ 3
= (ﬁ) ’

because the density of a standard Gaussian is bounded by 1/2. Hence

2" -3 3
™
Q| <27 == ) = (TM)327/2,
kLle 7k - < /2n) ( )

which is summable. The result follows from BC. [ ]

P

3 Quadratic variation

Recall:

DEF 20.9 (Bounded variation) A function f : [0,t] — R is of bounded variation
if there is M < +00 such that

k
S OIfE) — ft)] < M,
j=1
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forall k > 1 and all partitions 0 = tg < t; < --- < t, = t. Otherwise, we say
that it is of unbounded variation.

THM 20.10 (Quadratic variation) Suppose the sequence of partitions

0=1" <t{” <. <) =1,

is nested, that is, at each step one or more partition points are added, and the mesh

A(n) = sup {tg-n) - t;@l},
1<j<k(n)

converges to 0. Then, almost surely,

k(n)
lim > (BEY) - B))? =t.

n—-+0o0o

Jj=1

Proof: By considering subsequences, it suffices to consider the case where one
point is added at each step. Let

Xon = Y (B(H) = B(t™))*
j=1
Let
g,n = O'(X,n, X,nfl, .. )
and -
g—oo = m g,k.
k=1

CLAIM 20.11 We claim that {X_,,} is a reversed MG.

Proof: We want to show that
E[X_pt1|G-n] = X_n.
In particular, this will imply by induction
X on=E[X_1|G0]

Assume that, at step n, the new point s is added between the old points ¢; < ts.
Write
X_p1 = (Blta) = B(t1)* + W,
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and
X_n = (B(s) = B(t1))* + (B(t2) — B(s))* + W,
where W is independent of the other terms. We claim that
E[(B(t2) — B(t1))* | (B(s) — B(t1))* + (B(t2) — B(s))"]
= (B(s) = B(t1))” + (B(t2) — B(s))*,
which follows from the following lemma.
LEM 20.12 Let X, Z € L? be independent and assume Z is symmetric. Then
E[(X + 2)?| X*+ 7% = X* + 7%
Proof: By symmetry of Z,
E[(X +2)?|X?+ 2% = E[(X-2)?| X%+ (-2)?
= E[(X - 2)?| X%+ Z?.
Taking the difference we get
EXZ|X?*+ Z% =0.

|
The fact that X_,, is a reversed MG follows from the argument above. (Exer-
cise.) [ |

We return to the proof of the theorem. By Lévy’s Downward Theorem,
X_pn = E[X_1]6-)],

almost surely. Note that E[X_;] = E[X_,] = t. Moreover, by (FATOU), the
variance of the limit

E[(E[X-1]G-oc] = #)°] < liminfE[(X_p —1)7]

k(n)
< liminf Var (B(t

= liminf3 Z(t§”) - t§’1)1)2
j=1

IN

3t liminf A(n)
= 0.

So finally
E[X_1|G-x] =t
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