
Lecture 15 : Proof of the Ergodic Theorem (cont’d)

MATH275B - Winter 2012 Lecturer: Sebastien Roch

References: [Var01, Chapter 6], [Dur10, Section 6.2], [SS05, Section 6.5].

1 Proof of Ergodic Theorem

We assume we have (Ω,F ,P), f ∈ F , T a measure-preserving transformation,
and we let Xn(ω) = f(Tnω) for all n ≥ 0. It will be convenient to think of T as
an operator of functions

Uf(ω) = f(Tω),

in which case Umf(ω) = f(Tmω) and we define

Anf = n−1(I + · · ·+ Un−1)f.

Recall:

LEM 15.1 If g, g′ ∈ L2 then

〈Ug′, Ug〉 = 〈g′, g〉.

THM 15.2 Let f ∈ L1. Then there is f̂ ∈ I s.t.

Anf → f̂ ≡ E[f | I], a.s and in L1.

Proof: We first show a.s. convergence to a limit. We proceed as in the L2 case.
Fix ε and let

f = F +H = f0 + (I − U)g′1 +H,

where ‖H‖1 < ε includes both the L1 and closure error terms. We show that AnF
converges a.s. Note that

AnF (ω) = f0(ω) + n−1(I − Un)g′1(ω) = f0(ω) +
g′1(ω)

n
− g′1(T

nω)

n
.

To deal with the last term, note that∑
n

g′1(T
nω)2

n2

1
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converges because its norm is bounded by ‖g′1‖22
∑

n 1/n2 <∞. To conclude let

Eα = {lim
N

sup
m,n≥N

|Anf −Amf | > α}.

Note that

P[Eα] ≤ P[lim
N

sup
m,n≥N

|AnH −AmH| > α] ≤ P[2 sup
N
|ANH| > α].

To conclude the proof of a.s. convergence, we need the following inequality which
is similar to Doob’s inequality.

LEM 15.3 (Wiener’s Maximal Inequality) For f ∈ L1 and ` > 0,

P

[
sup
j≥0
|Ajf | ≥ `

]
≤ 1

`
E|f |.

Proof: The proof is based on the so-called maximal ergodic lemma.

LEM 15.4 (Maximal Ergodic Lemma) Let

f∗n = sup
1≤j≤n

f + · · ·+ U j−1f.

Then for all n ≥ 0
E[f ; {f∗n ≥ 0}] ≥ 0.

Apply the maximal ergodic lemma to |f | − ` and take n→∞.
Applying the lemma we have

P[Eα] ≤ P[2 sup
N
|ANH| > α] ≤ 2

α
E|H| < 2ε

α
,

so that P[Eα] = 0 for all α.
It is clear that the limit satisfies f̂(ω) = f̂(Tω). In fact, by the density of L2

in L1, writing f = gr + hr with gr ∈ L2 and ‖hr‖1 < 1/r, we have f̂ = ĝr + ĥr
and for G ∈ I

E[f̂ ;G] = E[ĝr;G] + E[ĥr;G] = E[gr;G] + E[ĥr;G]→ E[f ;G],

where we used the L2 Ergodic Theorem and

E|ĥr| ≤ lim inf
n

E|Anhr| ≤ lim inf
n
n−1

n−1∑
m=0

E|Umhr| = E|hr| = 1/r,
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by (FATOU).
A truncation argument gives the L1 convergence (see [Dur10]). Let

f ′M = f1|f |≤M ,

and f ′′M = f − f ′M . By the ergodic theorem and the bounded convergence theorem

E

∣∣∣∣∣ 1n
n−1∑
m=0

f ′M (Tmω)− E[f ′M | I]

∣∣∣∣∣→ 0.

By stationarity and (cJENSEN),

E

∣∣∣∣∣ 1n
n−1∑
m=0

f ′′M (Tmω)− E[f ′′M | I]

∣∣∣∣∣ ≤ 2E|f ′′M | → 0,

as M → +∞ by (DOM). The result follows.

2 Applications

Going back to Markov chains:

DEF 15.5 Let
Ti = inf{n ≥ 1 : Xn = i},

and
fij = Pi[Tj < +∞].

A chain is irreducible if fij > 0 for all i, j ∈ A. A state i is recurrent if fii = 1
and is positive recurrent if Ei[Ti] < +∞.

LEM 15.6 If X is irreducible and finite, then every state is positive recurrent.

THM 15.7 Let X be an irreducible and positive recurrent MC. Then there exists
a unique stationary distribution π. In fact,

π(i) =
1

Ei[Ti]
> 0.

EX 15.8 (MCs) Let X be a MC on S.

• In the ASRW on [a, b] the invariant sets are {a} and {b} and therefore T is
not ergodic if π has positive mass on both of them.
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• On the other hand, assume X is irreducible and positive recurrent with sta-
tionary distribution π > 0. Let A ∈ I and note that 1A ◦ Tn = 1A. Then
by the Markov property,

E[1A | Fn] = E[1A ◦ Tn | Fn] = h(Xn),

where h(x) = Ex[1A]. By Levy’s 0−1 law the LHS→ 1A. By irreducibility
and recurrence, any y ∈ S is visited i.o. and we must have Ex[1A] ≡ h(x) ≡
0 or 1. Therefore P[A] ∈ {0, 1} and I is trivial. Then applying the Ergodic
Theorem to f(ω) = g(X0(ω)) where∑

y

|g(y)|π(y) < +∞,

we then have

n−1
n−1∑
m=0

g(Xm(ω))→
∑
y

π(y)g(y).

• Note finally that the RW on a bipartite graph shows that, even in the irre-
ducible recurrent case, I may be smaller than T .

Further reading

See a different proof in [Dur10, Section 6.2].
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