Lecture 13 : Stationary Stochastic Processes

MATH?275B - Winter 2012 Lecturer: Sebastien Roch

References: [VarO1, Chapter 6], [Durl0, Section 6.1], [Bil95, Chapter 24].

1 Stationary stochastic processes

DEF 13.1 (Stationary stochastic process) A real-valued process { Xy, }n>0 is sta-
tionary if for every k, m

(K- s Xomsk) ~ (X0, -, Xp).

EX 13.2 [ID sequences are stationary.

1.1 Stationary Markov chains
1.1.1 Markov chains

DEF 13.3 (Discrete-time finite-space MC) Let A be a finite space, | a distribu-
tion on A and {p(3, j)}i jea a transition matrix on E. Let (X,,)n>0 be a process
with distribution

P[Xo = o, ..., Xy = zn] = p(xo)p(z0, 21) - - p(Tn—1,701),
foralln > 0and xg, ...,x, € A.
EX 13.4 (RW on a graph) Let G = (V, E) be a finite, undirected graph. Define
’ {NG@}H
where
N@)=A{j: (i,j) € E}.
This defines a RW on a graph as the finite MC with the above transition matrix (for

each i, an arbitrary distribution on V). More generally, any finite MC can be seen
as a RW on a weighted directed graph.

EX 13.5 (Asymmetric SRW on an interval) Let (.S),),>0 be an asymmetric SRW
with parameter 1/2 < p < 1. Leta < 0 < b, N = T, A Ty,. Then (X,)n>0 =
(SNAn)n>0 is a Markov chain.
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1.1.2 Stationarity

DEF 13.6 (Stationary Distribution) A probability measure 7 on A is a stationary

distribution if
> wi)p(i, j) = = (j),

i
foralli,j € A. In other words, if Xo ~ 7 then X1 ~ m and in fact X,, ~ 7 for all
n > 0.

EX 13.7 (RW on a graph) In the RW on a graph example above, define

N ING@)
(1) = 2B

Then

N NG 11
> w(pli,j) = > o5 N~ 2 YU =)

eV i:(i,j)€E
so that w is a stationary distribution.

EX 13.8 (ASRW on interval) In the ASRW on [a,b], 7 = 0, and T = J, as well
as all mixtures are stationary.

EX 13.9 (Stationary Markov chain) Let X be a MC on A (countable) with tran-
sition matrix {p;; }i jc A and stationary distribution m > 0. Then X started at 7 is
a stationary stochastic process. Indeed, by definition of ™ and induction

XO ~ XTL7
for all n > 0. Then for all m, k by definition of MCs
(Xoyoo oy X)) ~ (X o ooy Xintke)-

1.2 Abstract setting

EX 13.10 (A canonical example) Ler (2, F,P) be a probability space. A map
T : Q — Qs said to be measure-preserving (for P) if for all A € F,

(Plw : Tw € A] =)P[T~'A] = P[A].

If X € Fthen X,,(w) = X(T"w), n > 0, defines a stationary sequence. Indeed,
forall B € B(RF+1)

P[(Xo, ..., Xp)(w) € B] = P[(Xo,...,X3)(T™w) € B]
= P[(Xms .o s Xoni4) () € B,
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Kolmogorov’s extension theorem indicates that all real-valued stationary stochas-
tic processes can be realized in the framework of the previous example.

THM 13.11 (Kolmogorov Extension Theorem) Suppose we are given probabil-
ity measure [i,, on (R™, B(R")) s.t.

Mn+1((a0ab0] X X (anvbn] X R) = Mn((GO’bO] X X (an’bn])v

for all n and (n+1)-dimensional rectangles. Then there exists a unique probability
measure P on (R%+, R%+) with marginals fi,.

EX 13.12 (Revisiting stationary processes) Let X be a stationary process on R.
Then by the previous theorem, we can realize X on R%+ as

Xn(w) = wh.
The corresponding measure-preserving transformation is the shift
Tw = (w,...).
In particular, X,,(w) = Xo(T"w).
EX 13.13 Returning the previous example:
1. The only invariant sets are (), Q) so that T is trivial and T is ergodic.

2. Both Q1 and Q) are invariant so that if o, § # 0 we have that T is not er-
godic. Further, note that f is measurable with respectto T = {0, Q,Qo, Q},
that is, f is invariant.

Next time, we will prove the ergodic theorem:
THM 13.14 Let f € LY. Then there is f € T s.1.
n 'S, — f,
a.s and in L. In the ergodic case, f = E[f)].

EX 13.15 (IID RVs) Let X,,(w) = wy, are iid rvs. If A is invariant then {w : w €
A} ={w : Tw € A} € 0(X1,...) and by induction

A c ﬂnzoo'(Xn, .. ) = T,

where T is the tail o-field. Thus T C T. Since T is trivial by Kolmogorov’s 0 — 1
law, so is I. Therefore T is ergodic and E[f | Z] = E|[f]. Applying the ergodic thm
to f=Xo€ L' we get

n—1
Y X (w) — E[Xo),
m=0

that is, we recover the SLLN.
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