
Lecture 13 : Stationary Stochastic Processes

MATH275B - Winter 2012 Lecturer: Sebastien Roch

References: [Var01, Chapter 6], [Dur10, Section 6.1], [Bil95, Chapter 24].

1 Stationary stochastic processes

DEF 13.1 (Stationary stochastic process) A real-valued process {Xn}n≥0 is sta-
tionary if for every k,m

(Xm, . . . , Xm+k) ∼ (X0, . . . , Xk).

EX 13.2 IID sequences are stationary.

1.1 Stationary Markov chains

1.1.1 Markov chains

DEF 13.3 (Discrete-time finite-space MC) Let A be a finite space, µ a distribu-
tion on A and {p(i, j)}i,j∈A a transition matrix on E. Let (Xn)n≥0 be a process
with distribution

P[X0 = x0, . . . , Xn = xn] = µ(x0)p(x0, x1) · · · p(xn−1, nn),

for all n ≥ 0 and x0, . . . , xn ∈ A.

EX 13.4 (RW on a graph) Let G = (V,E) be a finite, undirected graph. Define

p(i, j) =
1{(i, j) ∈ E}
|{N(i)}|

,

where
N(i) = {j : (i, j) ∈ E}.

This defines a RW on a graph as the finite MC with the above transition matrix (for
each µ, an arbitrary distribution on V ). More generally, any finite MC can be seen
as a RW on a weighted directed graph.

EX 13.5 (Asymmetric SRW on an interval) Let (Sn)n≥0 be an asymmetric SRW
with parameter 1/2 < p < 1. Let a < 0 < b, N = Ta ∧ Tb. Then (Xn)n≥0 =
(SN∧n)n≥0 is a Markov chain.
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1.1.2 Stationarity

DEF 13.6 (Stationary Distribution) A probability measure π onA is a stationary
distribution if ∑

i

π(i)p(i, j) = π(j),

for all i, j ∈ A. In other words, if X0 ∼ π then X1 ∼ π and in fact Xn ∼ π for all
n ≥ 0.

EX 13.7 (RW on a graph) In the RW on a graph example above, define

π(i) =
|N(i)|
2|E|

.

Then ∑
i∈V

π(i)p(i, j) =
∑

i:(i,j)∈E

|N(i)|
2|E|

1

|N(i)|
=

1

2|E|
|N(j)| = π(j),

so that π is a stationary distribution.

EX 13.8 (ASRW on interval) In the ASRW on [a, b], π = δa and π = δb as well
as all mixtures are stationary.

EX 13.9 (Stationary Markov chain) Let X be a MC on A (countable) with tran-
sition matrix {pij}i,j∈A and stationary distribution π > 0. Then X started at π is
a stationary stochastic process. Indeed, by definition of π and induction

X0 ∼ Xn,

for all n ≥ 0. Then for all m, k by definition of MCs

(X0, . . . , Xk) ∼ (Xm, . . . , Xm+k).

1.2 Abstract setting

EX 13.10 (A canonical example) Let (Ω,F ,P) be a probability space. A map
T : Ω→ Ω is said to be measure-preserving (for P) if for all A ∈ F ,

(P[ω : Tω ∈ A] =)P[T−1A] = P[A].

If X ∈ F then Xn(ω) = X(Tnω), n ≥ 0, defines a stationary sequence. Indeed,
for all B ∈ B(Rk+1)

P[(X0, . . . , Xk)(ω) ∈ B] = P[(X0, . . . , Xk)(Tmω) ∈ B]

= P[(Xm, . . . , Xm+k)(ω) ∈ B].



Lecture 13: Stationary Stochastic Processes 3

Kolmogorov’s extension theorem indicates that all real-valued stationary stochas-
tic processes can be realized in the framework of the previous example.

THM 13.11 (Kolmogorov Extension Theorem) Suppose we are given probabil-
ity measure µn on (Rn,B(Rn)) s.t.

µn+1((a0, b0]× · · · × (an, bn]× R) = µn((a0, b0]× · · · × (an, bn]),

for all n and (n+1)-dimensional rectangles. Then there exists a unique probability
measure P on (RZ+ ,RZ+) with marginals µn.

EX 13.12 (Revisiting stationary processes) Let X̃ be a stationary process on R.
Then by the previous theorem, we can realize X̃ on RZ+ as

Xn(ω) = ωn.

The corresponding measure-preserving transformation is the shift

Tω = (ω1, . . .).

In particular, Xn(ω) = X0(T
nω).

EX 13.13 Returning the previous example:

1. The only invariant sets are ∅,Ω so that I is trivial and T is ergodic.

2. Both Ω1 and Ω2 are invariant so that if α, β 6= 0 we have that T is not er-
godic. Further, note that f̂ is measurable with respect to I = {∅,Ω1,Ω2,Ω},
that is, f̂ is invariant.

Next time, we will prove the ergodic theorem:

THM 13.14 Let f ∈ L1. Then there is f̂ ∈ I s.t.

n−1Sn → f̂ ,

a.s and in L1. In the ergodic case, f̂ = E[f ].

EX 13.15 (IID RVs) Let Xn(ω) = ωn are iid rvs. If A is invariant then {ω : ω ∈
A} = {ω : Tω ∈ A} ∈ σ(X1, . . .) and by induction

A ∈ ∩n≥0σ(Xn, . . .) = T ,

where T is the tail σ-field. Thus I ⊆ T . Since T is trivial by Kolmogorov’s 0− 1
law, so is I. Therefore T is ergodic and E[f | I] = E[f ]. Applying the ergodic thm
to f = X0 ∈ L1 we get

n−1
n−1∑
m=0

Xm(ω)→ E[X0],

that is, we recover the SLLN.
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