Lecture 11 : Ul MGs

MATH275B - Winter 2012 Lecturer: Sebastien Roch

References: [Wil91, Chapter 14], [Durl0, Section 4.5].

1 UIMGs

THM 11.1 (Convergence of UL MGs) Let M be Ul MG. Then
M, = My,
a.s. and in L1. Moreover,
M, = E[My | Fn], vn.

Proof: UI implies L'-bddness so we have M,, — M, a.s. By necessary and
sufficient condition, we also have L! convergence.
Now note that for all » > n and F € F,,, we know E[M, | F,,] = M,, or

E[M,; F| = E[Mpy; F],
by definition of CE. We can take a limit by L' convergence. More precisely
|E[M,; F] — E[Mx; F]| <E[|M, — Mx|; F] <E[|M, — Mx|] — 0,
as r — 0o. So plugging above
E[Moo; F] = E[Mp; F],

and E[M | Fr] = M. ]

2 Applications I

THM 11.2 (Levy’s upward thm) Let Z € L' and define M,, = E[Z | F,]. Then
M is a Ul MG and
M, — My =E[Z | Fx],

a.s. and in L.
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Proof: M is a MG by (TOWER). We first show it is Ul:
LEM 11.3 Let X € LY(Q, F,P). Then

{E[X |G] : G is a sub-o-field of F},
is UL

Proof: We use the absolute continuity lemma again. Let Y = E[X | G] € G. Since
{Y[> K} eg,

ElY[;[Y]> K] = E[E[X|[F];[Y]|> K]
< E[E[X][IG:Y]> K]
= E[X[[Y]> K]
By Markov
EY] _ E[X|
PlY|>K]| < — < —— <
IV]> Kl < = < == <4,
for K large enough (uniformly in G). And we are done. |

In particular, we have convergence a.s. and in L' to My, € Fn..
Let Y = E[Z | Fx] € Fx. By dividing into negative and positive parts, we
assume Z > 0. We want to show, for F' € F,

E[Z; F] = E[Ma; F).

By Uniqueness Lemma, it suffices to prove equality for all F,. If F' € F,, C F,
then by (TOWER)

E[Z; F] = E[Y; F] = E[Mp; F] = E[Mac; F).

THM 11.4 (Levy’s 0 — 11law) Let A € F.. Then
P[A ’ fn] — 1 A-
Proof: Immediate. ]

COR 11.5 (Kolmogorov’s 0 — 1 law) Let X1, Xo, ... be iid RVs. Recall that the
tail o-field is
T = ﬂn'ﬁL = ﬂnO'(Xn+1, Xn+2, .. )

If A €T thenP[A] € {0,1}.
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Proof: Since A € 7, is independent of F,,
PlA|F,] = P[A],

Vn. By Levy’s law,
P[A] = 14 € {0,1}.

3 Applications II

THM 11.6 (Levy’s Downward Thm) Let Z € LY(Q, F,P) and {G_p, }n>0 a col-
lection of o-fields s.t.

Goo=MG-r<---CG,C---CG 1 CF

Define
M_, = E[Z ‘ g—n]

Then
M_, - M_ =E[Z|G_]

a.s. and in L1,

Proof: We apply the same argument as in the Martingale Convergence Thm. Let
a< peQand

Ayp={w : liminf X_, <a < f <limsup X_,}.
Note that

A = {w : X, does not converge}
= {w :liminf X, <limsup X_,}
= Ua<peQha,-

Let Un[a, 8] be the number of upcrossings of [a, B] between time —N and —1.
Then by the Upcrossing Lemma applied to the MG M_p, ..., M_;

(8 — a)EUx|a, 8] < || + E|M_1| < |a| + E|Z].

By (MON)
UN[OZ, 5] T UOO[O‘7B]7
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and
(B — a)EUx|a, B] < |af + E|Z] < +o0,
so that
PlUx[ar, f] = 0] = 0.
Since

Aa,ﬁ C {Uoo[awB] = OO},

we have P[A, g] = 0. By countability, P[A] = 0. Therefore we have convergence
a.s.

By lemma in previous class, M is UI and hence we have L' convergence as
well.

Finally, forall G € G_« C G_,,

E[Z; G| = E[M_,;G].

Take the limit n — 400 and use L' convergence. |
An application:

THM 11.7 (Strong Law; Martingale Proof) Ler X, Xs,...beiid RVswithE[X,] =
pand E|X1| < +oo. Let Sy, = ) ;. Xn. Then

n=1S, — pu,
a.s. and in L'.
Proof: Let
G_n=0(Sn, Snt1,Sn+2,--.) = 0(Sn, Xn+1, Xnt2,--.),
and note that, for 1 < i <n,
E[X1|G-n] = E[X1|Sn] =E[X;|Sn] =E[n 1S, | S, =n 'S,
by symmetry. By Levy’s Downward Thm
n 1S, = E[X1 |G o),

a.s. and in L. Note that G_,, C &, and G_o, C & so that G_ is trivial and we
must have E[ X | G_o] = p. |
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4 Further material

DEF 11.8 Let X1, Xo,... be iid RVs. Let &, be the o-field generated by events
invariant under permutations of the Xs that leave X, 11, Xy42, . . . unchanged. The
exchangeable o-field is £ = Ny, Epy.

THM 11.9 (Hewitt-Savage 0-1 law) Let X1, Xo,... be iid RVs. If A € & then
P[A] € {0,1}.

Proof: The idea of the proof is to show that A is independent of itself. Indeed, we
then have

0 = P[A] — P[A N A] = P[A] — P[A]P[A] = P[A](1 — P[A]).

Since A € £ and A € F., it suffices to show that £ is independent of F,, for every
n (by the 7-\ theorem).
WTS: for every bounded ¢, B € &,

E[p(X1,..., Xk); Bl = E[¢(X1, ..., Xi)|E[B] = E[E[¢(X1, ..., Xk)]; B,
or equivalently
Y = E[@(X1,..., Xp) | €] = E[p(X1,..., Xp))-

It suffices to show that Y is independent of F,. Indeed, by the L? characterization
of conditional expectation and independence,

0=E[(¢(X1,..., Xx) = Y)Y] = E[¢(X1,. .., Xp)|E[Y] = E[Y?] = —Var[Y],
and Y is constant.
1. Since ¢ is bounded, it is integrable and Levy’s Downward Thm implies
E[$(X1,..., X¢) | €] = E[$(X1,..., Xp) |€].

2. Define 1
An(gb):i Z ¢(Xi17"'7Xik)7

1<iy##ip<n

where (n) =n(n —1)---(n — k4 1). Note by symmetry

An(¢) = E[An(0) | En] = E[p(X1, ..., Xy) [ En] = E[o(Xn, ..., Xi) | €].
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3. However, note that
1 k:(n - 1)k—1 k
— Xiyoot) X5) < ———————supp = —supp — 0,

so that the limit of A,,(¢) is independent of X and
E[(Z5(X1, R ,Xk) ‘ 5] S O'(Xz, .. .),
and by induction

Y =E[¢(X1,..., X)) |E] € 0(Xpsa,-. ).
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