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Sébastien Roch
UW–Madison

Mathematics

July 25, 2018
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Go deeper

A lot more details and examples in the lecture notes at:

http://www.math.wisc.edu/˜roch/mdp/
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Networks are ubiquitous: Social networks
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Networks are ubiquitous: Biological networks
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Data science: Network modeling
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Data science: Network processes
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Data science: Network sampling

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications



Graph terminology
Basic examples of stochastic processes on graphs

1 Graph terminology

2 Basic examples of stochastic processes on graphs
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Graph terminology
Basic examples of stochastic processes on graphs

Graphs

Definition
An (undirected) graph is a pair G = (V ,E) where V is the set of
vertices and

E ✓ {{u, v} : u, v 2 V},

is the set of edges.

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications
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An example: the Petersen graph
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Basic examples of stochastic processes on graphs

Basic definitions

Definition (Neighborhood)
Two vertices u, v 2 V are adjacent, denoted by u ⇠ v , if
{u, v} 2 E . The set of adjacent vertices of v , denoted by N(v),
is called the neighborhood of v and its size, i.e. �(v) := |N(v)|,
is the degree of v . A vertex v with �(v) = 0 is called isolated.

Example
All vertices in the Petersen graph have degree 3. In particular
there is no isolated vertex.

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications
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An example: the Petersen graph
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Paths and connectivity

Definition (Paths)
A path in G is a sequence of vertices x0 ⇠ x1 ⇠ · · · ⇠ xk . The
number of edges, k , is called the length of the path. If x0 = xk ,
we call it a cycle. We write u $ v if there is a path between u

and v . The equivalence classes of $ are called connected

components. The length of the shortest path between two
vertices u, v is their graph distance, denoted dG(u, v).

Definition (Connectivity)
A graph is connected if any two vertices are linked by a path,
i.e., if u $ v for all u, v 2 V .

Example
The Petersen graph is connected.
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An example: the Petersen graph
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Adjacency matrix

Definition
Let G = (V ,E) be a graph with n = |V |. The adjacency matrix

A of G is the n ⇥ n matrix defined as Axy = 1 if {x , y} 2 E and 0
otherwise.

Example
The adjacency matrix of a triangle (i.e. 3 vertices with all
edges) is 2

4
0 1 1
1 0 1
1 1 0

3

5 .

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications



Graph terminology
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Examples of finite graphs

Kn: clique with n vertices, i.e., graph with all edges present
Cn: cycle with n non-repeated vertices
H

n: n-dimensional hypercube, i.e., V = {0, 1}n and u ⇠ v if
u and v differ at one coordinate
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Erdös-Rényi random graph

Definition
Let V = [n] and p 2 [0, 1]. The Erdös-Rényi graph G = (V ,E)
on n vertices with density p is defined as follows: for each pair
x 6= y in V , the edge {x , y} is in E with probability p

independently of all other edges. We write G ⇠ Gn,p and we
denote the corresponding measure by Pn,p.

Questions:
What is the probability of observing a triangle?
Is G connected?
What is the typical chromatic number (i.e., the smallest
number of colors needed to color the vertices so that no
two adjacent vertices share the same color)?

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications
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Other random graph models

Preferential attachement
Small world
Fixed degree distribution
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Random walk on a network

Definition
Let G = (V ,E) be a graph. Let c : E ! R+ be a positive edge
weight function on G. We call N = (G, c) a network. Random
walk on N is the Markov chain on V , started at an arbitrary
vertex, which at each time picks a neighbor of the current state
proportionally to the weight of the corresponding edge.

Questions:
How often does the walk return to its starting point?
How long does it take to visit all vertices once or a
particular subset of vertices for the first time?
How fast does it approach stationarity?

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications
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Other sampling schemes

Random walks with restarts
Branching random walks
Random sample of vertices and their neighbors
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Undirected graphical models I

Definition
Let S be a finite set and let G = (V ,E) be a finite graph.
Denote by K the set of all cliques of G. A positive probability
measure µ on X := SV is called a Gibbs random field if there
exist clique potentials �K : SK

! R, K 2 K, such that

µ(x) =
1
Z

exp

 
X

K2K
�K (xK )

!
,

where xK is x restricted to the vertices of K and Z is a
normalizing constant.

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications
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Undirected graphical models II

Example
For � > 0, the ferromagnetic Ising model with inverse
temperature � is the Gibbs random field with S := {�1,+1},
�{i,j}(�{i,j}) = ��i�j and �K ⌘ 0 if |K | 6= 2. The function
H(�) := �

P
{i,j}2E

�i�j is known as the Hamiltonian. The
normalizing constant Z := Z(�) is called the partition function.
The states (�i)i2V are referred to as spins.

Questions:
How fast is correlation decaying?
How to sample efficiently?
How to reconstruct the graph from samples?

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications
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Other graphical models

Gaussian graphical models
Bayes nets
Latent graphical models
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Go deeper

More details and examples on basic models at:

http://www.math.wisc.edu/˜roch/mdp/

For more on probability on graphs in general, see e.g.
(available online):

Probability on Graphs by Grimmett
Probability on Trees and Networks by Lyons with Peres

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications
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Illustration: Erdös-Rényi connectivity threshold

1 Markov’s inequality

2 First and second moment methods

3 Illustration: Erdös-Rényi connectivity threshold
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Markov’s inequality
First and second moment methods

Illustration: Erdös-Rényi connectivity threshold

Markov’s inequality

Theorem (Markov’s inequality)

Let X be a non-negative random variable. Then, for all b > 0,

P[X � b]  EX

b
.

Proof:

EX � E[X ;X � b] � E[b;X � b] = b P[X � b].

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications



Markov’s inequality
First and second moment methods

Illustration: Erdös-Rényi connectivity threshold

Markov’s inequality: Proof by picture
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Markov’s inequality
First and second moment methods

Illustration: Erdös-Rényi connectivity threshold

Chebyshev’s inequality

Theorem (Chebyshev’s inequality)

Let X be a random variable with EX 2 < +1. Then, for all

� > 0,

P[|X � EX | > �]  Var[X ]

�2 .

Proof: This follows immediately by applying Markov’s inequality to |X � EX |2

with b = �2.

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications
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Illustration: Erdös-Rényi connectivity threshold

Chebyshev’s inequality: Proof by picture
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Illustration: Erdös-Rényi connectivity threshold

1 Markov’s inequality

2 First and second moment methods

3 Illustration: Erdös-Rényi connectivity threshold
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Markov’s inequality
First and second moment methods

Illustration: Erdös-Rényi connectivity threshold

First moment method

Theorem (First moment method)

If X is a non-negative, integer-valued random variable, then

P[X > 0]  EX .

Proof: Take b = 1 in Markov’s inequality.

That is: if X has “small” expectation, then its value is 0 with
“large” probability. Typically used in the following way: one
wants to show that a “bad event” does not occur with high
probability; the random variable X counts the number of such
“bad events.” In that case, X is a sum of indicators and the
theorem reduces to the union bound.

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications



Markov’s inequality
First and second moment methods

Illustration: Erdös-Rényi connectivity threshold

Going in the other direction

The first moment method gives an upper bound on the
probability that a non-negative, integer-valued random variable
is positive—provided its expectation is small. Suppose we want
a lower bound. Note that a large expectation does not suffice.

Example

Say Xn is n2 with probability 1/n, and 0 otherwise. Then
EXn = n ! +1, yet P[Xn > 0] ! 0.

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications
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Illustration: Erdös-Rényi connectivity threshold

Second moment method

Theorem (Second moment method)

If X is a non-negative, integer-valued random variable, then

P[X > 0] � (EX )2

E[X 2]

✓
= 1 � Var[X ]

(EX )2 + Var[X ]

◆
.

Proof (of weaker version): By Chebyshev’s inequality,

P[X = 0]  P[|X � EX | � EX ]  Var[X ]
(EX )2 .

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications
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Illustration: Erdös-Rényi connectivity threshold

Second moment method: Proof by picture
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First and second moment methods

Illustration: Erdös-Rényi connectivity threshold

First and second moment methods: summary

If X is a non-negative, integer-valued random variable, then

P[X > 0]  EX ,

and

P[X > 0] � (EX )2

E[X 2]
.

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications
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Illustration: Erdös-Rényi connectivity threshold

1 Markov’s inequality

2 First and second moment methods

3 Illustration: Erdös-Rényi connectivity threshold
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First and second moment methods

Illustration: Erdös-Rényi connectivity threshold

Threshold phenomena

Consider the Erdös-Rényi random graph. A threshold function

for a graph property P is a function r(n) such that

lim
n

Pn,pn
[Gn has property P] =

(
0, if pn ⌧ r(n)

1, if pn � r(n),

where Gn ⇠ Gn,pn
is an Erdös-Rényi graph with n vertices and

density pn.

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications
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First and second moment methods

Illustration: Erdös-Rényi connectivity threshold

Connectivity via isolated vertices

We use the first and second moment methods to show that the
threshold function for connectivity in the Erdös-Rényi random
graph is log n

n
.

We prove this result by deriving the threshold function for the
presence of isolated vertices. Of course isolated vertices imply
a disconnected graph. What is less obvious: the two thresholds
actually coincide.

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications
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Illustration: Erdös-Rényi connectivity threshold

Erdös-Rényi with n = 100 and pn = 1/100
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Illustration: Erdös-Rényi connectivity threshold

Erdös-Rényi with n = 100 and pn = 2/100
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Illustration: Erdös-Rényi connectivity threshold

Erdös-Rényi with n = 100 and pn = 3/100
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Illustration: Erdös-Rényi connectivity threshold

Erdös-Rényi with n = 100 and pn = 4/100
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Illustration: Erdös-Rényi connectivity threshold

Erdös-Rényi with n = 100 and pn = 5/100
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Illustration: Erdös-Rényi connectivity threshold

Erdös-Rényi with n = 100 and pn = 6/100
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Illustration: Erdös-Rényi connectivity threshold

Threshold for isolated vertices I

Theorem

“Not having an isolated vertex” has threshold function
log n

n
.

Proof: Let Xn be the number of isolated vertices in the Erdös-Rényi graph
Gn ⇠ Gn,pn

. Using 1 � x  e
�x for all x 2 R,

En,pn
[Xn] = n(1 � pn)

n�1  e
log n�(n�1)pn ! 0,

when pn � log n

n
. So the first moment method gives one direction:

Pn,pn
[Xn > 0] ! 0 when pn � log n

n
.

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications
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Illustration: Erdös-Rényi connectivity threshold

Threshold for isolated vertices II

Proof (continued): Let Aj be the event that vertex j is isolated and
Xn =

P
j
1Aj

. By the computation above, using 1 � x � e
�x�x

2
for

x 2 [0, 1/2],

µn = En,pn
[Xn] =

X

i

Pn,pn
[Ai ] = n(1 � pn)

n�1 � e
log n�npn�np

2
n ,

which goes to +1 when pn ⌧ log n

n
.

Note that for all i 6= j

Pn,pn
[Ai \ Aj ] = (1 � pn)

2(n�2)+1,

so that

�n = En,pn
[X 2

n ]� En,pn
[Xn] =

X

i 6=j

Pn,pn
[Ai \ Aj ] = n(n � 1)(1 � pn)

2n�3.

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications
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Illustration: Erdös-Rényi connectivity threshold

Threshold for isolated vertices III

Proof (continued): We have

En,pn
[X 2

n ]
(En,pn

[Xn])2 =
µn + �n

µ2
n

 n(1 � pn)n�1 + n
2(1 � pn)2n�3

n2(1 � pn)2n�2

 1
n(1 � pn)n�1 +

1
1 � pn

,

which is 1 + o(1) when pn ⌧ log n

n
.

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications
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Illustration: Erdös-Rényi connectivity threshold

Threshold for connectivity I

Theorem

Connectivity has threshold function
log n

n
.

Proof: We start with the easy direction. If pn ⌧ log n

n
, the previous result

implies that the graph has isolated vertices, and therefore is disconnected,
with probability going to 1 as n ! +1.

Now assume that pn � log n

n
. Let Dn be the event that Gn is disconnected. To

bound Pn,pn
[Dn], for k 2 {1, . . . , n/2} we let Yk be the number of subsets of k

vertices that are disconnected from all other vertices in the graph. Then, by
the first moment method,

Pn,pn
[Dn]  Pn,pn

2

4
n/2X

k=1

Yk > 0

3

5 
n/2X

k=1

En,pn
[Yk ].

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications
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Illustration: Erdös-Rényi connectivity threshold

Threshold for connectivity II

Proof (continued): Using that k  n/2 and
�

n

k

�
 n

k ,

En,pn
[Yk ] =

 
n

k

!
(1 � pn)

k(n�k) 
⇣

n(1 � pn)
n/2
⌘k

.

The expression in parentheses is o(1) when pn � log n

n
. Summing over k ,

Pn,pn
[Dn] 

+1X

k=1

⇣
n(1 � pn)

n/2
⌘k

= O(n(1 � pn)
n/2) = o(1),

where we used that the geometric series (started at k = 1) is dominated
asymptotically by its first term.
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Illustration: Erdös-Rényi connectivity threshold

Go deeper

More details and examples on the first and second moment
methods at:

http://www.math.wisc.edu/˜roch/mdp/

For more on random graphs in general, see e.g. (available
online):

Random Graphs and Complex Networks. Vol. I and II by
van der Hofstad
Random Graph Dynamics by Durrett

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications
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Chernoff-Cramér method

Epsilon-net arguments

Application: Community detection

1 Chernoff-Cramér method

2 Epsilon-net arguments

3 Application: Community detection
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Chernoff-Cramér method

Epsilon-net arguments

Application: Community detection

Moment-generating function

Definition

The moment-generating function of X is the function

MX (s) = E
h
e

sX

i
,

defined for all s 2 R where it is finite, which includes s = 0.

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications



Chernoff-Cramér method

Epsilon-net arguments

Application: Community detection

Chernoff-Cramér bound

Assume X is a centered (i.e. mean 0) random variable such that

MX (s) < +1 for s 2 (�s0, s0) for some s0 > 0. Exponentiating

within Markov’s inequality gives, for any � > 0 and s > 0,

P[X � �] = P[esX � e
s�]  MX (s)

es�
= exp [� {s� � X (s)}] ,

where  X (s) = log MX (s). The best exponent is

 ⇤
X
(�) = sup

s2R+

(s� � X (s)).

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications



Chernoff-Cramér method

Epsilon-net arguments

Application: Community detection

Chernoff-Cramér for sums of independent variables

Let Sn =
P

in
Xi , where the Xis are i.i.d. centered random

variables. Then

 Sn
(s) = logE[es

P
in

Xi ] = log

Y

in

E[esXi ] = n X1
(s)

Theorem

Assume MX1
(s) < +1 on s 2 (�s0, s0) for some s0 > 0. For

any � > 0,

P[Sn � �]  exp

✓
�n ⇤

X1

✓
�

n

◆◆
.

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications



Chernoff-Cramér method

Epsilon-net arguments

Application: Community detection

Example: Binomial

Let Zn be a binomial random variable with parameters n and p.

Recall that Zn is a sum of i.i.d. indicators Y1, . . . ,Yn and, letting

Xi = Yi � p and Sn = Zn � np,

 X1
(s) = logE[es(Y1�p)] = log

�
pe

s + (1 � p)
�
� ps.

For b 2 (0, 1 � p), letting a = b + p, direct calculation gives

 ⇤
X1

(b) = sup
s>0

(sb � (log
⇥
pe

s + (1 � p)
⇤
� ps))

= (1 � a) log
1 � a

1 � p
+ a log

a

p
=: D(akp),

achieved at sb = log
(1�p)a
p(1�a) . By the previous result, for � > 0,

P[Zn � np + �]  exp (�n D (p + �/nkp)) .

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications



Chernoff-Cramér method

Epsilon-net arguments

Application: Community detection

Sub-Gaussian variables I

Let X ⇠ N(0, ⌫) where ⌫ > 0 and note that

MX (s) =

Z +1

�1
e

sx 1p
2⇡⌫

e
� x

2

2⌫ dx =

Z +1

�1
e

s
2⌫
2

1p
2⇡⌫

e
� (x�s⌫)2

2⌫ dx

= exp

✓
s

2⌫
2

◆
,

so that straightforward calculus gives for � > 0

 ⇤
X
(�) = sup

s>0

(s� � s
2⌫/2) =

�2

2⌫
,

achieved at s� = �/⌫. Plugging  ⇤
X
(�) into Theorem 2 leads for

� > 0 to the bound

P[X � �]  exp

✓
��2

2⌫

◆
.
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Chernoff-Cramér method

Epsilon-net arguments

Application: Community detection

Sub-Gaussian variables II

We say that a centered random variable X is sub-Gaussian

with variance factor ⌫ > 0 if for all s 2 R

 X (s) 
s2⌫

2
,

which is denoted by X 2 G(⌫). By the Chernoff-Cramér bound

P [X  ��] _ P [X � �]  exp

✓
��2

2⌫

◆
,

where we used that X 2 G(⌫) implies �X 2 G(⌫).

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications



Chernoff-Cramér method

Epsilon-net arguments

Application: Community detection

Example: Back to the binomial

Theorem (Case p = 1/2)

Let X1, . . . ,Xn be independent {�1, 1}-valued random variables

with P[Xi = 1] = P[Xi = �1] = 1/2. Let Sn =
P

in
Xi . Then, for

any � > 0,

P[Sn � �]  e
��2/2n.

Proof: The moment-generating function of X1 can be bounded as follows

MX1
(s) =

e
s + e

�s

2
=
X

j�0

s
2j

(2j)!

X

j�0

(s2/2)j

j!
= e

s
2/2. (1)

So  Sn
(s) = n X1

(s)  s
2
n/2 and Sn 2 G(n).

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications



Chernoff-Cramér method

Epsilon-net arguments

Application: Community detection

Sub-Gaussian variables III

Theorem (General Hoeffding inequality)

Let X1, . . . ,Xn be independent centered random variables with

Xi 2 G(⌫i) for 0 < ⌫i < +1 and let (↵1, . . . ,↵n) 2 Rn. Let

Sn =
P

in
↵iXi . Then Sn 2 G(

P
n

i=1
↵2

i
⌫i) and for all � > 0,

P [Sn � �]  exp

 
� �2

2
P

n

i=1
↵2

i
⌫i

!
.

Proof: By independence,

 Sn
(s) =

X

in

 ↵i Xi
(s) =

X

in

 Xi
(s↵i) 

X

in

(s↵i)
2⌫i

2
=

s
2
P

in
↵2

i ⌫i

2
.
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Example: Bounded variables I

For bounded random variables, the previous inequality reduces

to a standard bound.

Theorem (Hoeffding’s inequality)

Let X1, . . . ,Xn be independent random variables where, for

each i, Xi takes values in [ai , bi ] with �1 < ai  bi < +1. Let

Sn =
P

in
Xi . For all � > 0,

P[Sn � ESn � �]  exp

 
� 2�2

P
in

(bi � ai)2

!
.
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Illustration: Maximum degree of Erdös-Rényi

Let Gn ⇠ Gn,p be an Erdös-Rényi graph with n vertices and

density pn = p 2 (0, 1). Let Di be the degree of vertex i and let

D⇤ = maxi Di . Note that Di is Bin(n � 1, p), i.e. a sum of

independent [0, 1]-variables, so by Hoeffding’s inequality

Pn,p[Di � (n � 1)p �
p
(1 + ")n log(n)/2]  e

�(1+") log n.

By a union bound

Pn,p[D
⇤ � (n � 1)p +

p
(1 + ")n log(n)/2]


X

i

Pn,p[Di � (n � 1)p �
p

(1 + ")n log(n)/2]

 n ⇥ n
�(1+") ! 0.
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Example: Bounded variables II

Proof: By the general Hoeffding inequality, it suffices to show that

Xi � EXi 2 G(⌫i) with ⌫i =
1

4
(bi � ai)

2
. We give a quick proof of a weaker

version that uses a trick called symmetrization. Suppose the Xis are centered

and satisfy |Xi |  ci for some ci > 0. Let X
0
i be an independent copy of Xi

and let Zi be an independent uniform in {�1, 1}. By Jensen’s inequality

E
h
e

sXi

i
= E

h
e

sE[Xi�X
0
i
| Xi ]
i
 E

h
E
h
e

s(Xi�X
0
i
)
���Xi

ii
= E

h
e

s(Xi�X
0
i
)
i
.

By the symmetry of Xi � X
0
i , we then get

E
h
e

s(Xi�X
0
i
)
i
= E

h
e

sZi (Xi�X
0
i
)
i
= E

h
E
h
e

sZi (Xi�X
0
i
)
���Xi ,X

0
i

ii

 E
h
E
h
e
(s(Xi�X

0
i
))2/2

���Xi ,X
0
i

ii
 E

h
e
(s(Xi�X

0
i
))2/2

i
 e

�2c
2

i
s

2

.
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Many more concentration inequalities

Bernstein’s inequality

Azuma’s inequality

Matrix inequalities
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1 Chernoff-Cramér method

2 Epsilon-net arguments

3 Application: Community detection
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Epsilon-nets I

Exponential tail inequalities are useful, among other things, to

study the deviations of suprema of random variables. When the

supremum is over an infinite index set, one way to proceed is to

apply a tail inequality to a sufficiently dense finite subset of the

index set, and then extend the resulting bound by continuity.

This is referred to as an "-net argument.
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Epsilon-nets II

Definition ("-net)

Let S be a subset of a metric space (M, ⇢) and let " > 0. A

collection of points N ✓ S is called an "-net of S if all pairs of

points in N are at distance greater than " and N is maximal by

inclusion in S. In particular for all z 2 S, infy2N ⇢(z, y)  ". The

covering number of S, denoted by N (S, ⇢, "), is the smallest

cardinality of an "-net of S.

The definition of an "-net immediately suggests an algorithm for

constructing one. Start with N = ; and successively add a point

to N at distance at least " from all other previous points until

that is not possible to do so anymore. (Provided S is compact,

this procedure will terminate after a finite number of steps.)
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Epsilon-nets by picture
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Illustration: Spectral norm of random matrix I

For a m ⇥ n matrix A 2 Rm⇥n, recall that the spectral norm is

defined as

kAk := sup

x2Rn\{0}

kAxk2

kxk2

= sup

x2Sn�1

kAxk2 = sup

x2Sn�1

y2Sm�1

hAx, yi,

where Sn�1 is the sphere of radius 1 around the origin in Rn.

(To see the rightmost equality above, note that Cauchy-Schwarz implies

hAx, yi  kAxk2kyk2 and that one can take y = Ax/kAxk2 for any x such that

Ax 6= 0 in the rightmost expression.)
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Illustration: Spectral norm of random matrix II

Theorem

Let A 2 Rm⇥n be a random matrix whose entries are centered,

independent and sub-Gaussian with variance factor ⌫. Then

there exist a constant 0 < C < +1 such that, for all t > 0,

kAk  C
p
⌫(
p

m +
p

n + t),

with probability at least 1 � e�t2

.

Without independence of the entries, the spectral norm can be

much larger. Say A is all-(+1) or all-(�1) with equal probability.

Taking the vector x = (1/
p

n, . . . , 1/
p

n) shows that kAk � n

with probability 1.
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Illustration: Spectral norm of random matrix III

Proof: We seek to bound

kAk = sup

x2Sn�1

y2Sm�1

hAx, yi = sup

x2Sn�1

y2Sm�1

X

i,j

xi yjAij ,

where we note that the last quantity is a linear combination of independent

variables. Fix " = 1/4. We proceed in two steps:

1 We first apply the general Hoeffding inequality to control the deviations

of the supremum restricted to "-nets N and M of Sn�1
and Sm�1

.

2 We then extend the bound to the full supremum by continuity.
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Back to "-nets: Sphere

Let Sk�1 be the sphere of radius 1 centered around the origin in

Rk with the Euclidean metric. Let 0 < " < 1. We claim that

N (S, ⇢, ") 
✓

3

"

◆k

.

Let N be any "-net of S. The balls of radius "/2 around points

in N, {Bk (xi , "/2) : xi 2 N}, satisfy two properties:

1 Pairwise disjoint: if z 2 Bk (xi , "/2) \ Bk (xj , "/2), then

kxi � xjk2  kxi � zk2 + kxj � zk2  ", a contradiction.

2 Contained in Bk (0, 3/2): if z 2 Bk (xi , "/2), then

kzk2  kz � xik2 + kxik  "/2 + 1  3/2.

The volume of a ball of radius is "/2 is
⇡k/2("/2)k

�(k/2+1) and that of a

ball of radius 3/2 is
⇡k/2(3/2)k

�(k/2+1) . Divide one by the other.
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Illustration: Spectral norm of random matrix IV

Lemma

Let N and M be as above. For C large enough, for all t > 0,

P

2

4max
x2N

y2M

hAx, yi � 1

2
C
p
⌫(
p

m +
p

n + t)

3

5  e
�t

2

.

Proof: By the general Hoeffding inequality, hAx, yi is sub-Gaussian with

variance factor

X

i,j

(xiyj)
2 ⌫ = kxk2

2 kyk2

2 ⌫ = ⌫,

for all x 2 N and y 2 M. In particular, for all � > 0,

P [hAx, yi � �]  exp

✓
��2

2⌫

◆
.
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Illustration: Spectral norm of random matrix V

Proof of lemma (continued): Hence, by a union bound over N and M,

P

2

4max
x2N

y2M

hAx, yi � 1

2
C
p
⌫(
p

m +
p

n + t)

3

5


X

x2N

y2M

P

hAx, yi � 1

2
C
p
⌫(
p

m +
p

n + t)

�

 |N||M| exp

 
� 1

2⌫

⇢
1

2
C
p
⌫(
p

m +
p

n + t)

�2
!

 12
n+m

exp

✓
�C

2

8

n
m + n + t

2)
o◆

 e
�t

2

,

for C
2/8 = log 12 � 1, where in the third inequality we ignored all

cross-products since they are non-negative.
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Illustration: Spectral norm of random matrix VI

Lemma

For any "-nets N and M of Sn�1
and Sm�1

respectively, the following

inequalities hold

sup
x2N

y2M

hAx, yi  kAk  1

1 � 2"
sup
x2N

y2M

hAx, yi.

Proof: The first inequality is immediate. For the second inequality, we will use

the following observation

hAx, yi � hAx0, y0i = hAx, y � y0i+ hA(x � x0), y0i.

Fix x 2 Sn�1
and y 2 Sm�1

such that hAx, yi = kAk, and let x0 2 N and

y0 2 M such that

kx � x0k2  " and ky � y0k2  ".
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Illustration: Spectral norm of random matrix VII

Proof of lemma (continued): Then the inequality above, Cauchy-Schwarz and

the definition of the spectral norm imply

kAk � hAx0, y0i  kAkkxk2ky � y0k2 + kAkkx � x0k2ky0k2  2"kAk.

Rearranging gives the claim.
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Clustering in Euclidean space
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Clustering in graphs
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Reducing the second problem to the first one
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Stochastic blockmodel with two balanced blocks

Definition

Let V = [n] with n even, let V1 = {1, . . . , n/2} and

V2 = {n/2 + 1, . . . , n}, and let 0 < q < p < 1. We draw a graph

G = (V ,E) at random as follows. For each pair x 6= y in V , the

edge {x , y} is in E with probability:

p if x , y 2 V1, or x , y 2 V2;

q if x 2 V1 and y 2 V2, or x 2 V2 and y 2 V1;

independently of all other edges. We write G ⇠ SBMn,p,q and

we denote the corresponding measure by Pn,p,q.

Community detection problem: Given G (without the node

labels), output V1, V2 (possibly approximately).
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Stochastic blockmodel by picture
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Expected adjacency matrix

Let G ⇠ SBMn,p,q and let A be the adjacency matrix of G.

Theorem

Let D = En,p,q[A]. Then

D = n
p + q

2
u1uT

1 + n
p � q

2
u2uT

2 � p I,

where u1 = 1p
n
(1, . . . , 1)T and u2 = 1p

n
(1, . . . , 1,�1, . . . ,�1)T .

Proof: Note that D is a block matrix with diagonal blocks all-p and

off-diagonal blocks all-q, all of size n/2 ⇥ n/2, with the exception of the

diagonal which is all-0.

Idea: Compute the second eigenvector of A and cluster by sign.
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Spectral clustering: a positive result

Theorem

Let G ⇠ SBMn,p,q and let A be the adjacency matrix of G. Let

µ = min
�

q, p�q

2

 
> 0. Clustering according to the sign of the

second eigenvector of A identifies the two communities of G

with probability at least 1 � e�n, except for C/µ2 misclassified

nodes for some constant C > 0.
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Matrix perturbation

Theorem (A version of Davis-Kahan)

Let S and T be symmetric n ⇥ n matrices. Let �i(S) be the i-th

largest eigenvalue of S with corresponding unit eigenvector

vi(S) (and similarly for T ). If

� := min
j 6=i

|�i(S)� �j(S)| > 0,

then there is ✓ 2 {+1,�1} such that

kvi(S)� ✓ vi(T )k2  4kS � Tk
�

.
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Bounding the spectral norm

Lemma

Let G ⇠ SBMn,p,q, let A be the adjacency matrix of G and let

D = En,p,q[A]. Then, there is a constant C > 0 such that

kA � Dk  C
p

n,

with probability at least 1 � e�n.

Proof: The entries of R are centered, independent and sub-Gaussian with

variance factor 1/4.
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Spectral clustering: proof I

Proof of spectral clustering theorem: The eigenvalues of D are

n
p + q

2
� p, n

p � q

2
� p, �p,

so �2(D) = n
p�q

2
� p and

� = min
j 6=2

|�2(D)� �j(D)| = min

n
n

p � q

2
, n q

o
=: n µ > 0.

By Davis-Kahan and the previous lemma, with probability at least 1 � e
�n

,

there is ✓ 2 {+1,�1} such that

kv2(D)� ✓ v2(A)k2  4C
p

n

n µ
 C

0
p

n µ
.

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications



Chernoff-Cramér method

Epsilon-net arguments

Application: Community detection

Spectral clustering: proof II

Proof of spectral clustering theorem (continued): Put differently,

X

i

��pn (v2(D))i �
p

n ✓ (v2(A))i

��2  (C0)2

µ2
.

If the signs of (v2(D))i and ✓ (v2(A))i disagree, then the i-th term in the sum

above is � 1. So there can be at most (C0)2/µ2
of those. That establishes

the desired bound on the number of misclassified nodes.
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Go deeper

More details and examples on tail bounds at:

http://www.math.wisc.edu/˜roch/mdp/

For more on concentration in general, see e.g. (available

online):

High-dimensional probability: An introduction with

applications in data science by Vershynin

Probability in High Dimension by van Handel

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications
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Random walk on a network

Definition
Let G = (V ,E) be a graph. Let c : E ! R+ be a positive edge
weight function on G. We call N = (G, c) a network. Random
walk on N is the Markov chain on V , started at an arbitrary
vertex, which at each time picks a neighbor of the current state
proportionally to the weight of the corresponding edge.
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Transition matrix

Let (Xt) be a a Markov chain on V and let

Pt(x , y) := P[Xt = y |X0 = x ].

The one-step probabilities P(x , y) := P1(x , y) are the elements
of its transition matrix P = (P(x , y))x ,y . We have

Pµ[X0 = x0, . . . ,Xt = xt ] = µ(x0)P(x0, x1) · · ·P(xt�1, xt),

and Pt(x , y) = (Pt)x ,y .
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Stationary distribution I

Definition (Stationary distribution)
Let (Xt) be a Markov chain with transition matrix P. A
stationary measure ⇡ is a measure such that

X

x2V

⇡(x)P(x , y) = ⇡(y), 8y 2 V ,

or in matrix form ⇡ = ⇡P. We say that ⇡ is a stationary
distribution if in addition ⇡ is a probability measure.

When P is irreducible, i.e. 8x , y , 9t s.t. Pt(x , y) > 0, then the
stationary distribution is unique and positive. This is the case
for a random walk on a connected network.
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Stationary distribution II

Definition (Reversible chain)
A transition matrix P is reversible w.r.t. a measure ⌘ if
⌘(x)P(x , y) = ⌘(y)P(y , x) for all x , y 2 V . By summing over y ,
one sees such a measure is necessarily stationary.

Let (Xt) be random walk on a network N = (G, c). Then (Xt) is
reversible w.r.t. ⌘(v) := c(v), where

c(v) :=
X

x⇠v
c(v , x).

If all edge weights are 1, then ⌘(v) := �(v).
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Convergence I

A transition matrix P is aperiodic if, for all x , Pt(x , x) > 0 for all
sufficiently large t . The lazy walk on N is the Markov chain
that, at each time, stays put with probability 1/2 or else takes a
step according to the random walk on N . This modified walk is
aperiodic.

Theorem (Convergence to stationarity)
Suppose P is irreducible, aperiodic and has stationary
distribution ⇡. Then, for all x , y, Pt(x , y) ! ⇡(y) as t ! +1.
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Convergence II

For probability measures µ, ⌫ on V , let their total variation
distance be kµ� ⌫kTV := supA✓V |µ(A)� ⌫(A)|.

Definition (Mixing time)
The mixing time is tmix(") := min{t � 0 : d(t)  "}, where
d(t) := maxx2V kPt(x , ·)� ⇡(·)kTV.
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Other useful random walk quantities

Hitting times
Cover times
Heat kernels
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Application: Bayesian image analysis I
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Application: Bayesian image analysis II
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Application: Undirected graphical models I

Definition
Let S be a finite set and let G = (V ,E) be a finite graph.
Denote by K the set of all cliques of G. A positive probability
measure µ on X := SV is called a Gibbs random field if there
exist clique potentials �K : SK

! R, K 2 K, such that

µ(x) =
1
Z

exp

 
X

K2K

�K (xK )

!
,

where xK is x restricted to the vertices of K and Z is a
normalizing constant.
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Application: Undirected graphical models II

Example
For � > 0, the ferromagnetic Ising model with inverse
temperature � is the Gibbs random field with S := {�1,+1},
�{i,j}(�{i,j}) = ��i�j and �K ⌘ 0 if |K | 6= 2. The function
H(�) := �

P
{i,j}2E �i�j is known as the Hamiltonian. The

normalizing constant Z := Z(�) is called the partition function.
The states (�i)i2V are referred to as spins.
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Application: Back to Bayesian image analysis II

We assume the prior (i.e. distribution of hidden variables) is an
Ising model µ�(�) on the L ⇥ L grid G = (V ,E). The observed
variables ⌧ are independent flips of the corresponding hidden
variables with flip probability q 2 (0, 1/2), i.e.,

P[⌧ |�] =
Y

i2V

(1 � q)1⌧i=�i q1⌧i 6=�i

= exp

 
X

i2V

⇢
log(1 � q)

1 + �i⌧i
2

+ log(q)
1 � �i⌧i

2

�!

= exp

 
X

i2V

�i
⌧i
2

log
1 � q

q
+ Y(q)

!
.
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Application: Back to Bayesian image analysis III

By Bayes’ rule, the posterior is then given by

P[� | ⌧ ] =
P[⌧ |�]µ�(�)P
� P[⌧ |�]µ�(�)

=
1

Z(�, q)
exp

0

@�
X

i⇠j

�i�j +
X

i

hi�i

1

A ,

where hi =
⌧i
2 log 1�q

q .
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Application: Gibbs sampling I

Definition
Let µ� be the Ising model with inverse temperature � > 0 on a
graph G = (V ,E). The (single-site) Glauber dynamics is the
Markov chain on X := {�1,+1}V which at each time:

selects a site i 2 V uniformly at random, and
updates the spin at i according to µ� conditioned on
agreeing with the current state at all sites in V\{i}.
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Application: Gibbs sampling II

Specifically, for � 2 {�1,+1}, i 2 ⇤, and � 2 X , let �i,� be the
configuration � with the spin at i being set to �. Let n = |V | and
Si(�) :=

P
j⇠i �j . Then

Q�(�,�
i,�) :=

1
n

1
Z(�) exp

⇣
�
P

j⇠k �
i,�
j �i,�

k

⌘

P
i 0=�,+

1
Z(�) exp

⇣
�
P

j⇠k �
i 0,�
j �i 0,�

k

⌘

=
1
n
·

e��Si (�)

e��Si (�) + e�Si (�)
.

The Glauber dynamics is reversible w.r.t. µ�. How quickly does
the chain approach µ�?
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Application: Gibbs sampling III

Proof of reversibility: This chain is clearly irreducible. For all � 2 X and i 2 V ,
let S 6=i(�) := H(�i,+) + Si(�) = H(�i,�)� Si(�). We have

µ�(�
i,�)Q�(�

i,�,�i,+) =
e��S6=i (�)e��Si (�)

Z(�)
·

e�Si (�)

n[e��Si (�) + e�Si (�)]

=
e��S6=i (�)

nZ(�)[e��Si (�) + e�Si (�)]

=
e��S6=i (�)e�Si (�)

Z(�)
·

e��Si (�)

n[e��Si (�) + e�Si (�)]

= µ�(�
i,+)Q�(�

i,+,�i,�).
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Eigenbasis I

Let P be the transition matrix of an irreducible, reversible Markov chain with
stationary distribution ⇡ > 0. Define

hf , gi⇡ :=
X

x2V

⇡(x)f (x)g(x), kfk2
⇡ := hf , f i⇡,

(Pf )(x) :=
X

y

P(x , y)f (y).

We let `2(V ,⇡) be the Hilbert space of real-valued functions on V equipped
with the inner product h·, ·i⇡ (equivalent to the vector space (Rn, h·, ·i⇡)).

Theorem

There is an orthonormal basis of `2(V ,⇡) formed of eigenfunctions {fj}n
j=1 of

P with real eigenvalues {�j}
n
j=1. We can take f1 ⌘ 1 and �1 = 1.
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Eigenbasis II
Proof: Let D⇡ be the diagonal matrix with ⇡ on the diagonal. By reversibility,

M(x , y) :=

s
⇡(x)
⇡(y)

P(x , y) =

s
⇡(y)
⇡(x)

P(y , x) =: M(y , x).

So M = (M(x , y))x,y = D1/2
⇡ PD�1/2

⇡ is symmetric and has orthonormal
eigenvectors {�j}

n
j=1 and real eigenvalues {�j}

n
j=1. Define fj := D�1/2

⇡ �j . Then

Pfj = PD�1/2
⇡ �j = D�1/2

⇡ D1/2
⇡ PD�1/2

⇡ �j = D�1/2
⇡ M�j = �jD�1/2

⇡ �j = �j fj ,

and

hfi , fji⇡ = hD�1/2
⇡ �i ,D�1/2

⇡ �ji⇡

=
X

x

⇡(x)[⇡(x)�1/2�i(x)][⇡(x)�1/2�j(x)] = h�i ,�ji.

Because P is stochastic, the all-one vector is a right eigenvector of P with
eigenvalue 1.
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Spectral decomposition I

Theorem
Let {fj}n

j=1 be the eigenfunctions of a reversible and irreducible
transition matrix P with corresponding eigenvalues {�j}

n
j=1, as

defined previously. Assume �1 � · · · � �n. We have the
decomposition

Pt(x , y)
⇡(y)

= 1 +
nX

j=2

fj(x)fj(y)�t
j .
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Spectral decomposition II

Proof: Let F be the matrix whose columns are the eigenvectors {fj}n
j=1 and let

D� be the diagonal matrix with {�j}
n
j=1 on the diagonal. Using the notation of

the eigenbasis theorem,

D1/2
⇡ PtD�1/2

⇡ = Mt = (D1/2
⇡ F )Dt

�(D
1/2
⇡ F )0,

which after rearranging becomes

PtD�1
⇡ = FDt

�F 0.
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Eigenvalues

Lemma
Any eigenvalue � of P satisfies |�|  1.

Proof: Pf = �f =) |�|kfk1 = kPfk1 = maxx |
P

y P(x , y)f (y)|  kfk1

We order the eigenvalues 1 � �1 � · · · � �n � �1.
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Spectral gap

Definition (Spectral gap)
The (absolute) spectral gap is �⇤ := 1 � |�2| _ |�n|. The
relaxation time is defined as trel := ��1

⇤ .

Note that the eigenvalues of the lazy version 1
2P + 1

2 I of P are
{

1
2(�j + 1)}n

j=1 which are all nonnegative.

Theorem
Let P be reversible, irreducible, and aperiodic with stationary
distribution ⇡. Let ⇡min = minx ⇡(x). For all " > 0,

(trel � 1) log
✓

1
2"

◆
 tmix(")  log

✓
1

"⇡min

◆
trel.
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Example: Random walk on the cycle I

Consider random walk on an n-cycle. That is,
V := {0, 1, . . . , n � 1} and P(x , y) = 1/2 if and only if
|x � y | = 1 mod n.

Lemma (Eigenbasis on the cycle)
For j = 0, . . . , n � 1, the function

fj(x) := cos
✓

2⇡jx
n

◆
, x = 0, 1, . . . , n � 1,

is an eigenfunction of P with eigenvalue

�j := cos
✓

2⇡j
n

◆
.
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Example: Random walk on the cycle II

Proof: Note that, for all i , x ,

X

y

P(x , y)fj(y) =
1
2


cos

✓
2⇡j(x � 1)

n

◆
+ cos

✓
2⇡j(x + 1)

n

◆�

=
1
2

"
ei 2⇡j(x�1)

n + e�i 2⇡j(x�1)
n

2
+

ei 2⇡j(x+1)
n + e�i 2⇡j(x+1)

n

2

#

=

"
ei 2⇡jx

n + e�i 2⇡jx
n

2

#"
ei 2⇡j

n + e�i 2⇡j
n

2

#

=


cos

✓
2⇡jx

n

◆�
cos

✓
2⇡j
n

◆�

= cos
✓

2⇡j
n

◆
fj(x).
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Example: Random walk on the cycle III

Theorem (Relaxation time on the cycle)
The relaxation time for lazy random walk on the n-cycle is

trel =
2

1 � cos
�2⇡

n
� = ⇥(n2).

Proof: The eigenvalues are 1
2

h
cos

⇣
2⇡j
n

⌘
+ 1
i
. The spectral gap is therefore

1
2 (1 � cos

� 2⇡
n

�
). By a Taylor expansion,

1 � cos
✓

2⇡
n

◆
=

4⇡2

n2 + O(n�4).

Since ⇡min = 1/n, we get tmix(") = O(n2 log n) and
tmix(") = ⌦(n2).

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications



Review of Markov chains
Bounding the mixing time via the spectral gap

Bottleneck ratio and Cheeger’s inequality
Application: Gibbs sampling at low temperature

1 Review of Markov chains

2 Bounding the mixing time via the spectral gap

3 Bottleneck ratio and Cheeger’s inequality

4 Application: Gibbs sampling at low temperature
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Back to eigenvalues I

Theorem (Rayleigh’s quotient)
Let P be irreducible and reversible with respect to ⇡. The
second largest eigenvalue is characterized by

�2 = sup

(
hf ,Pf i⇡
hf , f i⇡

: f 2 `2(V ,⇡),
X

x
⇡(x)f (x) = 0

)
.

Proof: Recalling that f1 ⌘ 1, the condition
P

x ⇡(x)f (x) = 0 is equivalent to
hf1, f i⇡ = 0.
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Back to eigenvalues II

For such an f , the eigendecomposition is

f =
nX

j=1

hf , fji⇡fj =
nX

j=2

hf , fji⇡fj ,

and

Pf =
nX

j=2

hf , fji⇡�j fj ,

so that

hf ,Pf i⇡
hf , f i⇡

=

Pn
i=2
Pn

j=2hf , fii⇡hf , fji⇡�jhfi , fji⇡
Pn

j=2hf , fji2
⇡

=

Pn
j=2hf , fji

2
⇡�j

Pn
j=2hf , fji2

⇡

 �2.

Taking f = f2 achieves the supremum.
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Dirichlet energy I

Note that

2hf , (I � P)f i⇡

=
X

x

⇡(x)f (x)2 +
X

y

⇡(y)f (y)2
� 2

X

x

⇡(x)f (x)f (y)P(x , y)

=
X

x,y

f (x)2⇡(x)P(x , y) +
X

x,y

f (y)2⇡(y)P(y , x)� 2
X

x

⇡(x)f (x)f (y)P(x , y)

=
X

x,y

f (x)2⇡(x)P(x , y) +
X

x,y

f (y)2⇡(x)P(x , y)� 2
X

x

⇡(x)f (x)f (y)P(x , y)

= 2E(f )

where the Dirichlet energy is defined as (using c(x , y) = ⇡(x)P(x , y))

E(f ) := 1
2

X

x,y

c(x , y)[f (x)� f (y)]2.
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Dirichlet energy II

We note further that if
P

x ⇡(x)f (x) = 0 then

hf , f i⇡ = hf � h1, f i⇡, f � h1, f i⇡i⇡ = Var⇡[f ],

where the last expression denotes the variance under ⇡. So the variational
characterization of �2 translates into

� 
E(f )

Var⇡[f ]
=

1
2

P
x,y c(x , y)[f (x)� f (y)]2

Var⇡[f ]
,

where � = 1 � �2, for all f such that
P

x ⇡(x)f (x) = 0 (in fact for any f by
considering f � h1, f i⇡ and noticing that both numerator and denominator are
unaffected by adding a constant).
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Bottleneck ratio I

Let N = (G, c) be a finite or infinite network with G = (V ,E).
For a subset S ✓ V , we let the edge boundary of S be

@ES := {e = (x , y) 2 E : x 2 S, y 2 Sc
}.

Let g : E ! R+ be an edge weight function. For F ✓ E we
define

|F |g :=
X

e2F

g(e).

For S ✓ V , we let

�E(S; g, h) :=
|@ES|g

|S|h
.
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Bottleneck ratio II

For disjoint subsets S0,S1 ✓ V , we let
c(S0,S1) :=

P
x02S0

P
x12S1

c(x0, x1).

Definition (Bottleneck ratio)
For a subset of states S ✓ V , the bottleneck ratio of S is

�E(S; c,⇡) =
|@ES|c

|S|⇡
=

c(S,Sc)

⇡(S)
.

The bottleneck ratio of N is

�⇤ := min
⇢
�E(S; c,⇡) : S ✓ V , 0 < ⇡(S) 

1
2

�
.
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A bottleneck
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Example: Clique

Example

Let G = Kn be the clique on n vertices and assume c(x , y) = 1
for all x 6= y . For simplicity, take n even. Then for a subset S of
size |S| = k ,

�E(S; c,⇡) =
|@ES|c

|S|⇡
=

k(n � k)
k/n

=
n � k

n
.

Thus, the minimum is achieved for k = n/2 and

�⇤ =
n � n/2

n
=

1
2
.
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Cheeger’s inequality

Theorem (Spectral gap and the bottleneck ratio)

Let P be a finite, irreducible, reversible Markov transition matrix
and let � = 1 � �2 be the spectral gap of P. Then

�2
⇤

2
 �  2�⇤.

In terms of the relaxation time trel = ��1, these inequalities
have an intuitive meaning: the presence or absence of a strong
bottleneck in the state space leads to slow or fast mixing
respectively.
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Cheeger’s inequality: Proof I

Proof: We only prove the upper bound. To get an upper bound on For S ✓ V
with ⇡(S) 2 (0, 1/2], we let

fS(x) :=

8
<

:
�

q
⇡(Sc )
⇡(S) , x 2 S,

q
⇡(S)
⇡(Sc ) , x 2 Sc .

Then

X

x

⇡(x)fS(x) = ⇡(S)

"
�

s
⇡(Sc)
⇡(S)

#
+ ⇡(Sc)

"s
⇡(S)
⇡(Sc)

#
= 0,

and

X

x

⇡(x)fS(x)2 = ⇡(S)

"
�

s
⇡(Sc)
⇡(S)

#2

+ ⇡(Sc)

"s
⇡(S)
⇡(Sc)

#2

= 1.
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Cheeger’s inequality:Proof II

Proof (continued): From the variational characterization,

� 
E(fS)

Var⇡[fS]
= E(fS)

=
1
2

X

x,y

c(x , y)[fS(x)� fS(y)]2 =
X

x2S,y2Sc

c(x , y)

"s
⇡(Sc)
⇡(S)

+

s
⇡(S)
⇡(Sc)

#2

=
c(S,Sc)

⇡(S)⇡(Sc)
 2c(S,Sc)

⇡(S)
.

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications



Review of Markov chains
Bounding the mixing time via the spectral gap

Bottleneck ratio and Cheeger’s inequality
Application: Gibbs sampling at low temperature

Example: Cycle I

Let (Zt) be lazy random walk on the n-cycle. Assume n is even.
Consider a subset of vertices S. Note by symmetry ⇡(S) = |S|

n .
Moreover, for all i ⇠ j , c(i , j) = ⇡(i)P(i , j) = 1

n ·
1
2 ·

1
2 = 1

4n .
Among all sets of size |S|, consecutive vertices minimize the
size of the boundary. So

�⇤ 
2 1

4n
`
n

=
1
2`

,

for all `  n/2. This expression is minimized for ` = n/2 so

�⇤ =
1
n
.
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Example: Cycle II

By Cheeger’s inequality,

1
2n2 =

�2
⇤

2
 �  2�⇤ =

2
n

and n
2
 trel = ��1

 2n2.

Thus
tmix(") � (trel � 1) log

✓
1
2"

◆
= ⌦(n),

and
tmix(")  log

✓
1

"⇡min

◆
trel = O(n2 log n).
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Background I

Let G = (V ,E) be a connected graph and X := {�1,+1}V .
Recall that the (ferromagnetic) Ising model on V with inverse
temperature � is the probability distribution over spin
configurations � 2 X given by

µ�(�) :=
1

Z(�)
e��H(�),

where
H(�) := �

X

i⇠j

�i�j ,

is the Hamiltonian and Z(�) :=
P

�2X e��H(�).
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Background II

The single-site Glauber dynamics of the Ising model is the
Markov chain on X which, at each time, selects a site i 2 V
uniformly at random and updates the spin �i according to µ�(�)
conditioned on agreeing with � at all sites in V\{i}. Specifically,
for � 2 {�1,+1}, i 2 V , and � 2 X , let �i,� be the configuration
� with the state at i being set to �. The transition matrix is

Q�(�,�
i,�) :=

1
n
·

e��Si (�)

e��Si (�) + e�Si (�)
=

1
n

⇢
1
2
+

1
2

tanh(��Si(�))

�
,

where
Si(�) :=

X

j⇠i

�j .

All other transitions have probability 0.
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Bottleneck ratio and Cheeger’s inequality
Application: Gibbs sampling at low temperature

Curie-Weiss model I

Let G = Kn be the complete graph on n vertices. In this case,
the Ising model is often referred to as the Curie-Weiss model. It
is customary to scale � with n. We define ↵ := �(n � 1).

Theorem (Curie-Weiss model: slow mixing at low temperature)

For ↵ > 1, tmix(") = ⌦(exp(r(↵)n)) for some function r(↵) > 0
not depending on n.
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Curie-Weiss model II

Proof: We only prove exponential mixing when ↵ is large enough. The idea of
the proof is to bound the bottleneck ratio. To simplify the proof, assume n is
odd. We denote the bottleneck ratio of the chain by �X

⇤ to avoid confusion
with the base graph G. Intuitively, because the spins tend to align strongly at
low temperature, it takes a considerable amount of time to travel from a
configuration with a majority of �1s to a configuration with a majority of +1s.
A natural place to look for a bottleneck is the set

S :=

(
� 2 X :

X

i

�i < 0

)
,

where the quantity m(�) :=
P

i �i is the magnetization.
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A bottleneck
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Curie-Weiss model III

Proof (continued): Note that the magnetization is positive if and only if a
majority of spins are +1. Observe further that µ�(S) = 1/2 by symmetry.
The bottleneck ratio is hence bounded by

�X

⇤ 

P
�2S,�0 /2S µ�(�)Q�(�,�

0)

µ�(S)
= 2

X

�2S,�0 /2S

µ�(�)Q�(�,�
0).

Because the Glauber dynamics changes a single spin at a time, in order for
� 2 S to be adjacent to a configuration �0 /2 S, it must be that

� 2 S�1 := {� 2 X : m(�) = �1} ,

and that �0 = �i,+ for some site i such that

i 2 M� := {i 2 V : �i = �1}.
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Curie-Weiss model IV
Proof (continued): Because the number of such sites is (n + 1)/2 on S�1,
that is, |M�| = (n + 1)/2 for all � 2 S�1, and the Glauber dynamics picks a
site uniformly at random, it follows that for � 2 S�1

X

�0 /2S

Q�(�,�
0) 

(n + 1)/2
n

=
1
2

✓
1 +

1
n

◆
.

Thus plugging this back

�X

⇤  2
X

�2S,�0 /2S

µ�(�)Q�(�,�
0)



✓
1 +

1
n

◆
µ�(S�1) = (1 + o(1))

X

�2S�1

e��H(�)

Z(�)

= (1 + o(1))
X

�2S�1

exp
⇣

↵
n�1

h�
|M�|

2

�
+
�
|Mc

�|

2

�
� |M�||Mc

�|

i⌘

Z(�)
.
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Curie-Weiss model V
Proof (continued): We bound Z(�) =

P
�2X

e��H(�) with the all-(�1) term

�X

⇤  (1 + o(1))
X

�2S�1

exp
⇣

↵
n�1

h�
|M�|

2

�
+
�
|Mc

�|

2

�
� |M�||Mc

�|

i⌘

exp
⇣

↵
n�1

h�
|M�|

2

�
+
�
|Mc

�|

2

�
+ |M�||Mc

�|

i⌘

= (1 + o(1))
X

�2S�1

exp
✓
�

2↵
n � 1

|M�||Mc
�|

◆

= (1 + o(1))

 
n

n/2

!
exp

✓
�

2↵
n � 1


n + 1

2

� 
n � 1

2

�◆

= (1 + o(1))
r

2
⇡n

2n(1 + o(1)) exp
✓
�
↵(n + 1)

2

◆

= C↵

r
2
⇡n

exp
⇣
�n
h↵

2
� ln 2

i⌘
,

for some constant C↵ > 0 depending on ↵.
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Bottleneck ratio and Cheeger’s inequality
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Curie-Weiss model VI

Proof (continued): Hence, by Cheeger’s inequality, for ↵ > 2 ln 2 there is
r(↵) > 0

tmix(") � (trel � 1) log
✓

1
2"

◆
� exp(r(↵)n) log

✓
1
2"

◆
.
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Go deeper

More details and examples on spectral techniques at:

http://www.math.wisc.edu/˜roch/mdp/

For more on mixing times in general, see e.g. (available online):

Markov Chains and Mixing Times by Levin, Peres and
Wilmer
Reversible Markov Chains and Random Walks on Graphs
by Aldous and Fill

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications
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Coupling

Definition
Let µ and ⌫ be probability measures on the same measurable
space (S,S). A coupling of µ and ⌫ is a probability measure �
on the product space (S ⇥ S,S ⇥ S) such that the marginals of
� coincide with µ and ⌫, i.e.,

�(A ⇥ S) = µ(A) and �(S ⇥ A) = ⌫(A), 8A 2 S.

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications



Definitions and basic properties
Couplings of Markov chains

Path coupling
Back to the application: Gibbs sampling at high temperature

Examples

Example (Bernoulli variables)

Let X and Y be Bernoulli random variables with parameters 0  q < r  1
respectively. That is, P[X = 0] = 1 � q and P[X = 1] = q, and similarly for Y .
Here S = {0, 1} and S = 2S .

- (Independent coupling) One coupling of X and Y is (X 0,Y 0) where
X 0 d

= X and Y 0 d
= Y are independent. Its law is

⇣
P[(X 0,Y 0) = (i , j)]

⌘

i,j2{0,1}
=

✓
(1 � q)(1 � r) (1 � q)r

q(1 � r) qr

◆
.

- (Monotone coupling) Another possibility is to pick U uniformly at
random in [0, 1], and set X 00 = 1{Uq} and Y 00 = 1{Ur}. The law of
coupling (X 00,Y 00) is

⇣
P[(X 00,Y 00) = (i , j)]

⌘

i,j2{0,1}
=

✓
1 � r r � q

0 q

◆
.
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Coupling inequality I

Let µ and ⌫ be probability measures on (S,S). Recall the
definition of total variation distance:

kµ� ⌫kTV := sup
A2S

|µ(A)� ⌫(A)| =
1
2

X

x2S

|µ(x)� ⌫(x)|.

Lemma
Let µ and ⌫ be probability measures on (S,S). For any
coupling (X ,Y ) of µ and ⌫,

kµ� ⌫kTV  P[X 6= Y ].
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Coupling inequality II

Proof:

µ(A)� ⌫(A) = P[X 2 A]� P[Y 2 A]
= P[X 2 A, X = Y ] + P[X 2 A, X 6= Y ]

� P[Y 2 A, X = Y ]� P[Y 2 A, X 6= Y ]

= P[X 2 A, X 6= Y ]� P[Y 2 A, X 6= Y ]

 P[X 6= Y ],

and, similarly, ⌫(A)� µ(A)  P[X 6= Y ]. Hence

|µ(A)� ⌫(A)|  P[X 6= Y ].
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Maximal coupling

In fact, the inequality is tight.

Lemma

Assume S is finite and let S = 2S. Let µ and ⌫ be probability
measures on (S,S). Then,

kµ� ⌫kTV = inf{P[X 6= Y ] : coupling (X ,Y ) of µ and ⌫}.
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Maximal coupling by picture

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications



Definitions and basic properties
Couplings of Markov chains

Path coupling
Back to the application: Gibbs sampling at high temperature

Example: Bernoullis

Example (Bernoulli variables, continued)

Let X and Y be Bernoulli random variables with parameters 0  q < r  1
respectively.Let µ and ⌫ be the laws of X and Y respectively. To construct the
maximal coupling as above, we note that

p :=
X

x

µ(x) ^ ⌫(x) = (1 � r) + q, 1 � p = ↵ = � := r � q,

A := {0}, B := {1},

(�min(x))x=0,1 =

✓
1 � r

(1 � r) + q
,

q
(1 � r) + q

◆
, �A(0) := 1, �B(1) := 1.

The law of the maximal coupling (X 000,Y 000) is
⇣
P[(X 000,Y 000) = (i , j)]

⌘

i,j2{0,1}
=

✓
1 � r r � q

0 q

◆
,

which coincides with the monotone coupling.
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Bounding the mixing time via coupling I

Let P be an irreducible, aperiodic transition matrix on V with
stationary distribution ⇡. Recall that, for a fixed 0 < " < 1/2, the
mixing time of P is

tmix(") := min{t : d(t)  "},

where
d(t) := max

x2V
kPt(x , ·)� ⇡kTV.

It will be easier to work with

d̄(t) := max
x ,y2V

kPt(x , ·)� Pt(y , ·)kTV,

which satisfies d(t)  d̄(t)  2d(t).
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Bounding the mixing time via coupling II

Definition (Markovian coupling)
A Markovian coupling of P is a Markov chain (Xt ,Yt)t on V ⇥ V
with transition matrix Q satisfying:

- For all x , y , x 0, y 0
2 V ,

X

z0

Q((x , y), (x 0, z 0)) = P(x , x 0),

X

z0

Q((x , y), (z 0, y 0)) = P(y , y 0).

We say that a Markovian coupling is coalescing if further:
- For all z 2 V , x 0

6= y 0 =) Q((z, z), (x 0, y 0)) = 0.
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Bounding the mixing time via coupling III

Let (Xt ,Yt) be a coalescing Markovian coupling of P. By the
coalescing condition, if Xs = Ys then Xt = Yt for all t � s. That
is, once (Xt) and (Yt) meet, they remain equal. Let ⌧coal be the
coalescence time (also called coupling time), i.e.,

⌧coal := inf{t � 0 : Xt = Yt}.

The key to the coupling approach to mixing times is the
following immediate consequence of the coupling inequality.
For any starting point (x , y),

kPt(x , ·)� Pt(y , ·)kTV  P(x ,y)[Xt 6= Yt ] = P(x ,y)[⌧coal > t ].
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Bounding the mixing time via coupling IV

Theorem (Bounding the mixing time: coupling method)

Let (Xt ,Yt) be a coalescing Markovian coupling of an
irreducible transition matrix P on a finite state space V with
stationary distribution ⇡. Then

d(t)  max
x ,y2V

P(x ,y)[⌧coal > t ].

In particular

tmix(")  inf
�

t � 0 : P(x ,y)[⌧coal > t ]  ", 8x , y
 
.
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Example: Hypercube I

Let (Zt) be lazy random walk on the n-dimensional hypercube
Zn

2 := {0, 1}n where i ⇠ j if ki � jk1 = 1. We denote the
coordinates of Zt by (Z (1)

t , . . . ,Z (n)
t ). The coupling (Xt ,Yt)

started at (x , y) is the following:
At each time t , pick a coordinate i uniformly at random in
[n], pick a bit value b in {0, 1} uniformly at random
independently of the coordinate choice.

Set both i coordinates to b, i.e., X (i)
t = Y (i)

t = b.
Clearly the chains coalesce when all coordinates have been
updated at least once.
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Example: Hypercube II

Lemma (Coupon collecting)
Let ⌧coll be the time it takes to update each coordinate at least
once. Then, for any c > 0,

P [⌧coll > dn log n + cne]  e�c .

Proof: Let Bi be the event that the i-th coordinate has not been updated by
time dn log n + cne. Then

P[⌧coll > dn log n + cne] 
X

i

P[Bi ] =
X

i

✓
1 � 1

n

◆dn log n+cne

 n exp
✓
�n log n + cn

n

◆
= e�c .
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Example: Hypercube III

Applying the coupling bound, we get

d(dn log n + cne)  max
x ,y2V

P(x ,y)[⌧coal > dn log n + cne]

 P[⌧coll > dn log n + cne]
 e�c .

Hence for c := c" > 0 large enough:

tmix(")  dn log n + c"ne.
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Path coupling method I
Path coupling is a method for constructing Markovian couplings from
“simpler” couplings. The building blocks are one-step couplings starting from
pairs of initial states that are close in some dissimilarity graph. Let (Xt) be an
irreducible Markov chain on a finite state space V with transition matrix P and
stationary distribution ⇡. Assume that we are given a dissimilarity graph
H0 = (V0,E0) on V0 := V with edge weights w0 : E0 ! R+. This graph need
not have the same edges as the transition graph of (Xt). We extend w0 to the
path metric

w0(x , y) := inf

(
m�1X

i=0

w0(xi , xi+1) : x = x0, . . . , xm = y is a path in H0

)
,

where the infimum is over all paths connecting x and y in H0. We call a path
achieving the infimum a minimum-weight path. Let

�0 := max
x,y

w0(x , y),

be the weighted diameter of H0.
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Path coupling method II

Theorem (Path coupling method)

Assume that w0(u, v) � 1, for all {u, v} 2 E0. Assume further
that there exists  2 (0, 1) such that:

- For all x , y with {x , y} 2 E0, there is a coupling (X ⇤,Y ⇤) of
P(x , ·) and P(y , ·) satisfying the contraction property

E[w0(X ⇤,Y ⇤)]  w0(x , y).

Then
d(t)  �0 

t ,

or

tmix(") 

⇠
log�0 + log "�1

log�1

⇡
.
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Path coupling method III
Proof: The crux of the proof is to extend the contraction property to arbitrary
pairs of vertices.

Lemma (Global coupling)

For all x , y 2 V, there is a coupling (X⇤,Y ⇤) of P(x , ·) and P(y , ·) such that
the contraction property holds.

Iterating the coupling in this claim immediately implies the existence of a
coalescing Markovian coupling (Xt ,Yt) of P such that

E(x,y)[w0(Xt ,Yt)] = E(x,y) [E[w0(Xt ,Yt) |Xt�1,Yt�1]]

 E(x,y) [w0(Xt�1,Yt�1)]  · · ·  t E(x,y)[w0(X0,Y0)]

= t w0(x , y)  t �0.

By assumption, 1{x 6=y}  w0(x , y) so that by the coupling inequality

d(t)  d̄(t)  max
x,y

P(x,y)[Xt 6= Yt ]  max
x,y

E(x,y)[w0(Xt ,Yt)]  t �0,

which implies the theorem.
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Global coupling lemma: proof by picture
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Setup I

Let G = (V ,E) be a finite, connected graph with maximum
degree �̄. Define X := {�1,+1}V . Recall that the
(ferromagnetic) Ising model on V with inverse temperature � is
the probability distribution over spin configurations � 2 X given
by

µ�(�) :=
1

Z(�)
e��H(�),

where
H(�) := �

X

i⇠j

�i�j ,

is the Hamiltonian and Z(�) :=
P

�2X e��H(�).
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Setup II

The single-site Glauber dynamics of the Ising model is the
Markov chain on X which, at each time, selects a site i 2 V
uniformly at random and updates the spin �i according to µ�(�)
conditioned on agreeing with � at all sites in V\{i}. Specifically,
for � 2 {�1,+1}, i 2 V , and � 2 X , let �i,� be the configuration
� with the state at i being set to �. Then the transition matrix is

Q�(�,�
i,�) :=

1
n
·

e��Si (�)

e��Si (�) + e�Si (�)
=

1
n

⇢
1
2
+

1
2

tanh(��Si(�))

�
,

where
Si(�) :=

X

j⇠i

�j .

All other transitions have probability 0. Recall that this chain is
irreducible and reversible with respect to µ�.
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Fast mixing at high temperature I

We show that the Glauber dynamics of the Ising model is fast
mixing when the inverse temperature � is small enough as a
function of the maximum degree.

Theorem (Glauber dynamics: fast mixing at high temperature)

If � < �̄�1 then =) tmix(") = O(n log n).

Proof: We use path coupling. Let H0 = (V0,E0) where V0 := X and
{�,!} 2 E0 if 1

2k� � !k1 = 1 with unit w0-weights on all edges. (To avoid
confusion, we reserve the notation ⇠ for adjacency in G.) Let {�,!} 2 E0

differ at coordinate i .
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Fast mixing at high temperature II
Proof (continued): We construct a coupling (X⇤,Y ⇤) of Q�(�, ·) and Q�(!, ·).
We first pick the same coordinate i⇤ to update. If i⇤ is such that all its
neighbors in G have the same state in � and !, i.e., if �j = !j for all j ⇠ i⇤, we
update X⇤ from � according to the Glauber rule and set Y ⇤ := X⇤. Note that
this includes the case i⇤ = i . Otherwise, i.e. if i⇤ ⇠ i , we proceed as follows.
From the state �, the probability of updating site i⇤ to state � 2 {�1,+1} is
given by 1

2 + 1
2 tanh(��Si(�)), and similarly for !. Unlike the previous case,

we cannot guarantee that the update is identical in both chains. To minimize
the chance of increasing the distance between the two chains, we perform a
maximal coupling of Bernoullis: we pick a uniform-[�1, 1] variable U and set

X⇤
i⇤ :=

(
+1, if U  tanh(�Si⇤(�))

�1, o.w.

and

Y ⇤
i⇤ :=

(
+1, if U  tanh(�Si⇤(!))

�1, o.w.
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Fast mixing at high temperature III

Proof (continued): We set X⇤
j := �j and Y ⇤

j := !j for all j 6= i⇤. The expected
distance between X⇤ and Y ⇤ is then

E[w0(X⇤,Y ⇤)] = 1 � 1
n|{z}
(a)

+
1
n

X

j⇠i

1
2
|tanh(�Sj(�))� tanh(�Sj(!))|

| {z }
(b)

,

where (a) corresponds to i⇤ = i in which case w0(X⇤,Y ⇤) = 0 and (b)
corresponds to i⇤ ⇠ i in which case w0(X⇤,Y ⇤) = 2 with probability
1
2 | tanh(�Si⇤(�))� tanh(�Si⇤(!))| by our coupling, and w0(X⇤,Y ⇤) = 1
otherwise. To bound (b), we note that for j ⇠ i

|tanh(�Sj(�))� tanh(�Sj(!))| = tanh(�(s + 2))� tanh(�s),

where s := Sj(�) ^ Sj(!). The derivative of tanh is maximized at 0 where it is
equal to 1. So the r.h.s. above is  2�.
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Definitions and basic properties
Couplings of Markov chains

Path coupling
Back to the application: Gibbs sampling at high temperature

Fast mixing at high temperature IV

Proof (continued): Plugging this back above we get

E[w0(X⇤,Y ⇤)]  1 � 1 � �̄�
n

 exp
✓
�1 � �̄�

n

◆
= w0(�,!),

where

 := exp
✓
�1 � �̄�

n

◆
< 1,

by assumption. The diameter of H0 is �0 = n. By the path coupling theorem,

tmix(") 
⇠

log�0 + log "�1

log�1

⇡
=

⇠
n(log n + log "�1)

1 � �̄�

⇡
,

which implies the claim.
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Definitions and basic properties
Couplings of Markov chains

Path coupling
Back to the application: Gibbs sampling at high temperature

Go deeper

More details and examples on coupling at:

http://www.math.wisc.edu/˜roch/mdp/

For more on mixing times in general, see e.g. (available online):

Markov Chains and Mixing Times by Levin, Peres and
Wilmer
Reversible Markov Chains and Random Walks on Graphs
by Aldous and Fill

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications
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Correlation decay
Application: Reconstructing Markov random fields

An undirected graphical model
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Correlation decay
Application: Reconstructing Markov random fields

Recall: Ising model

Let G = (V ,E) be a finite, connected graph with maximum
degree �̄ = d . Define X := AV where A = {�1,+1}. Recall
that the (ferromagnetic) Ising model on V with inverse
temperature � is the probability distribution over spin
configurations � 2 X given by

µ�(�) :=
1

Z(�)
e��H(�),

where
H(�) := �

X

i⇠j

�i�j ,

is the Hamiltonian and Z(�) :=
P

�2X e��H(�).
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Correlation decay
Application: Reconstructing Markov random fields

Correlation decay

Spatial mixing: How much does the state at one vertex
“influence” the state at a vertex far away?

There are many ways to measure this. Let X ⇠ µ� on
G = (V ,E). For u, v 2 V , define

dC(u, v) =
X

xu ,xv2S

|P[Xu = xu,Xv = xv ]� P[Xu = xu]P[Xv = xv ]|

It can be shown in some cases that, when � is large enough,
the measure above decays exponentially with the graph
distance. Such a statement can be useful to analyze the
behavior of Ising models. This is easier seen on an example.
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Correlation decay
Application: Reconstructing Markov random fields

Structure learning

Problem: Let X (1), . . . ,X (k) be i.i.d. ⇠ µ� on an unknown graph
G = (V ,E) with maximal degree �̄ = d . How to recover G from
the samples X (1), . . . ,X (k)?
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Bresler et al. (2013)
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Correlation decay
Application: Reconstructing Markov random fields

Recall: Gibbs sampling

The single-site Glauber dynamics of the Ising model is the
Markov chain on X which, at each time, selects a site i 2 V
uniformly at random and updates the spin �i according to µ�(�)
conditioned on agreeing with � at all sites in V\{i}. Specifically,
for � 2 {�1,+1}, i 2 V , and � 2 X , let �i,� be the configuration
� with the state at i being set to �. Then the transition matrix is

Q�(�,�
i,�) :=

1
n
·

e��Si (�)

e��Si (�) + e�Si (�)
=

1
n

⇢
1
2
+

1
2

tanh(��Si(�))

�
,

where
Si(�) :=

X

j⇠i

�j .

All other transitions have probability 0. Recall that this chain is
irreducible and reversible with respect to µ�.
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Markov property

Let X ⇠ µ� on G = (V ,E). Then X satisfies the following.

Sébastien Roch, UW–Madison Probability on Graphs: Techniques and Applications



Correlation decay
Application: Reconstructing Markov random fields

One of BMS’s Main Results
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Reconstructing neighborhoods
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A faster method under correlation decay
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Cutting down the number of potential neighborhoods
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Go deeper

More details and results in:

Bresler, Mossel, Sly, Reconstruction of Markov Random
Fields from Samples: Some Observations and Algorithms,
SIAM J. Comput., 42(2):563–578.
Bresler, Efficiently Learning Ising Models on Arbitrary
Graphs, STOC 2015.
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