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Go deeper

A lot more details and examples in the lecture notes at:

http://www.math.wisc.edu/~roch/mdp/
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Networks are ubiquitous: Biological networks
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Data science: Network modeling
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Data science: Network processes

Sébastien Roch, UW-Madison Probability on Graphs: Techniques and Applications



Data science: Network sampling
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Graph terminology

Q Graph terminology
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Graph terminology

Definition
An (undirected) graphis a pair G = (V, E) where V is the set of
vertices and

EC {{uv}:uveV}

is the set of edges.
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Graph terminology

An example: the Petersen graph
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Graph terminology

Basic definitions

Definition (Neighborhood)

Two vertices u, v € V are adjacent, denoted by u ~ v, if

{u, v} € E. The set of adjacent vertices of v, denoted by N(v),
is called the neighborhood of v and its size, i.e. §(v) := |[N(v)],
is the degree of v. A vertex v with §(v) = 0 is called isolated.

Example

All vertices in the Petersen graph have degree 3. In particular
there is no isolated vertex.
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Graph terminology

An example: the Petersen graph
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Graph terminology

Paths and connectivity

Definition (Paths)

A pathin G is a sequence of vertices xg ~ Xy ~ -+ ~ Xx. The
number of edges, k, is called the length of the path. If xo = X,
we call it a cycle. We write u <> v if there is a path between u
and v. The equivalence classes of <> are called connected
components. The length of the shortest path between two
vertices u, v is their graph distance, denoted dg(u, v).

Definition (Connectivity)

A graph is connected if any two vertices are linked by a path,
i.e.,,ifu< viorallu,veV.

The Petersen graph is connected.
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Graph terminology

An example: the Petersen graph
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Graph terminology

Adjacency matrix

Definition

Let G = (V, E) be a graph with n = |V|. The adjacency matrix
Aof Gis the n x n matrix defined as Ay, = 1if {x,y} € Eand 0
otherwise.

| A

Example
The adjacency matrix of a triangle (i.e. 3 vertices with all

edges) is
0 1 1
1.0 1f.
110

N
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Graph terminology

Examples of finite graphs

@ Kjy: clique with n vertices, i.e., graph with all edges present
@ C,: cycle with n non-repeated vertices

@ H": n-dimensional hypercube, i.e., V ={0,1}"and u ~ v if
u and v differ at one coordinate
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e Basic examples of stochastic processes on graphs
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Basic examples of stochastic processes on graphs

Erd6s-Rényi random graph

Definition

Let V = [n] and p € [0, 1]. The Erdés-Rényi graph G = (V, E)
on n vertices with density p is defined as follows: for each pair
x # yin V, the edge {x, y} is in E with probability p
independently of all other edges. We write G ~ G, and we
denote the corresponding measure by P, .

Questions:
@ What is the probability of observing a triangle?
@ Is G connected?

@ What is the typical chromatic number (i.e., the smallest
number of colors needed to color the vertices so that no
two adjacent vertices share the same color)?
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Basic examples of stochastic processes on graphs

Other random graph models

@ Preferential attachement
@ Small world
@ Fixed degree distribution
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Basic examples of stochastic processes on graphs

Random walk on a network

Definition

Let G= (V,E) be a graph. Let c: E — R be a positive edge
weight function on G. We call N = (G, ¢) a network. Random
walk on N is the Markov chain on V, started at an arbitrary
vertex, which at each time picks a neighbor of the current state
proportionally to the weight of the corresponding edge.

Questions:
@ How often does the walk return to its starting point?

@ How long does it take to visit all vertices once or a
particular subset of vertices for the first time?

@ How fast does it approach stationarity?
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Basic examples of stochastic processes on graphs

Other sampling schemes

@ Random walks with restarts
@ Branching random walks
@ Random sample of vertices and their neighbors
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Basic examples of stochastic processes on graphs

Undirected graphical models |

Definition

Let S be a finite set and let G = (V, E) be a finite graph.
Denote by K the set of all cliques of G. A positive probability
measure x on X := SV is called a Gibbs random field if there
exist clique potentials ¢x : SK — R, K € K, such that

pu(x) = %GXP (Z <Z5K(XK)> ,

Kek

where xk is x restricted to the vertices of K and Z is a
normalizing constant.
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Basic examples of stochastic processes on graphs

Undirected graphical models Il

Example

For 5 > 0, the ferromagnetic Ising model with inverse
temperature 3 is the Gibbs random field with S := {—1,+1},
QS{,'J}(O‘{,'J}) = ﬁO','O'j and ¢ = 0 if |K| =# 2. The function

H(o) :== — > {i jyee 0io;j is known as the Hamiltonian. The
normalizing constant Z := Z([) is called the partition function.
The states (o;);cy are referred to as spins.

Questions:
@ How fast is correlation decaying?
@ How to sample efficiently?
@ How to reconstruct the graph from samples?
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Basic examples of stochastic processes on graphs

Other graphical models

@ Gaussian graphical models
@ Bayes nets
@ Latent graphical models
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Basic examples of stochastic processes on graphs

Go deeper

More details and examples on basic models at:

http://www.math.wisc.edu/~roch/mdp/

For more on probability on graphs in general, see e.g.
(available online):

@ Probability on Graphs by Grimmett
@ Probability on Trees and Networks by Lyons with Peres
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Markov's inequality

@ Markov's inequality
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Markov's inequality

Markov’s inequality

Theorem (Markov’s inequality)
Let X be a non-negative random variable. Then, for all b > 0,

P[X > b] < ]E;(.

Proof:
EX >E[X;X > b] > E[b; X > b] = bP[X > b].
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Markov's inequality

Markov’s inequality: Proof by picture

N4
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Markov's inequality

Chebyshev’s inequality

Theorem (Chebyshev’s inequality)

Let X be a random variable with EX? < +oco. Then, for all

B >0,
Var[ X]
P[|X — EX| > f] < o
Proof: This follows immediately by applying Markov’s inequality to |X — EX|?
with b = 2. ]
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Markov's inequality

Chebyshev’s inequality: Proof by picture

¢
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First and second moment methods

e First and second moment methods
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First and second moment methods

First moment method

Theorem (First moment method)

If X is a non-negative, integer-valued random variable, then

P[X > 0] < EX.

Proof: Take b = 1 in Markov’s inequality. |

That is: if X has “small” expectation, then its value is 0 with
“large” probability. Typically used in the following way: one
wants to show that a “bad event” does not occur with high
probability; the random variable X counts the number of such
“pad events.” In that case, X is a sum of indicators and the
theorem reduces to the union bound.
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First and second moment methods

Going in the other direction

The first moment method gives an upper bound on the
probability that a non-negative, integer-valued random variable
is positive—provided its expectation is small. Suppose we want
a lower bound. Note that a large expectation does not suffice.

Say X, is n? with probability 1/n, and 0 otherwise. Then
EX, =n — 40, yet P[X, > 0] — 0.
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First and second moment methods

Second moment method

Theorem (Second moment method)

If X is a non-negative, integer-valued random variable, then

(EX)? ([ Var[X]
FIX> 01 = ey (_ ' (EXPR +Var[X]> '

Proof (of weaker version): By Chebyshev’s inequality,

Var[X]

PIX = 0] < PIX —EX| 2 EX] < (55,
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First and second moment methods

Second moment method: Proof by picture

N
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< >
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First and second moment methods

First and second moment methods: summary

If X is a non-negative, integer-valued random variable, then
P[X > 0] < EX,
and

(EX)?
E[X2]

P[X > 0] >
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lllustration: Erdés-Rényi connectivity threshold

© !llustration: Erdds-Rényi connectivity threshold

, UW-Madison Probability on Graphs: Techniques and Applications



lllustration: Erdés-Rényi connectivity threshold

Threshold phenomena

Consider the Erdds-Rényi random graph. A threshold function
for a graph property P is a function r(n) such that

0, if pp<r(n)

limP G, has property P] =
In n,paGn property P] {17 it pn > r(n),

where G, ~ Gpp, is an Erdés-Rényi graph with n vertices and
density pp.
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lllustration: Erdés-Rényi connectivity threshold

Connectivity via isolated vertices

We use the first and second moment methods to show that the
threshold function for connectivity in the Erdés-Rényi random
graph is '0%.

We prove this result by deriving the threshold function for the
presence of isolated vertices. Of course isolated vertices imply
a disconnected graph. What is less obvious: the two thresholds
actually coincide.
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lllustration: Erdés-Rényi connectivity threshold

Erdés-Rényi with n = 100 and p, = 1/100
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lllustration: Erdés-Rényi connectivity threshold

Erdés-Rényi with n = 100 and p, = 2/100
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lllustration: Erdés-Rényi connectivity threshold

Erdés-Rényi with n = 100 and p, = 3/100
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lllustration: Erdés-Rényi connectivity threshold

Erdés-Rényi with n = 100 and p, = 4/100
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lllustration: Erdés-Rényi connectivity threshold

Erdés-Rényi with n = 100 and p, = 5/100
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lllustration: Erdés-Rényi connectivity threshold

Erdés-Rényi with n = 100 and p, = 6/100

@0 o
ol o
oo o
Q b °
° [N P}
et fe] o -
* o
e}
< o X o
o e 7
o6 > X
é [e] o o
R RO
Q /g 00
o
o
[ o o s
o) o3
” oo 000
y R<vo 0 o
A o
0000
o
o <3 o
° <
<4
o

Madison

Probability

Applications



lllustration: Erdés-Rényi connectivity threshold

Threshold for isolated vertices |

“Not having an isolated vertex” has threshold function '°9 “

Proof: Let X, be the number of isolated vertices in the Erdds-Rényi graph
Gn ~ Gpp,. Using 1 — x < e *forall x € R,

]E”apn [Xn] = n(1 — pn)n71 S ek)g n—(n—1)pn N 07

when p, > %97 So the first moment method gives one direction:
Pn.po[Xn > 0] — 0 when p, > %97

Probability on Graphs: Techniques and Applications
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lllustration: Erdés-Rényi connectivity threshold

Threshold for isolated vertices Il

Proof (continued): Let A; be the event that vertex j is isolated and
Xn = ;14 By the computation above, using 1 — x > e~ for
x €[0,1/2],

2
po = Enpy[Xo] = D Popr A] = (1 = o)~ = &7,
i

which goes to +oo when p, < %7,
Note that for all j # j

P,pa[Ai N A] = (1 — pn)2" 27,
so that

Yo = Enpy[X5] = Enpy[Xa] = D Pop,[Ai N Al = n(n = 1)(1 = pa)*"~°.
i#j
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lllustration: Erdés-Rényi connectivity threshold

Threshold for isolated vertices Ili

Proof (continued): We have

Enp, [X3] _ Batn
(En,pa[Xn])? 15
(1 —pn)"" + (1 — po)*"
n2(1 _ pn)2n72
1 1
<
S (T s

IN

which is 1 + o(1) when p, < %", -
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lllustration: Erdés-Rényi connectivity threshold

Threshold for connectivity |

Connectivity has threshold function '°9 L,

Proof: We start with the easy direction. If p, < %97, the previous result
implies that the graph has isolated vertices, and therefore is disconnected,
with probability going to 1 as n — +o0.

Now assume that p, > °9”. Let D, be the event that G, is disconnected. To
bound P, p,[Dn], for k € {1 ..,Nn/2} we let Y be the number of subsets of k
vertices that are disconnected from all other vertices in the graph. Then, by
the first moment method,

n/2 n/2
]Pj"vpn [D”] S ]Pn,pn Z Yk > 0 S ZE”aPn[Yk]'
k=1 k=1
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lllustration: Erdés-Rényi connectivity threshold

Threshold for connectivity Il

Proof (continued): Using that k < n/2 and (}) < n,

Enpol Yi] = <Z> (1= P < (n(1 — pn)"2)"

Iog n

The expression in parentheses is o(1) when p, > . Summing over K,

Popo[Di] < Z (1~ on)"2)" = O(n(1 — p)") = o(1),

where we used that the geometric series (started at k = 1) is dominated
asymptotically by its first term. [ |
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lllustration: Erdés-Rényi connectivity threshold

Go deeper

More details and examples on the first and second moment
methods at:

http://www.math.wisc.edu/~roch/mdp/

For more on random graphs in general, see e.g. (available
online):
@ Random Graphs and Complex Networks. Vol. | and Il by
van der Hofstad
@ Random Graph Dynamics by Durrett
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Chernoff-Cramér method

@ Chernoff-Cramér method
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Chernoff-Cramér method

Moment-generating function

Definition
The moment-generating function of X is the function

My(s) = E [esx] :

defined for all s € R where it is finite, which includes s = 0.
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Chernoff-Cramér method

Chernoff-Cramér bound

Assume X is a centered (i.e. mean 0) random variable such that
My (s) < +oo for s € (—sp, So) for some sy > 0. Exponentiating
within Markov’s inequality gives, for any 5 > 0 and s > 0,

Mx(s)
es?

P[X > ] = P[e* > e] < =exp[—{sB—Vx(s)}],
where W x(s) = log Mx(s). The best exponent is

Vx(B) = sup (8B — Wx(s)).

SeER;
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Chernoff-Cramér method

Chernoff-Cramér for sums of independent variables

Let Sp = >, Xi, where the X;s are i.i.d. centered random
variables. Then

Vg (s) = logE[e®%i=nX] = log [ E[eS¥] = nwy, (s)
n 1

i<n

Theorem

Assume My, (s) < +oc on s € (—Sp, Sg) for some sq > 0. For
any 5 >0,

Py > 5] < oo (v, (2)).
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Chernoff-Cramér method

Example: Binomial

Let Z, be a binomial random variable with parameters n and p.
Recall that Z, is a sum of i.i.d. indicators Y, ..., Y, and, letting
Xi=Y —pand S, =Z,— np,

Uy, (s) = log E[e*"1~P)] = log (pe® + (1 — p)) — ps.
For b € (0,1 — p), letting a = b + p, direct calculation gives
W, (b) = sup(sb— (log [pe® + (1 —p)] — ps))

s>0

1—a a
= (1-a)lo + alog — =: D(a||p),
(1~ a)log —_ +alog  =: D(al|p)

achieved at s, = log ¢ p)";’ By the previous result, for 5 > 0,

P[Z, > np+ ] < exp(—nD(p+ B/n||p)).

Sébastien Roch, UW-Madison Probability on Graphs: Techniques and Applications



Chernoff-Cramér method

Sub-Gaussian variables |
Let X ~ N(0,v) where v > 0 and note that

Foo 1 x2 +oo s2 1 (X—Sl/)2
Mx(s) = e™ e dx:/ ez e = dx
— 00

so that straightforward calculus gives for g > 0

/32
VU (8) =sup(sp —s 1//2) 5

s>0

achieved at sg = 3/v. Plugging W% () into Theorem 2 leads for
B > 0 to the bound

P[X>B]<exp< 5i>
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Chernoff-Cramér method

Sub-Gaussian variables Il

We say that a centered random variable X is sub-Gaussian
with variance factor v > 0 if for all s € R

s°v
Vx(s) < o
which is denoted by X € G(v). By the Chernoff-Cramér bound
ﬂZ
P[X < 6]vP[X>5]<exp< ),

where we used that X € G(v) implies —X € G(v).
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Chernoff-Cramér method

Example: Back to the binomial

Theorem (Case p = 1/2)

Let Xy, ..., X, be independent {—1,1}-valued random variables
with P[X; = 1] = P[X; = —1] = 1/2. Let Sp = > _;, X;. Then, for
any g >0,

P[S, > ] < e /2",

Proof: The moment-generating function of X; can be bounded as follows

_e+e® s (/2Y 2
Mi(s)= =% =D G2 ;i —¢" (1)
j0 j0
So Vg, (s) = nW,(s) < sn/2 and S, € G(n). [ |
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Chernoff-Cramér method

Sub-Gaussian variables ll|

Theorem (General Hoeffding inequality)

Let Xy, ..., X, be independent centered random variables with
Xi € G(vj) for0 < vj < 400 and let (o, ...,an) € R". Let
Sn =Y. icn@iXi. Then Sy € G(3_I_ ofv;) and for all 5 > 0,

/82
P[Sp > 5] < exp <—w> .
i=1 A Vi

Proof: By independence,

2 Ay
Vs, (s) = ZWO‘I'X/‘(S) = Z\Ux,(Soc,-) < Z (Socé-)zz/,- — S Zién i

. ‘ . 2
i<n i<n i<n

Sébastien Roch, UW-Madison Probability on Graphs: Techniques and Applications



Chernoff-Cramér method

Example: Bounded variables |

For bounded random variables, the previous inequality reduces
to a standard bound.

Theorem (Hoeffding’s inequality)

Let Xi,..., X, be independent random variables where, for
each i, X; takes values in [a;, bj] with —co < a; < b; < +o0. Let
Sn=_i<nXi- Forall g > 0,

232
P[S, —ES, > 5] < exp S _b—a2)
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Chernoff-Cramér method

lllustration: Maximum degree of Erd6s-Rényi

Let G, ~ Gpp be an Erdés-Rényi graph with n vertices and
density p, = p € (0,1). Let D; be the degree of vertex i and let
D* = max; D;. Note that D; is Bin(n — 1, p), i.e. a sum of
independent [0, 1]-variables, so by Hoeffding’s inequality

PpplD; — (n—1)p > /(1 +¢)nlog(n)/2] < e~ (T+e)legn,
By a union bound

Pnp[D* > (n—1)p+ /(1 +¢)nlog(n)/2]
< ZPILP[DI —(n—=1)p>+/(1+¢)nlog(n)/2]

<nxn (%) 0,
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Chernoff-Cramér method

Example: Bounded variables Il

Proof: By the general Hoeffding inequality, it suffices to show that

Xi — EX; € G(vi) with v; = 1 (b — a). We give a quick proof of a weaker
version that uses a trick called symmetrization. Suppose the X;s are centered
and satisfy | Xj| < c; for some ¢; > 0. Let X/ be an independent copy of X;
and let Z be an independent uniform in {—1,1}. By Jensen’s inequality

E [esx,-] —F [esE[x,-—X,-’ |x,-1} <E []E [es(x,-—X/) ‘X’H —F [es(x,—X/>] .
By the symmetry of X; — X/, we then get
E [es(x,-fx,’)] _E [esZ,-(X,-fX,")] ) []E [eszf(x,-fxi’) ‘XI:X/H
<E []E [e<s(x,-f></)>2/2 ‘ X, X",H <E [e(s<x,-—)<,-'>>2/z] < g2
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Chernoff-Cramér method

Many more concentration inequalities

@ Bernstein’s inequality
@ Azuma’s inequality
@ Matrix inequalities
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e Epsilon-net arguments
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Epsilon-net arguments

Epsilon-nets |

Exponential tail inequalities are useful, among other things, to
study the deviations of suprema of random variables. When the
supremum is over an infinite index set, one way to proceed is to
apply a tail inequality to a sufficiently dense finite subset of the
index set, and then extend the resulting bound by continuity.
This is referred to as an e-net argument.
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Epsilon-net arguments

Epsilon-nets |l

Definition (s-net)

Let S be a subset of a metric space (M, p) and lets > 0. A
collection of points N C Sis called an ¢-net of S if all pairs of
points in N are at distance greater than ¢ and N is maximal by
inclusion in S. In particular for all z € S, inf,cy p(2,y) <. The
covering number of S, denoted by N (S, p, ¢), is the smallest
cardinality of an e-net of S.

The definition of an e-net immediately suggests an algorithm for
constructing one. Start with N = () and successively add a point
to N at distance at least ¢ from all other previous points until
that is not possible to do so anymore. (Provided S is compact,
this procedure will terminate after a finite number of steps.)
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Epsilon-net arguments

Epsilon-nets by picture

a) This covering of a pentagon K by seven
e-balls shows that N (K,e) < 7.
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Epsilon-net arguments

lllustration: Spectral norm of random matrix |

For a m x n matrix A € R™*" recall that the spectral norm is
defined as

AX
1A= sup 18Xl gun jaxgo = sup (ax.y),
xcRM {0} ” ”2 XxeSn—1 xeSn—1
yGSm71

where S~ is the sphere of radius 1 around the origin in R”.

(To see the rightmost equality above, note that Cauchy-Schwarz implies
(Ax,y) < ||Ax||2]ly|l2 and that one can take y = Ax/|| Ax||> for any x such that
Ax # 0 in the rightmost expression.)
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Epsilon-net arguments

lllustration: Spectral norm of random matrix Il

Theorem

Let A € R™X" be a random matrix whose entries are centered,
independent and sub-Gaussian with variance factor v. Then
there exist a constant 0 < C < -+oo such that, for all t > 0,

Al < CVv(vVm+vVn+t),

with probability at least 1 — e~t.

Without independence of the entries, the spectral norm can be
much larger. Say A is all-(+1) or all-(—1) with equal probability.
Taking the vector x = (1/+/n, ..., 1//n) shows that ||A|| > n
with probability 1.
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Epsilon-net arguments

lllustration: Spectral norm of random matrix Il

Proof: We seek to bound

IAll = sup (Ax,y)= sup > xyA;,
XGS"71 XES"71 iq/
yeSm—1 yeSm—1

where we note that the last quantity is a linear combination of independent
variables. Fix ¢ = 1/4. We proceed in two steps:

@ We first apply the general Hoeffding inequality to control the deviations
of the supremum restricted to e-nets N and M of S"™' and S™~".

@ We then extend the bound to the full supremum by continuity.
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Epsilon-net arguments

Back to e-nets: Sphere

Let Sk=1 be the sphere of radius 1 centered around the origin in
RX with the Euclidean metric. Let 0 < ¢ < 1. We claim that

N(S.p.e) < C’)k

Let N be any =-net of S. The balls of radius /2 around points
in N, {BX(x;,e/2) : x; € N}, satisfy two properties:
@ Pairwise disjoint: if z € BX(x;,=/2) N B¥(x;,/2), then
Ixi — Xjll2 < ||x; — z||2 + ||X; — z||]2 < ¢, a contradiction.
@ Contained in BX(0,3/2): if z € BX(x;,£/2), then
2]l < lz = xill2 + [Ixill <e/2+1 <3/2.

The volume of a ball of radius is £/2 is “rk(/:/(;ﬁ))k and that of a

ball of radius 3/2 is % Divide one by the other.
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Epsilon-net arguments

lllustration: Spectral norm of random matrix IV

Let N and M be as above. For C large enough, for allt > 0,

P | max (Ax,y) > %Cﬁ(\/ﬁ—k Vn+ t)] <e "’
Xe

yEM

Proof: By the general Hoeffding inequality, (Ax, y) is sub-Gaussian with
variance factor

> Cay)v =Xz lylEv = v,

i

forallx € Nandy € M. In particular, for all 5 > 0,

Fliaxy) 2 5 <o (-1 ).
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Epsilon-net arguments

lllustration: Spectral norm of random matrix V

Proof of lemma (continued): Hence, by a union bound over N and M,

P [Tg’( (AX,y) > %cﬁ(\/ﬁ+ Vn+ t)]

yem

<ZIP’{AX y) > - Cﬁ(\/ﬁ+ﬁ+t)]

xeN
yeMm

2
<N||Mexp< { Cﬂf+f+t)}>

< 12" exp (—%2 {m+ n+ t2)})

for C2/8 = log 12 > 1, where in the third inequality we ignored all
cross-products since they are non-negative. [ |
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Epsilon-net arguments

lllustration: Spectral norm of random matrix VI

For any e-nets N and M of S"~" and S™' respectively, the following
inequalities hold

1
sup (Ax,y) < [|A|| < 3 sup (Ax,y).
xeN — &€ xeN

yeM yeM

Proof: The first inequality is immediate. For the second inequality, we will use
the following observation

(AX,y) — (AXo, Yo) = (AX,¥ — Yo) + (A(X — Xo), Yo)-

Fix x € S" " and y € S™" such that (Ax,y) = ||A||, and let xo, € N and
Yo € M such that

[X=Xoll2<e and [y —Yol2 <e.
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Epsilon-net arguments

lllustration: Spectral norm of random matrix VI

Proof of lemma (continued): Then the inequality above, Cauchy-Schwarz and
the definition of the spectral norm imply

Il = (Axo,yo) < [[AlllIX[l2lly = Yoll2 + IAllX = Xoll2[lyo[l2 < 2¢]|A].

Rearranging gives the claim. |
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Application: Community detection

Clustering in Euclidean space

Cluster plot
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Application: Community detection

Clustering in graphs
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Application: Community detection

Reducing the second problem to the first one

X%
XXXXX
% XXX
X XX XX x X 7%
XXXXX X XXXXX
X X X
Xo X X XX
X )X o X
X Xy X XX %
XX 30X s
XX XX X
X X XX
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Application: Community detection

Stochastic blockmodel with two balanced blocks

Definition
Let V = [n] with neven, let V; = {1,...,n/2} and
Vo={n/2+1,...,n},and let0 < g < p < 1. We draw a graph
G = (V, E) at random as follows. For each pair x # y in V, the
edge {x, y} is in E with probability:

@ pifx,ye Vy,orx,y e Vo

@ gifxeViandy e Vob,orx e Voand y € Vy;
independently of all other edges. We write G ~ SBM,, 5 4 and
we denote the corresponding measure by Pp p 4.

Community detection problem: Given G (without the node
labels), output V4, Vs (possibly approximately).
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Application: Community detection

Stochastic blockmodel by picture
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Application: Community detection

Expected adjacency matrix

Let G ~ SBM; q and let A be the adjacency matrix of G.

Theorem
D=nPT 94l +nP=Tuu] —p,
2 2
whereu1:%(1,...,1)Tandu2:\%(1,...,1,—1,...,—1)7.

Proof: Note that D is a block matrix with diagonal blocks all-p and
off-diagonal blocks all-g, all of size n/2 x n/2, with the exception of the
diagonal which is all-0. [ |

Idea: Compute the second eigenvector of A and cluster by sign.
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Application: Community detection

Spectral clustering: a positive result

Let G ~ SBM; 4 and let A be the adjacency matrix of G. Let
p=min{q, 252} > 0. Clustering according to the sign of the
second eigenvector of A identifies the two communities of G
with probability at least 1 — e~ ", except for C/u? misclassified
nodes for some constant C > 0.
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Application: Community detection

Matrix perturbation

Theorem (A version of Davis-Kahan)
Let S and T be symmetric n x n matrices. Let \;(S) be the i-th
largest eigenvalue of S with corresponding unit eigenvector
v;(S) (and similarly for T). If
6 :=min [Ai(S) — Ai(S)| > 0,
J#
then there is 6 € {+1,—1} such that

_4s-TI

[vi(S) —Ovi(T)l2 5
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Application: Community detection

Bounding the spectral norm

Lemma

Let G ~ SBM; g, let A be the adjacency matrix of G and let
D = Enpq[Al. Then, there is a constant C > 0 such that

|IA-D| < CVn,

with probability at least1 — e ".

Proof: The entries of R are centered, independent and sub-Gaussian with
variance factor 1/4. [ ]
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Application: Community detection

Spectral clustering: proof |

Proof of spectral clustering theorem: The eigenvalues of D are

p+q pP—q B
n= nt5=-p, P,

s0 A2(D) =n&3% — pand

— mi Y — i pP—q _.
6_rjn#|2n|>\2(D) )\,(D)|_m|n{n 5 ,nq}—.np>0.

By Davis-Kahan and the previous lemma, with probability at least 1 — e™",
there is 6 € {+1,—1} such that

4C\f c

Iv2(D) = Ova(A)llo < =7 < Trw
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Application: Community detection

Spectral clustering: proof Il

Proof of spectral clustering theorem (continued): Put differently,
(C)
u2

> [VA(ua(D)) ~ VAo (ve( A [ <

If the signs of (v2(D)); and 6 (v2(A)); disagree, then the i-th term in the sum
above is > 1. So there can be at most (C’)?/? of those. That establishes
the desired bound on the number of misclassified nodes. |
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Application: Community detection

Go deeper

More details and examples on tail bounds at:

http://www.math.wisc.edu/~roch/mdp/

For more on concentration in general, see e.g. (available
online):
@ High-dimensional probability: An introduction with
applications in data science by Vershynin
@ Probability in High Dimension by van Handel
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Review of Markov chains

Random walk on a network

Definition

Let G= (V,E) be a graph. Let c: E — R be a positive edge
weight function on G. We call N = (G, ¢) a network. Random
walk on N is the Markov chain on V, started at an arbitrary
vertex, which at each time picks a neighbor of the current state
proportionally to the weight of the corresponding edge.
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Review of Markov chains

Transition matrix

Let (X:) be a a Markov chain on V and let
P'(x,y) == P[X; = y | Xo = x].

The one-step probabilities P(x, y) := P'(x, y) are the elements
of its transition matrix P = (P(x, y))x,y. We have

Pu[Xo = X0, ..., Xt = xt] = pu(X0)P(X0, X1) - - - P(X¢—1, Xt),
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Review of Markov chains

Stationary distribution |

Definition (Stationary distribution)

Let (X;) be a Markov chain with transition matrix P. A
stationary measure w is a measure such that

Y m(x)P(x,y)=7(y), VyeV,
xeV

or in matrix form = = 7 P. We say that = is a stationary
distribution if in addition 7 is a probability measure.

When P is irreducible, i.e. Vx, y, 3t s.t. P{(x,y) > 0, then the
stationary distribution is unique and positive. This is the case
for a random walk on a connected network.
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Review of Markov chains

Stationary distribution

Definition (Reversible chain)

A transition matrix P is reversible w.r.t. a measure 7 if
n(x)P(x,y) =n(y)P(y, x) for all x,y € V. By summing over y,
one sees such a measure is necessarily stationary.

Let (X;) be random walk on a network ' = (G, ¢). Then (X;) is
reversible w.r.t. n(v) := c(v), where

c(v) == c(v,x).

X~V

If all edge weights are 1, then n(v) := d(v).
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Review of Markov chains

Convergence |

A transition matrix P is aperiodic if, for all x, P!(x, x) > 0 for all
sufficiently large t. The lazy walk on N\ is the Markov chain
that, at each time, stays put with probability 1/2 or else takes a
step according to the random walk on V. This modified walk is
aperiodic.

Theorem (Convergence to stationarity)

Suppose P is irreducible, aperiodic and has stationary
distribution 7. Then, for all x,y, P'(x,y) — n(y) as t — +oo.
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Review of Markov chains

Convergence |l

For probability measures u, v on V, let their total variation
distance be || — v|tv := supacy [u(A) — v(A)].

Definition (Mixing time)

The mixing time is tmix(¢) := min{t > 0 : d(t) < e}, where
d(t) := maxyey ||P'(x, ) — 7(")||rv-
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Review of Markov chains

Other useful random walk quantities

@ Hitting times
@ Cover times
@ Heat kernels
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Review of Markov chains

Application: Bayesian image analysis |

sample 1, Gibbs sample 5, Gibbs
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Review of Markov chains

Application: Bayesian image analysis

Observable node variables
eg. pixel intensity values

Y=y, ¥, ¥, -}

X={x, X, X, ...}

Hidden node variables
eg. dispairty values
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Review of Markov chains

Application: Undirected graphical models |

Definition

Let S be a finite set and let G = (V, E) be a finite graph.
Denote by K the set of all cliques of G. A positive probability
measure x on X := SV is called a Gibbs random field if there
exist clique potentials ¢x : S — R, K € K, such that

p(x) = %GXP (Z ¢K(XK)> ,

Kek

where xk is x restricted to the vertices of K and Z is a
normalizing constant.

Sébastien Roch, UW-Madison Probability on Graphs: Techniques and Applications



Review of Markov chains

Application: Undirected graphical models Il

Example

For 8 > 0, the ferromagnetic Ising model with inverse
temperature 5 is the Gibbs random field with S := {—1, +1},
¢{i,j}(0{i,j}) = ﬂU,‘Uj and ¢K =0if ‘K’ # 2. The function

H(o) :== = >_{i jyee 0ioj is known as the Hamiltonian. The
normalizing constant Z := Z(p) is called the partition function.
The states (o;);cy are referred to as spins.
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Review of Markov chains

Application: Back to Bayesian image analysis |

Observable node variables
eg. pixel intensity values

Y=y, ¥, ¥, -}

X={x, X, X, ...}

Hidden node variables
eg. dispairty values
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Review of Markov chains

Application: Back to Bayesian image analysis Il

We assume the prior (i.e. distribution of hidden variables) is an
Ising model pg(o) onthe L x L grid G = (V, E). The observed
variables 7 are independent flips of the corresponding hidden
variables with flip probability g € (0,1/2), i.e.,

Blrlo] = [](1—aq)"migie

eV
= exp (Z {'09(1 - q)] 0 l0g(q)” - })
eV
1
= exp (Z a;% log—2 + y(Q)) .
ieV q
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Review of Markov chains

Application: Back to Bayesian image analysis

By Bayes’ rule, the posterior is then given by

4 _Prlolus(o)
Flolrl ZJP[TIGW(U)

= Z( exp( ZU,UI—FZha,),

I~

where h; = 7 log 124
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Review of Markov chains

Application: Gibbs sampling |

Definition
Let 15 be the Ising model with inverse temperature 3 > 0 on a
graph G = (V, E). The (single-site) Glauber dynamics is the
Markov chain on X := {—1,+1}" which at each time:
@ selects a site i € V uniformly at random, and
@ updates the spin at / according to ug conditioned on
agreeing with the current state at all sites in V\{i}.
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Review of Markov chains

Application: Gibbs sampling I

Specifically, for v € {—1,+1}, i € A, and o € X, let o7 be the
configuration o with the spin at i being set to . Let n = | V| and
Si(o) :=>_j.;oj. Then

1 5(5) exp (5 2 jmk O NU?)

Z,,:_+ Z(5) &P (BZ/Nk jﬂ ;('y)
1 'Yﬁsl( )
n e-8S(0) + eB8Si(0)°

Qs(0,0™) =

The Glauber dynamics is reversible w.r.t. ;.. How quickly does
the chain approach p5?

Sébastien Roch, UW-Madison Probability on Graphs: Techniques and Applications



Review of Markov chains

Application: Gibbs sampling Il

Proof of reversibility: This chain is clearly irreducible. Forallo € X and i € V,
let S#,‘(O’) = 7‘[(0”+) + S,'(O’) = /H(O'I’i) - S,'(O’). We have

—BS4i(0) o—BSi(e BSi(c
na(o" ") Qa(o" o) = & ﬁ #;();) = n[ewsia jr)ess;(cr)]
e~ BSi(o)
T nZ(B)[e FS(@) + €8S
e~ B5+i(o) ghSi(o) e—BSi(o)
= Z(B) ' n[e=5Si(e) 4 eBSi(o)]

= (") Qs(a"",0"7).
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Review of Markov chains

Application: Back to Bayesian image analysis

sample 1, Gibbs sample 5, Gibbs
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Bounding the mixing time via the spectral gap

Eigenbasis |

Let P be the transition matrix of an irreducible, reversible Markov chain with
stationary distribution = > 0. Define

(f.9)r = _w()f(x)g(x), [Ifl% = (f, )x,

xeV

(P(x) = P, )(y)-
y

We let /2(V, 7) be the Hilbert space of real-valued functions on V equipped
with the inner product (-, -} (equivalent to the vector space (R”, (-, )=)).

There is an orthonormal basis of ¢?(V, ) formed of eigenfunctions {fi}j_q of
P with real eigenvalues {\;}/_;. We can take fy =1 and Ay = 1.
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Bounding the mixing time via the spectral gap

Eigenbasis

Proof: Let D be the diagonal matrix with = on the diagonal. By reversibility,

_7(x) _ [7(¥) —.
- \/;P(x, 9 =\ TPty = My ).

So M = (M(x, y))xy, = D¥?PD;'/? is symmetric and has orthonormal
eigenvectors {¢;}"; and real eigenvalues {\;}7_;. Define f, := Dy '/?¢;. Then

Pl} _ PD_1/2¢ D_1/2D1/2PD_1/2¢ D_1/2M¢ /\/D;1/2¢f — /\j,;,’
and
(. £y = (Dx "¢y, D2 ty)
—Zﬂx [r(x) 28] (x) ™2 5(x)] = (1, &)

Because P is stochastic, the all-one vector is a right eigenvector of P with
eigenvalue 1. (]
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Bounding the mixing time via the spectral gap

Spectral decomposition |

Theorem

Let {f;}/_, be the eigenfunctions of a reversible and irreducible
transition matrix P with corresponding eigenvalues {)\j}]’-’:1, as
defined previously. Assume Ay > --- > \,. We have the
decomposition

PUOSY) 14 S pna
(y) AR
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Bounding the mixing time via the spectral gap

Spectral decomposition Il

Proof: Let F be the matrix whose columns are the eigenvectors {f;}/_; and let
D, be the diagonal matrix with {);}/_; on the diagonal. Using the notation of
the eigenbasis theorem,

D;/2P'D; "% = M' = (D}/*F)D\(D}/*F)',
which after rearranging becomes

P'D;' = FD\F'.
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Bounding the mixing time via the spectral gap

Eigenvalues

Any eigenvalue \ of P satisfies |\| < 1.

Proof: Pf = Af = [M[[[fllcc = [|Pflloc = maxc |32, P(x, Y)I(Y)| < [[fllc m

We order the eigenvalues 1 > Ay > --- > A\ > —1.
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Bounding the mixing time via the spectral gap

Spectral gap

Definition (Spectral gap)

The (absolute) spectral gapis 7. := 1 — |\2| V |An|. The
relaxation time is defined as ty := v, .

Note that the eigenvalues of the lazy version P + 11 of P are
{%()\j +1) f:1 which are all nonnegative.

Let P be reversible, irreducible, and aperiodic with stationary
distribution . Let mmin = ming w(x). For alle > 0,

1 1
(trel — 1)|09 (26) < tmix(E) < |Og (Eﬂ'min> trel-
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Bounding the mixing time via the spectral gap

Example: Random walk on the cycle |

Consider random walk on an n-cycle. That is,
V:={0,1,...,n—1} and P(x,y) = 1/2if and only if
[x —y|=1 mod n.

Lemma (Eigenbasis on the cycle)
Forj=0,...,n—1, the function

f,-(x):cos(zm)(), x=01,....n—1,
n

is an eigenfunction of P with eigenvalue

A,- ‘= COS <2m> .
n
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Bounding the mixing time via the spectral gap

Example: Random walk on the cycle |l

Proof: Note that, for all i, x,

zy: P, y)§(y) = % [cos (Lj();_ 1)) + cos (727Tj();+ 1)>]

j2mi(x—1) _j2mi(x=1) j2mi(x+1) _j2mi(x+1)
|: e n + e n e n + e n :|

2 2

1
2
j2mix o jemic j2mi 2
S
o 2
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Bounding the mixing time via the spectral gap

Example: Random walk on the cycle Il

Theorem (Relaxation time on the cycle)
The relaxation time for lazy random walk on the n-cycle is

2
tel = —————— = O(n?).
o 1 —cos (27) (™)

n

3(1 —cos (22)). By a Taylor expansion,

2
2
1 — cos (2%) _ A o(n™*).

Proof: The eigenvalues are ‘§ [cos (ﬂ) + 1} . The spectral gap is therefore

Since mmin = 1/, we get tyix(¢) = O(n? log n) and
tmix(&?) = Q(nz).
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Bottleneck ratio and Cheeger’s inequality

Q Bottleneck ratio and Cheeger’s inequality
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Bottleneck ratio and Cheeger’s inequality

Back to eigenvalues |

Theorem (Rayleigh’s quotient)

Let P be irreducible and reversible with respect to w. The
second largest eigenvalue is characterized by

A2 = sup { <€;,Pf;zrﬂ . fe PV, ), Zn(x)f(x) = O} .

Proof: Recalling that i = 1, the condition >, 7(x)f(x) = 0 is equivalent to
(f,fl= =0.
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Bottleneck ratio and Cheeger’s inequality

Back to eigenvalues Il

For such an f, the eigendecomposition is

n n
f=2 (fh)xh=D (f.h=h
j=1 j=2
and .
Pf=" (f,f)x Nt
j=2
so that
<f, Pf)7r _ 27:2 Z]n:z<f7 fl>7f<f7 f}>7")‘l<fla 6>ﬂ' Z]n:z<f7 f/>72-r/\]
= Il = A < 2.
(f, )= >io(f )% Y2 6%
Taking f = £, achieves the supremum. [ ]
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Bottleneck ratio and Cheeger’s inequality

Dirichlet energy |

Note that
2(f,(I = P)f)x
—Z X)f(x)? Z V) - Z XIC)f(y)P(x, y)

fo 2r(x)P(x, y) +Zf 2r(y)P(y, x) — 22 VX)) P(X, y)
—Zf 2r(x)P(x, y) —|—Zf 2r(x)P 22 () F(x)f( )

= 2€(f)

where the Dirichlet energy is defined as (using c(x, y) = 7(x)P(x,y))

= %Z c(x, y)IF(x) — f(y))°.
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Bottleneck ratio and Cheeger’s inequality

Dirichlet energy Il

We note further that if >, 7(x)f(x) = 0 then
<f7 f>77 = <f_ <17 f)‘ﬂ'af_ <17f>7">7r = Var‘"'[f]v

where the last expression denotes the variance under 7. So the variational
characterization of A, translates into

E(f) 32, COIFX) - F(y)IP
= Nar[f] Var, [f] ’

where v =1 — X, for all f such that }~ 7(x)f(x) = 0 (in fact for any f by
considering f — (1, f) and noticing that both numerator and denominator are
unaffected by adding a constant).
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Bottleneck ratio and Cheeger’s inequality

Bottleneck ratio |

Let N = (G, c) be a finite or infinite network with G = (V, E).
For a subset S C V, we let the edge boundary of S be

OkS:={e=(x,y) € E: xe S,ye S}

Let g: E — R, be an edge weight function. For F C E we

define
Flg:=>_g(e).
ecF
For S C V, we let
S
®g(S; g,h) = [ \g.
|S|h
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Bottleneck ratio and Cheeger’s inequality

Bottleneck ratio Il

For disjoint subsets Sy, S; C V, we let
C(SO7 81) = ZX()GSO ZX1€S1 C(XO7 X1 )

Definition (Bottleneck ratio)

For a subset of states S C V, the bofttleneck ratio of S is

_ 10sSle _ (8,8%)

R

The bottleneck ratio of N is

®, :=min {(DE(S; c,m): SCV,0<n(S) < ;}

Sébastien Roch, UW-Madison Probability on Graphs: Techniques and Applications



Bottleneck ratio and Cheeger’s inequality

A bottleneck
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Bottleneck ratio and Cheeger’s inequality

Example: Clique

Example

Let G = K, be the clique on n vertices and assume c(x, y) = 1
for all x # y. For simplicity, take n even. Then for a subset S of
size |S| = k,

Ox(S: ¢ 1) = |0eS|c  k(n— k) n—k'

ISl  k/n  n

Thus, the minimum is achieved for k = n/2 and

_n-—n/2 1

b, .
n P
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Bottleneck ratio and Cheeger’s inequality

Cheeger’s inequality

Theorem (Spectral gap and the bottleneck ratio)

Let P be a finite, irreducible, reversible Markov transition matrix
and lety =1 — X2 be the spectral gap of P. Then
¢2

= <y < 20,.
2 SY S

In terms of the relaxation time t,; = v~ ', these inequalities
have an intuitive meaning: the presence or absence of a strong
bottleneck in the state space leads to slow or fast mixing
respectively.
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Bottleneck ratio and Cheeger’s inequality

Cheeger’s inequality: Proof |

Proof: We only prove the upper bound. To get an upper bound on For S C V
with 7(S) € (0,1/2], we let

_ (8°) xeS

%, x e S°.
Then
;w(x)fs(x) = (S) [— 7;((5;”)) + (8% [ ;((gg)] _o,
and
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Bottleneck ratio and Cheeger’s inequality

Cheeger’s inequality:Proof Il

Proof (continued): From the variational characterization,

e(fs) _
= Varjfs] =&(0s)

1 e «(5) . [(5) ]
fzxzyc(x,y)[fs(x> ()] XES,Zygyc(x,m {w/ﬂ(sﬁ\/;]

_¢c(S,8% c(S, S
= S8 S2TH(9)
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Bottleneck ratio and Cheeger’s inequality

Example: Cycle |

Let (Z;) be lazy random walk on the n-cycle. Assume nis even.

Consider a subset of vertices S. Note by symmetry 7(S) = @

Moreover, for all i ~ j, c(i,j) = 7(I)P(i,j) = + - 5 - 5 = 2.

Among all sets of size | S|, consecutive vertices minimize the
size of the boundary. So

2L 4
o, < —4n —
_% 20’
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Bottleneck ratio and Cheeger’s inequality

Example: Cycle I

By Cheeger’s inequality,

1 d2 2
T cN<20, =2
o2~ 2 SV S2% =]
and n
=< trel = 771 < 2/’72
2
Thus 1
tmix(E) > (tre] - 1)|Og <2€> = Q(”)?
and

€T min

tmix(€) < log ( ) tel = O(n?log n).
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Application: Gibbs sampling at low temperature

Background |

Let G = (V, E) be a connected graph and X := {—1,+1}".
Recall that the (ferromagnetic) Ising model on V with inverse
temperature 3 is the probability distribution over spin
configurations o € X given by

1
pnp(o) = mefﬁﬂ(g),

where

H(o) == — Z gioj,

i~f

is the Hamiltonian and Z(B) == Y, ., e #7().
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Application: Gibbs sampling at low temperature

Background Il

The single-site Glauber dynamics of the Ising model is the
Markov chain on & which, at each time, selects a site i € V
uniformly at random and updates the spin o; according to j5(o)
conditioned on agreeing with o at all sites in V\{i}. Specifically,
fory € {—1,+1},i€ V,and o € X, let "7 be the configuration
o with the state at / being set to . The transition matrix is

Qs(0,0™7) ==

1 e18Si(o) 1 (1 1 ]
n e-B8Sio) £ e8Si(e) ~ n {2 + > tan (PYBSI(U))} )

where

Si(o) == 0.

i

All other transitions have probability 0.
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Application: Gibbs sampling at low temperature

Curie-Weiss model |

Let G = K}, be the complete graph on n vertices. In this case,
the Ising model is often referred to as the Curie-Weiss model. It
is customary to scale g with n. We define o := g(n—1).

Theorem (Curie-Weiss model: slow mixing at low temperature)

For o > 1, tmix(e) = Q(exp(r(«)n)) for some function r(a)) > 0
not depending on n.
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Application: Gibbs sampling at low temperature

Curie-Weiss model Il

Proof: We only prove exponential mixing when « is large enough. The idea of
the proof is to bound the bottleneck ratio. To simplify the proof, assume n is
odd. We denote the bottleneck ratio of the chain by ¢ to avoid confusion
with the base graph G. Intuitively, because the spins tend to align strongly at
low temperature, it takes a considerable amount of time to travel from a
configuration with a majority of —1s to a configuration with a majority of +1s.
A natural place to look for a bottleneck is the set

S::{UGX:ZU;<O},

1

where the quantity m(o) := )", o; is the magnetization.
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Application: Gibbs sampling at low temperature

A bottleneck

Applications



Application: Gibbs sampling at low temperature

Curie-Weiss model Il

Proof (continued): Note that the magnetization is positive if and only if a
majority of spins are +1. Observe further that x5(S) = 1/2 by symmetry.
The bottleneck ratio is hence bounded by

Loesorgsto0)Qslo, ) > 1s(0)Qs(o, ).

oY < =
15(5) 0€S,0'¢S

Because the Glauber dynamics changes a single spin at a time, in order for
o € S to be adjacent to a configuration o’ ¢ S, it must be that

ceS 1 ={ceXx : mo)=-1},
and that o’ = o for some site i such that

ieM, ={ieV:o=-1}
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Application: Gibbs sampling at low temperature

Curie-Weiss model IV

Proof (continued): Because the number of such sites is (n+ 1)/2 on S_y,
thatis, [M,| = (n+ 1)/2 for all 0 € S_4, and the Glauber dynamics picks a
site uniformly at random, it follows that for o € S_1

1)/2 1 1
ZQB(O’O’ w_EO—i—E).

o' ¢S
Thus plugging this back

of <2 > ps(0)Qs(0,0")

ceS,0'¢S
—BH o)
s(w%)ue(sq):(wo g 20
exp (725 | (")) + ‘Mff‘)—WaHMﬂ
(1+0(1) 3 (= | Z((B)Z D

oceS_4
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Application: Gibbs sampling at low temperature

Curie-Weiss model V

Proof (continued): We bound Z(8) = 3", e ?*(?) with the all-(—1) term

o < (1+0(1)) oo (2 () + (F) - ine])
oes1exp( [‘M‘ "+|M|\M|})
=(1+o(1) Y exp( |M0_HMC)
oceS_4

-t o (25 [257][757)
= (1+0(1)) @zm + o(1)) exp Q@)
= Ca\/gexp (—n [% - InZD,

for some constant C, > 0 depending on a.
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Application: Gibbs sampling at low temperature

Curie-Weiss model VI

Proof (continued): Hence, by Cheeger’s inequality, for « > 21n 2 there is
r(a) >0

tmix(€) > (tet — 1) lOg (2%) > exp(r(a)n)log (2%) .

Sébastien Roch, UW-Madison Probability on Graphs: Techniques and Applications



Application: Gibbs sampling at low temperature

Go deeper

More details and examples on spectral techniques at:

http://www.math.wisc.edu/~roch/mdp/

For more on mixing times in general, see e.g. (available online):
@ Markov Chains and Mixing Times by Levin, Peres and
Wilmer

@ Reversible Markov Chains and Random Walks on Graphs
by Aldous and Fill
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Definitions and basic properties

Coupling

Definition

Let x and v be probability measures on the same measurable
space (S, S). A coupling of 1 and v is a probability measure ~
on the product space (S x S, S x S) such that the marginals of
~ coincide with © and v, i.e.,

Y(Ax S)=p(A) and ~(S x A)=v(A), VAeS.
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Definitions and basic properties

Examples

Example (Bernoulli variables)
Let X and Y be Bernoulli random variables with parameters 0 < g < r < 1
respectively. That is, P[X = 0] = 1 — g and P[X = 1] = g, and similarly for Y.
Here S = {0,1} and S = 2°.
- (Independent coupling) One coupling of X and Y is (X', Y’) where
X' £ X and Y’ £ Y are independent. Its law is

(]P[(X/’ = (i’j)])i,je{0,1} - <(1 ;(i’)(j I’; e :yrq)r> '

- (Monotone coupling) Another possibility is to pick U uniformly at
random in [0, 1], and set X" = 1;y<qy and Y” = 1;y<,;. The law of
coupling (X", Y")is

(e vy =am), o = (Yo" 5%

ije{od} q
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Definitions and basic properties

Coupling inequality |

Let 1 and v be probability measures on (S, S). Recall the
definition of total variation distance:

1
e =vllry == sup u(A) = w(A)] = 5 > [n(x) = v(X)].

XeS

Let w and v be probability measures on (S, S). For any
coupling (X,Y) of nand v,

I —vllrv < P[X # Y].
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Definitions and basic properties

Coupling inequality Il

Proof:
w(A) —v(A) =P[X € A|—P[Y € A
=PXecA X=Y]+PXeA X#Y]
—PlYEA X=Y]-P[YEA X#Y]
=PXecA X£Y]|-P[YEA X#Y]
<PIX# Y],
and, similarly, v(A) — u(A) < P[X # Y]. Hence

[n(A) — v(A)] < PIX # Y]
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Definitions and basic properties

Maximal coupling

In fact, the inequality is tight.

Assume S is finite and let S = 25. Let ju and v be probability
measures on (S, S). Then,

| — v||rv = Inf{P[X # Y] : coupling (X, Y) of n and v}.
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Maximal coupling by picture
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Definitions and basic properties

Example: Bernoullis

Example (Bernoulli variables, continued)

Let X and Y be Bernoulli random variables with parameters 0 < g < r < 1
respectively.Let ;. and v be the laws of X and Y respectively. To construct the
maximal coupling as above, we note that

p::Zu(x)/\u(x):(1—r)+q7 1-p=a=p8:=r—gq,

A := {0}, B:= {1},
. _ 1—r q . L
(’len(x))x:o,1 = ((1 — f) +q> (1 — I’) T q> ) ’YA(O) =1, ’75(1) =1
The law of the maximal coupling (X", Y"') is

(P[(va Y”l) = (i’j)])i,/e{o,1} - <1 ar ' :7 q) ’

which coincides with the monotone coupling.

Sébastien Roch, UW-Madison Probability on Graphs: Techniques and Applications



Couplings of Markov chains

e Couplings of Markov chains

Probability aphs: Techniques Applications



Couplings of Markov chains

Bounding the mixing time via coupling |

Let P be an irreducible, aperiodic transition matrix on V with
stationary distribution 7. Recall that, for a fixed 0 < ¢ < 1/2, the
mixing time of P is

tmix(€) ;== min{t : d(t) < e},

where
d(t) := max ||P!(x,-) — 7||Tv.
xeV

It will be easier to work with

d(t) == max, 1P'(x,-) = P'(y, v,

which satisfies d(t) < d(t) < 2d(¢t).
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Couplings of Markov chains

Bounding the mixing time via coupling I

Definition (Markovian coupling)

A Markovian coupling of P is a Markov chain (X;, Y;);on V x V
with transition matrix Q satisfying:

- Forallx,y,x',y € V,

Y Q(x.y), (X', 2)) = P(x,x),

> Q(xy).(Z.¥) = Py, y").

Zl
We say that a Markovian coupling is coalescing if further:
-Forallze V, X' 4y = Q((z,2),(x',y")) =0.
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Couplings of Markov chains

Bounding the mixing time via coupling Il|

Let (X:, Yi) be a coalescing Markovian coupling of P. By the
coalescing condition, if Xs = Y5 then X; = Y; forall t > s. That
is, once (X;) and (Y;) meet, they remain equal. Let 7., be the
coalescence time (also called coupling time), i.e.,

Teoal = INF{t >0 : X; = Y;}.

The key to the coupling approach to mixing times is the
following immediate consequence of the coupling inequality.
For any starting point (x, y),

”Pt(xa ) - Pt(ya ')HTV < IP>(x,y)[Xt 7 Yl‘] = IP)(x,y)[Tcoal > t]-
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Couplings of Markov chains

Bounding the mixing time via coupling IV

Theorem (Bounding the mixing time: coupling method)

Let (X, Yi) be a coalescing Markovian coupling of an
irreducible transition matrix P on a finite state space V with
stationary distribution =. Then

d(t) < )g}%)\(/ﬂn(x,y)[%oal > t].

In particular

tmix(5) < mf{t > 0 : P(x,y)[Tcoal > t] <eg, VX,y} .
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Couplings of Markov chains

Example: Hypercube |

Let (Z;) be lazy random walk on the n-dimensional hypercube
73 :={0,1}" where i ~ jif |i — j||1 = 1. We denote the
coordinates of Z; by (Zt“), ... ,Zt(")). The coupling (X;, V)
started at (x, y) is the following:

@ At each time t, pick a coordinate i uniformly at random in
[n], pick a bit value b in {0, 1} uniformly at random
independently of the coordinate choice.

@ Set both i coordinates to b, i.e., X! = Y = b,

Clearly the chains coalesce when all coordinates have been
updated at least once.
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Couplings of Markov chains

Example: Hypercube I

Lemma (Coupon collecting)
Let 7oy be the time it takes to update each coordinate at least
once. Then, for any ¢ > 0,

P [eon > [nlogn+cn]] < e °.

Proof: Let B; be the event that the i-th coordinate has not been updated by
time [nlog n+ cn]. Then

1 [nlog n+-cn]
Plreon > [nlogn+cn]] < ZP[B,] = Z <1 — E)

i

nexp (*7”'09 Z+ cn) =e °

IA

Sébastien Roch, UW-Madison Probability on Graphs: Techniques and Applications



Couplings of Markov chains

Example: Hypercube Il

Applying the coupling bound, we get
d(fnlogn+cn]) < max Py ,)[7coa > [nlog n+ cnl]
x,yev ’

]P)[Tcoll > [n log n + C,ﬂ]
e °.

IA A

Hence for ¢ := c. > 0 large enough:

tmix(*’f) < ’—n Iog n+ an—l-
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Path coupling

Path coupling method |

Path coupling is a method for constructing Markovian couplings from
“simpler” couplings. The building blocks are one-step couplings starting from
pairs of initial states that are close in some dissimilarity graph. Let (X;) be an
irreducible Markov chain on a finite state space V with transition matrix P and
stationary distribution 7. Assume that we are given a dissimilarity graph

Ho = (W, Eo) on Vp := V with edge weights wy : Eo — R.. This graph need
not have the same edges as the transition graph of (X;). We extend wy to the
path metric

m—1

wo(Xx,y) = inf{z Wo(Xi, Xix1) @ X = Xo,...,Xm = y is a path in Ho},

i=0

where the infimum is over all paths connecting x and y in Hy. We call a path
achieving the infimum a minimum-weight path. Let

Ao := maxwy(X, y),
Xy

be the weighted diameter of Hp.
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Path coupling

Path coupling method I

Theorem (Path coupling method)

Assume that wy(u, v) > 1, for all {u, v} € Ey. Assume further
that there exists x € (0, 1) such that:

- Forall x,y with {x,y} € Ey, there is a coupling (X*, Y*) of
P(x,-) and P(y, -) satisfying the contraction property

E[wo(X*, Y*)] < k wo(x, y).

Then
d(t) < Ag s,
or »
i (€) < Fog Ao + Iiga w .
log x
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Path coupling

Path coupling method Il

Proof: The crux of the proof is to extend the contraction property to arbitrary
pairs of vertices.

Lemma (Global coupling)

Forall x,y € V, there is a coupling (X*, Y*) of P(x,-) and P(y, -) such that
the contraction property holds.

Iterating the coupling in this claim immediately implies the existence of a
coalescing Markovian coupling (X, Y:) of P such that

Exp[wo(Xt, YI)] = Ey) [Ewo(Xt, Y1) | Xe—1, Yia]]
Eey) [5 Wo(Xi—1, Yeo1)] < -+ < K By [W0(Xo, Yo)]
& wo(x,y) < &' Ao.

IN

By assumption, 1,41 < wo(X, y) so that by the coupling inequality
d(t) < d(t) < max Py [Xe # Yi] < MaxEy [wo(X:, Y] < &' Ao,

which implies the theorem. |
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Path coupling

Global coupling lemma: proof by picture

'F‘(X,, ) ?{fj,) )
2

X*=2) 21 p AL 23 24 pAC) FAOR AP L

80— ——8

x'=xe X1 X2 Xz X4 X5 Xe x-;=j'
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Back to the application: Gibbs sampling at high temperature

e Back to the application: Gibbs sampling at high temperature
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Back to the application: Gibbs sampling at high temperature

Setup |

Let G = (V, E) be a finite, connected graph with maximum
degree 4. Define X := {—1,+1}". Recall that the
(ferromagnetic) Ising model on V with inverse temperature g is
the probability distribution over spin configurations o € X given
by
— o= BH(o)
pp(o) : Z0)° :

where

H(o) == — Z gioj,

i~f

is the Hamiltonian and Z(B) == Y, ., e 7).
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Back to the application: Gibbs sampling at high temperature

Setup Il

The single-site Glauber dynamics of the Ising model is the
Markov chain on X" which, at each time, selects a site i € V
uniformly at random and updates the spin o; according to (o)
conditioned on agreeing with o at all sites in V\{i}. Specifically,
fory e {—1,+1},ie V,and o € X, let "7 be the configuration
o with the state at i being set to +. Then the transition matrix is

1 e"8Si(a) 1 (1 1 o s
n e BS(0) + e8S(0)  n { + 5 tanh(vf5 i(a))} ;

2
Si(o) := Z aj.

jri
All other transitions have probability 0. Recall that this chain is
irreducible and reversible with respect to 3.

Qs(0,0™7) =

where
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Back to the application: Gibbs sampling at high temperature

Fast mixing at high temperature |

We show that the Glauber dynamics of the Ising model is fast
mixing when the inverse temperature g is small enough as a
function of the maximum degree.

Theorem (Glauber dynamics: fast mixing at high temperature)

If3 <61 then = tmix(¢) = O(nlog n).

Proof: We use path coupling. Let Hy = (W, Eo) where Vg := X and
{o,w} € Eyif }|jo — wl[s = 1 with unit we-weights on all edges. (To avoid
confusion, we reserve the notation ~ for adjacency in G.) Let {o,w} € Eo
differ at coordinate /.
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Back to the application: Gibbs sampling at high temperature

Fast mixing at high temperature Il

Proof (continued): We construct a coupling (X*, Y*) of Qs(c, ) and Qs(w, ).
We first pick the same coordinate i, to update. If i. is such that all its
neighbors in G have the same state in 0 and w, i.e., if o; = wj for all j ~ i, we
update X* from o according to the Glauber rule and set Y* := X*. Note that
this includes the case i. = i. Otherwise, i.e. if i. ~ i, we proceed as follows.
From the state o, the probability of updating site i. to state v € {—1,+1} is
given by J + 1 tanh(v3S;(c)), and similarly for w. Unlike the previous case,
we cannot guarantee that the update is identical in both chains. To minimize
the chance of increasing the distance between the two chains, we perform a
maximal coupling of Bernoullis: we pick a uniform-[—1, 1] variable U and set

X =

5

+1, if U <tanh(8S;, (o))
-1, ow.

and

yr +1, if U<tanh(3S;, (w))
T 1-1, ow.
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Back to the application: Gibbs sampling at high temperature

Fast mixing at high temperature |

Proof (continued): We set Xi" := o; and Y;" := wj for all j # i*. The expected
distance between X* and Y™ is then

E[wo(X", Y] =1~ +1 3" 2 {tann(55(0)) ~ tanh(3S(«),
-~ i

(@)
(b)

where (a) corresponds to i, = i in which case wy(X™, Y*) = 0 and (b)
corresponds to i, ~ i in which case wy(X™, Y*) = 2 with probability
3tanh(BS;, (o)) — tanh(8S;, (w))| by our coupling, and wo(X*, Y*) = 1
otherwise. To bound (b), we note that for j ~ i

[tanh(8Sj(c)) — tanh(8S;(w))| = tanh(8(s + 2)) — tanh(Bs),

where s := Sj(0) A Sj(w). The derivative of tanh is maximized at 0 where it is
equal to 1. So the r.h.s. above is < 23.
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Back to the application: Gibbs sampling at high temperature

Fast mixing at high temperature IV

Proof (continued): Plugging this back above we get

E[wo(X*, Y] <1 - ! _nS'B < exp (’@) =k wWo(o,w),

where

m::exp(f1 _66) <A,

n
by assumption. The diameter of Hp is Ag = n. By the path coupling theorem,

log Ag +loge™"]  [n(logn+loge™")
log 1 N 153 ’

tmix () < {

which implies the claim. [ |
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Back to the application: Gibbs sampling at high temperature

Go deeper

More details and examples on coupling at:

http://www.math.wisc.edu/~roch/mdp/

For more on mixing times in general, see e.g. (available online):
@ Markov Chains and Mixing Times by Levin, Peres and
Wilmer

@ Reversible Markov Chains and Random Walks on Graphs
by Aldous and Fill

Sébastien Roch, UW-Madison Probability on Graphs: Techniques and Applications
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Correlation decay

An undirected graphical model
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Correlation decay

Recall: Ising model

Let G = (V, E) be a finite, connected graph with maximum
degree & = d. Define X := AV where A= {—1,+1}. Recall
that the (ferromagnetic) Ising model on V with inverse
temperature S is the probability distribution over spin
configurations o € X given by

’
pp(o) = %e_’mi(o),

where

H(o) == — ZO‘,’O’j,

inf

is the Hamiltonian and Z(8) := Y, ., e~ "),
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Correlation decay

Correlation decay

Spatial mixing: How much does the state at one vertex
“influence” the state at a vertex far away?

There are many ways to measure this. Let X ~ ug on
G=(V,E). Foru,v € V, define

do(u,v) = > PXu=xu, Xy = x] — P[Xu = X,P[X, = x]]

Xu,XvES

It can be shown in some cases that, when j is large enough,
the measure above decays exponentially with the graph
distance. Such a statement can be useful to analyze the
behavior of Ising models. This is easier seen on an example.
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Application: Reconstructing Markov random fields

e Application: Reconstructing Markov random fields
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Application: Reconstructing Markov random fields

Structure learning

Problem: Let X(V), ..., X() be i.i.d. ~ 15 on an unknown graph
G = (V, E) with maximal degree 6 = d. How to recover G from
the samples X, ..., x(K)?

Sébastien Roch, UW-Madison Probability on Graphs: Techniques and Applications



Application: Reconstructing Markov random fields

Bresler et al. (2013)

SIAM J. COMPUT. (© 2013 Society for Industrial and Applied Mathematics
Vol. 42, No. 2, pp. 563-578

RECONSTRUCTION OF MARKOV RANDOM FIELDS FROM
SAMPLES: SOME OBSERVATIONS AND ALGORITHMS*

GUY BRESLER', ELCHANAN MOSSEL!, AND ALLAN SLY%

Abstract. Markov random fields are used to model high dimensional distributions in a number
of applied areas. Much recent interest has been devoted to the reconstruction of the dependency
structure from independent samples from the Markov random fields. We analyze a simple algorithm
for reconstructing the underlying graph defining a Markov random field on n nodes and maximum
degree d given observations. We show that under mild nondegeneracy conditions it reconstructs
the generating graph with high probability using ©(de=26~*logn) samples, where ¢,d depend on
the local interactions. For most local interactions €, d are of order exp(—O(d)). Our results are
optimal as a function of n up to a multiplicative constant depending on d and the strength of the
local interactions. Our results seem to be the first results for general models that guarantee that the
generating model is reconstructed. Furthermore, we provide explicit O(n%t2e=2§=%logn) running-
time bound. In cases where the measure on the graph has correlation decay, the running time is
O(n?logn) for all fixed d. We also discuss the effect of observing noisy samples and show that as
long as the noise level is low, our algorithm is effective. On the other hand, we construct an example
where large noise implies nonidentifiability even for generic noise and interactions. Finally, we briefly
show that in some simple cases, models with hidden nodes can also be recovered.




Application: Reconstructing Markov random fields

Recall: Gibbs sampling

The single-site Glauber dynamics of the Ising model is the
Markov chain on X which, at each time, selects asite i ¢ V
uniformly at random and updates the spin o; according to p5(o)
conditioned on agreeing with o at all sites in V\{i}. Specifically,
fory e {—1,+1},ic V,and o € X, let "7 be the configuration
o with the state at / being set to . Then the transition matrix is

Qs(o, o) =

1 e1B8Si(o) 1 (1 1 ] S
n'eB8S(0) 1 e8S(e) _ n {2 + 5 tanh(vf5 ,-(a))},

where

S,'(U) = Zaj.

jri
All other transitions have probability 0. Recall that this chain is
irreducible and reversible with respect to 13.
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Application: Reconstructing Markov random fields

Markov property

Let X ~ ugon G = (V, E). Then X satisfies the following.

DEFINITION 1. On a graph G = (V, E), a Markov random field is a distribution
X taking values in AV for some finite set A with |A| = A, which satisfies the Markov
property

1) PX(W), X(U)|X(5)) = P(X(W)|X(S))P(X(U)|X(5))
when W, U, and S are disjoint subsets of V' such that every path in G from W to U

passes through S and where X (U) denotes the restriction of X from AV to AY for
vcVv.

, UW-Madison Probability on Graphs: Techniques and Applications



Application: Reconstructing Markov random fields

One of BMS’s Main Results

THEOREM 3. For an assignment ty = (Ty,, ..., Zy,) and y € A, define

() = @urs- - Ys o Tuy)

to be the assignment obtained from xy by replacing the ith element by y. Suppose
there exist €,0 > 0 such that the following condition holds: for all v € V, if N(v) =

{u1,...,w}, then for each i,1 <i <1, and for any set W C V — ({v} U N(v)) with

|W| < d, there exist values Ty, Tuy, .-y Tusy- -3 Tuy, Y € A, and zw € AW such that
» |P(X(0) = 20 X(N() = 2x0)
— P(X(v) = 20| X(N(v)) = 2ly() ()] > €
and
- P(X(N(®)) = 0y, X(W) = 2w) > 6,

P(X(N(v) = ay(p) (1), X(W) = 2w) > 4.

Then for some constant C = C(e,8) > 0, if k > Cdlogn, then there exists an
estimator G(X) such that the probability of correct reconstruction is P(G = G(X)) =
1—o0(1). The estimator G is computable in time O(n?*1logn).

phs: Techniques and Applications



Application: Reconstructing Markov random fields

Reconstructing neighborhoods

Proof. As in Theorem 2, we can assume that with high probability we have
(18) ‘ﬁ(X(U) = ay) - P(X(U) = ./L-U)| <~

for all U = {u;}!_, € V and {2;}}_, when | < 2d+ 1 and k > C(y)dlogn, so we
assume that (18) holds. For each vertex v € V' we consider all candidate neighbor-
hoods for v, subsets U = {u1,..., w} C V — {v} with 0 <1 < d. For each candidate
neighborhood U, the algorithm computes a score

fv;U) = r&iu max ‘ﬁ(X(’U) =2, X(W) = 2w, X(U) =zv)
Vi To,zw,TU Y

— P(X(v) = 2| X(W) = 2w, X (U) = 2,(1))

s

where for each W, i, the maximum is taken over all z,, zw, 2y, y, such that

(19) P(X(W) = aw,X(U) = zv) > §/2,
P(X(W) = aw, X(U) = 2i,(y)) > §/2,

and W C V — ({v}UU) is an arbitrary set of nodes of size d, zyw € A? is an arbitrary
assignment of values to the nodes in W, and 1 <1i <.

The algorithm selects as the neighborhood of v the largest set U C V — {v} with
f(v;U) > €/2. It is necessary to check that if U is the true neighborhood of v, then
the algorithm accepts U, and otherwise the algorithm rejects U.

aphs: Techniques Applications



Application: Reconstructing Markov random fields

A faster method under correlation decay

THEOREM 4. Suppose that G and X satisfy the hypothesis of Theorem 3 and
that for all u,v € V, do(u,v) < exp(—ad(u,v)) and there exists some k > 0 such
that for all (u,v) € E, dc(u,v) > k. Then for some constant C = C(a, K, €,8) > 0,
if k > Cdlogn, then there exists an estimator é(i) such that the probability of

correct reconstruction is P(G = @(K)) =1—0(1) and the algorithm running time is
2d In(4/r)

O(nd™ o +dn?Inn) with high probability.

phs: Techniques and Applications



Application: Reconstructing Markov random fields

Cutting down the number of potential neighborhoods

Proof. Denote the correlation neighborhood of a vertex v as No(v) = {u € V :

gg(u v) > k/2}, where gg(u,v) is the empirical correlation of u and v. For large
enough C with high probability for all v € V', we have that N(v) C N¢(v) C {u €
Vid(u,v) < W} Now the size of [{u € V : d(u,v) < WH is at most d &

which is independent of n.

When reconstructing the neighborhood of a vertex v we modify the algorithm in
Theorem 3 to test only candidate neighborhoods U and sets W which are subsets
of N¢(v). The algorithm restricted to the smaller range of possible neighborhoods
correctly reconstructs the graph with high probability since the true neighborhood of a

vertex is in its correlation neighborhood. For each vertex v the total number of choices
(d2d In(4/r) )

of candidate neighborhoods U and sets W the algorithm has to check is O
so running the reconstruction algorithm takes O(ndzdl"‘(yw) operations. It takes
O(dn?Inn) operations to calculate all the correlations, which for large n dominates

the running time. 0
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Application: Reconstructing Markov random fields

Go deeper

More details and results in:

@ Bresler, Mossel, Sly, Reconstruction of Markov Random
Fields from Samples: Some Observations and Algorithms,
SIAM J. Comput., 42(2):563-578.

@ Bresler, Efficiently Learning Ising Models on Arbitrary
Graphs, STOC 2015.
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