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The matrix of evolutionary distances is a model-based statistic, derived from

molecular sequences, summarizing the pairwise phylogenetic relationships be-

tween a collection of species. Phylogenetic tree reconstruction methods rely-

ing on this matrix are relatively fast and thus widely used in molecular sys-

tematics. However, because of their intrinsic reliance on summary statistics,

distance-matrix methods are assumed to be less accurate than likelihood-based

approaches. In this paper, pairwise sequence comparisons are shown to be

more powerful than previously hypothesized. A statistical analysis of certain

distance-based techniques indicates that their data requirement for large evo-

lutionary trees essentially matches the conjectured performance of maximum

likelihood methods—challenging the idea that summary statistics lead to sub-

optimal analyses. On the basis of a connection between ancestral state recon-

struction and distance averaging, the critical role played by the covariances of

the distance matrix is identified.
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Information about evolutionary trees can be inferred from the fact that species that are close

in the tree of life tend to have similar molecular sequences. In its most basic form, the evolu-

tionary distance between two DNA sequences is estimated from the proportion of homologous

sites differing between them, typically corrected for back-mutations under common model-

ing assumptions (1). For a collection of sequences, the pairwise evolutionary distances form

a matrix—the distance matrix—which underlies a popular class of tree reconstruction meth-

ods. Technically, distance-matrix methods include all phylogenetic inference techniques relying

solely on pairwise sequence comparisons, including Neighbor-joining (NJ), BIONJ, WEIGH-

BOR and FastME (2–5). Because of their simplicity, such methods are often considerably faster

than parsimony and likelihood-based approaches (6, 7) and distance-matrix methods are used

for large-scale phylogenetic reconstruction and bootstrap analysis, or to produce starting trees

for maximum likelihood (ML) heuristics. However, it is unknown if this advantage in speed

affects accuracy adversely.

The use of distance-matrix information has been criticized for seemingly ignoring higher-

order information, that is, data patterns involving more than two sequences (1). Moreover, it has

been observed through combinatorial arguments that the conversion from molecular sequences

to the distance matrix is far from invertible (8). However this hypothesized information loss has

not been quantified in a model-based framework. In reality the comparison of distances between

different pairs of sequences does involve higher-order signal, albeit in a highly summarized

form. But it is unclear how to use such information. In particular the correlation between the

entries of the distance matrix has largely been ignored in the design and analysis of distance-

matrix methods with a few notable exceptions (3, 9, 10).

Formally, phylogenetic data consists of n aligned DNA sequences of length k (without

gaps): sa1, . . . , s
a
k, where a ranges over the n terminal taxa (Fig. 1). The evolutionary distance

between the sequences at a and b is denoted by δ̂(a, b). In the Jukes-Cantor model, a classical
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substitution model which treats all nucleotides symmetrically, the standard distance formula

takes the form

δ̂(a, b) = −3

4
log

(
1− 4

3
p̂a,b

)
, (1)

where p̂a,b is the proportion of homologous sites differing between the sequences at a and b.

A variety of distance-matrix methodologies have been proposed, of which this study focuses

on agglomerative methods, including unweighted pair-group method using arithmetic averages

(UPGMA) and NJ (2, 11, 12). Such methods proceed in two steps that are repeated until ter-

mination: a) a selection step where a pair of operational taxonomic units (OTUs) is selected

for agglomeration and b) a reduction step where a reduced distance matrix is computed on the

remaining OTUs. As an example, in the case of a molecular clock (that is, under the assumption

that substitutions occur at the same rate in all branches of the tree), one can simply select the

two closest OTUs A′ and A′′ to form a new composite OTU A and the matrix is reduced with

the rule

δ̄(A,B) = µδ̄(A′, B) + (1− µ)δ̄(A′′, B), (2)

where δ̄ was used to indicate the reduced distance matrix, with the convention δ̄({a}, {b}) =

δ̂(a, b). The choice of the reduction coefficient, µ, is critical and the appropriate value has been

debated (3,4,13). Standard choices are µ = |A′|/|A| where |A| denotes the number of terminal

taxa in A, leading in the clock case to UPGMA, and µ = 1/2, leading in the clock case to

the less common weighted version of UPGMA known as weighted pair-group method using

arithmetic averages (WPGMA) (11, 12).

An important criterion in designing the selection and reduction steps above is the statistical

consistency of the resulting method: as sequence length increases, the reconstructed tree should

converge on the true phylogeny. However, because consistency is a coarse statistical property,

it is of limited use in comparing different methods (14). A case in point is that both reduction

coefficients above produce a consistent estimation under a molecular clock. A finer contrast is
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obtained with the sample complexity (SC), that is, the sequence length required to guarantee

that the reconstruction is correct with a given confidence when the data is generated according

to a standard substitution model on the true tree.

Because the sample complexity of a method depends in an intricatre manner on the pa-

rameters of the generating model, it is more feasible to evaluate its asymptotic behavior as a

designated parameter of interest converges to a limit. For instance, any inference method re-

quires at least an SC proportional to 1/f 2 as the shortest branch length f → 0 (15). In statistical

theory, sample complexities are often compared between two inference methods in the form of

a ratio called the asymptotic relative efficiency (16).

In this study, the regime of interest is large phylogenies and the structural parameters con-

sidered are the number of terminal taxa n, the shortest branch length f , and the depth of the

tree which we denote by ∆. (All branch and path lengths are expressed in number of substi-

tutions per site.) The depth measures how far the edges are from the terminal taxa (leaves).

Precisely, the depth of an edge e is defined to be the length of the shortest path between two

leaves that crosses e and the depth of the tree is the largest such quantity over all its edges (17).

The length of the longest branch, g, also plays a non-asymptotic role. Here it is claimed that the

following sample complexity can be achieved with only distance-matrix information under the

Jukes-Cantor model (more general models as well as random trees are discussed below):

SC =

{
C0 · 1/f 2 · log n if g < g∗JC ≈ 0.26
C1 · 1/f 2 · eC2∆ · log n if g ≥ g∗JC,

(3)

where C0, C1 and C2 are positive constants independent of f , ∆, and n, but C0 may depend

on g. (To simplify the formula above, it was assumed that f is small—precisely f ≤ 1. In

general, the factor 1/f 2 should be replaced with max{1/f 2, 1}.) Table 1 shows a comparison

with previous results.

The significance of Eq. (3) is that its functional dependence in f , ∆, and n is the best
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g < g∗JC g ≥ g∗JC

NJ (18) 1/f 2 · eDiam · log n 1/f 2 · eDiam · log n
SQM (17) (+ UPGMA in MC) 1/f 2 · e∆ · log n 1/f 2 · e∆ · log n
Here (+ WPGMA in MC) 1/f 2 · log n 1/f 2 · e∆ · log n

Conjecture for ML (best possible) 1/f 2 · log n 1/f 2 · e∆ · log n

Table 1: Summary of previous results on the SC of distance-matrix methods with constants
omitted for clarity. MC stands for the molecular clock case. The last row of the table gives the
conjectured SC of ML for comparison.

possible among all phylogenetic reconstruction methods except possibly for the values of the

constants C0, C1, and C2 (19). In particular it is natural to conjecture that the SC of maxi-

mum likelihood estimation, currently unknown (15), is also given by the same expression. In

comparison, the performance of NJ scales exponentially in the diameter (that is, the length of

the longest path) for all values of g (18, 20). Note that the diameter is larger than the depth,

often much larger (think of a tree with a toplogy like that of a caterpillar). Therefore, not all

distance-matrix methods achieve the SC in Eq. (3). In fact, the current study produces explicit

prescriptions in designing accurate distance-based techniques.

In Eq. (3) the constants C0, C1 and C2 may be evaluated through simulations or approxima-

tions on special cases (Fig. 2). The scaling in 1/f 2 is necessary and sufficient for all phyloge-

netic methods, whether distance or likelihood-based (15). Likewise, by information-theoretic

arguments the factor of log n is necessary (19). Here it arises as a Bonferroni correction, that is,

it accounts for the high number of evolutionary distances that must be estimated simultaneously

in order to infer a large phylogeny. In particular, to reconstruct a single deep branching in an

otherwise known tree, the factor of log n can be dropped.

The depth, on the other hand, displays an unexpected behavior. The thresholding effect

at g∗JC = 3 ln 2/8 mirrors a similar phenomenon in ancestral state reconstruction. Because

of the tree-like nature of phylogenies, there exists a fundamental tradeoff between how fast
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information is lost through mutations along each path connecting the root to the leaves and,

on the other hand, how fast information is replicated through the exponential growth of the

tree. Under the Jukes-Cantor model, the critical threshold at which these two effects balance

each other out on a bifurcating tree is g = g∗JC which corresponds roughly to an average of 22

substitutions per 100 sites per branch. When g < g∗JC (which I refer to as the lower phase of the

parameter space), good estimates of ancestral sequences can be obtained no matter how deep

the tree is, whereas if g ≥ g∗JC (the upper phase) even the best ancestral estimation methods

exhibit a quickly deteriorating accuracy as deeper parts of the tree are analyzed. This phase

transition has been studied in statistical physics (21).

In addition, this information-theoretic limitation impacts the accuracy of phylogenetic tree

reconstruction: the functional dependence in ∆ in Eq. (3) is necessary and sufficient for general

phylogenetic reconstruction methods, except possibly for the values of the constants C0, C1,

and C2 (19). In particular, in the lower phase, the sequence length required to infer a deep

branching does not grow with the depth.

Regarding distance-matrix methods, however, the best previous results had an SC exponen-

tial in ∆ for any value of g, using so-called short quartet methods (SQM) (17)—which was ex-

pected to be best for distance-based techniques (22). This study concludes that distance-matrix

methods are capable of achieving the asymptotically optimal SC in Eq. (3). This is surpris-

ing in that it is not immediately clear how to exploit ancestral state reconstruction through the

use of summary statistics alone. This hidden relation between ancestral states and the distance

matrix (22) forms the basis of the analysis.

The assumption that the largest branch length is bounded, even for large trees, may seem un-

realistic. After all, standard random tree models do not satisfy this kind of condition. However

classical results on ancestral state reconstruction (21) naturally lead to the conjecture that the

results discussed here—at least for the reconstruction of a single deep branching—are still true
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under the relaxed assumptions that an appropriately defined average branch length ḡ is bounded

above by g∗JC. The sample complexity for full reconstruction may require an extra factor de-

pending on g, but that is likely for any method. But this is only conjecture as a rigorous analysis

of the random tree case is still needed.

Although the molecular clock case is less relevant in practice, it is illustrative of the tech-

niques used. Analysis of the Jukes-Cantor model under a molecular clock was performed aban-

doning the standard Jukes-Cantor distance of Eq. (1) and, instead, with the following transfor-

mation: for each species a we define a new sequence σa1 , . . . , σ
a
k with σai = 1 if sai = A or G

(purines) and σai = −1 if sai = C or T (pyrimidines) letting the evolutionary distance between

species a and b be given by δ̂u(a, b) = (1− Θ̂(a, b))/2 where

Θ̂(a, b) =
1

k

k∑
i=1

σai σ
b
i , (4)

is a similarity score between sequences at a and b. A simple calculation shows that δ̂u is in

fact the standard uncorrected Cavender-Farris-Neyman distance; although an extension to Gen-

eral Time-Reversible (GTR) models reveals some differences with standard distance defini-

tions. Note that, under the molecular clock assumption, correction for back-mutations is not

needed (23).

The choice of a reduction coefficient in Eq. (2) can be cast in a more general context by

using positive weights w(a), a ∈ A, and w(b), b ∈ B, which sum to 1 on each OTU and letting

δ̄u(A,B) = (1−Θu(A,B))/2 where

Θu(A,B) =
∑
a∈A

∑
b∈B

w(a)w(b)Θ̂(a, b). (5)

For instance, the µs corresponding to UPGMA and WPGMA coincide respectively withw(a) =

1/|A| and w(a) = 2−|a|a∗ , where |a|a∗ is the number of branches between a and the most recent

common ancestor (MRCA) a∗ of A.
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It is natural to choose those w(a)s that minimize the variance of Eq. (5). If one were to

ignore the correlations between the Θ̂(a, b)s and use the fact that the variances of the Θ̂(a, b)s

are identical under a molecular clock (assuming that A and B correspond to true clades), then

the solution is given by the minimizer of
∑
a∈Aw(a)2∑

b∈B w(b)2 which is simplyw(a) = 1/|A|

and w(b) = 1/|B| showing that UPGMA would be the best choice. However, the Θ̂(a, b)s are

in fact correlated, which complicates the variance minimization. To solve the problem, Eqs. (4)

and (5) were combined into

δ̄u(A,B) =
1

2

1− 1

k

k∑
i=1

[∑
a∈A

w(a)σai

] ∑
b∈B

w(b)σbi

 . (6)

The expressions in square brackets can be interpreted as linear ancestral state estimators: The

value of
∑
a∈Aw(a)σai is a form of weighted majority vote which tends to be positive if the

MRCA of A has a purine at site i and negative in the case of a pyrimidine. In other words, the

distance average in the reduction step is equivalent to an implicit ancestral sequence estimation.

As a result, the task of minimizing the variance of δ̄u(A,B) requires the identification of good

linear ancestral estimators. Such estimators have been investigated in statistical physics and a

formula for the variance of
∑
a∈Aw(a)σai has been derived (21, 24).

With this interpretation of the reduction step, insights about ancestral estimation were used

to derive new results about distance-matrix methods. When g < g∗JC a particularly good choice

of weights is w(a) = 2−|a|a∗—the WPGMA choice. Although these weights are not strictly

speaking variance minimizers, they produce a linear ancestral estimator with a relatively small

(bounded) variance no matter how deep the tree. A rigorous analysis of WPGMA on the basis

of this observation showed that the asymptotically optimal SC in Eq. (3) is achieved (24).

In contrast, although UPGMA is expected to behave similarly to WPGMA on balanced

trees, it may perform more poorly on unbalanced ones, for instance, under uneven taxon sam-

pling (25). In fact, the performance of UPGMA deteriorates drastically under unbalanced con-
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ditions. Consider the idealized example of Fig. 2 where one seeks to infer a deep branching

in a phylogeny containing a dense subtree. In this case a uniform weighting of the terminal

taxa disproportionately favors the dense subtree and produces, in the lower phase, an ancestral

estimator of the MRCA a∗d of the dense subtree rather than of the MRCA a∗ of the full clade

(i.e., clade A) (E. Mossel, Personal communication). As a result the long path between a∗d and

a∗ leads to a sample complexity that scales exponentially with the depth (24) (Fig. 3). In com-

parison, WPGMA achieves the lower SC in Eq. (3) for any tree topology. In particular, the

asymptotic efficiency of UPGMA relative to WPGMA tends to 0 as ∆→ +∞ (Fig. 3). In other

words, ignoring the correlation structure of the distance matrix may lead to significantly poorer

performance in such cases.

To extend the analysis to GTR models, a generalized sequence transformation was ap-

plied (22, 24). A GTR model is specified by a reversible 4 × 4 substitution rate matrix Q

with stationary distribution π. The rate matrix is by convention normalized so that the total rate

of change per unit time at stationarity is 1, that is,
∑
i πiQii = −1. Let ν be an eigenvector of

Q corresponding to the largest negative eigenvalue −λQ (normalized so that
∑
i πiν

2
i = 1). For

each species a, define a new sequence σa1 , . . . , σ
a
k with σai = νA (respectively, νG, νC and νT) if

sai = A (respectively, G, C and T) and let the evolutionary distance between species a and b be

given by Eq. (4). This transformation is justified by the fact that, in an asymptotic sense, the

best linear ancestral state estimator is a function of ν (26,27). In particular, the critical threshold

g∗Q can be expressed as g∗Q = λ−1
Q ln

√
2. For instance, in the Tamura-Nei model (28) the critical

branch length is g∗Q = πRπY (1 + R) ln 2 where πR = πA + πG, πY = πC + πT and R is the

transition to transversion ratio (24). For reference, under a uniform stationary distribution with

ratios R = 2 and R = 10 (ratios typical of mammalian nuclear DNA and mitochondrial DNA

respectively (1)), the critical branch lengths are 0.520 and 1.906.
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To remove the molecular clock assumption, the corrected reduced distance matrix

δ̄c(a
∗, b∗) = − ln

∑
a∈A

∑
b∈B

w(a)w(b)eδ(a
∗,a)eδ(b

∗,b)Θ̂(a, b)

 , (7)

was used, where a∗ and b∗ are respectively the roots of clusters A and B. The quantity δ(a∗, a)

is the expected number of changes per site between a∗ and a. It is estimated by summing the

corresponding branch lengths, which are themselves estimated from previously computed δ̄c

values progressively as the tree is built (24). If the parenthesis above is negative (known as the

saturation problem (29)), the logarithm is not defined. For the analysis, δ̄c(a
∗, b∗) was set to +∞

in that case. Eq. (7) can be interpreted as a correction-uncorrection scheme where the reduction

step is performed (inside the logarithm) with uncorrected similarity scores, as in Eq. (5); the

estimate is then corrected (by taking the logarithm) for the selection step. Beyond guaranteeing

consistency, this scheme presents two advantages. By averaging uncorrected distances only,

exact formulas can be applied for the variances and covariances needed in designing the reduc-

tion step. Secondly, since the reduced distance δ̄c(a
∗, b∗) is more tightly concentrated (thanks

to the variance minimization), the saturation problem is minimized. Similarly to the molecular

clock case, a particularly good choice of averaging weight is w(a) = 2−|a|a∗ . A further issue in

removing the molecular clock assumption is that standard agglomerative schemes such as NJ

suffer from a basic flaw (20): Typical selection criteria involve large distances—which tend to

be noisy. Generalized, computationally-efficient agglomerative methods were recently devised

that avoid this problem with a local selection criterion, although occasionally backtracking is

necessary (30). Alternatively, OTUs are merged at internal branches (31). By combining a

correction-uncorrection scheme with a local agglomerative method, it was established that pair-

wise sequence comparisons alone achieve the SC in Eq. (3) in this more general setting as

well (24). (For technical reasons, in the analysis of the nonclock-like case it was assumed that

the branch lengths are, roughly speaking, multiples of f (32).)
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The SC in Eq. (3) indicates that the difference between distance and likelihood-based meth-

ods is more subtle than a cursory analysis would suggest. Note however that, because the

bounds examined here are asymptotic, they are mostly relevant for large-scale phylogenies.

Moreover the constants C0, C1 and C2 are possibly smaller in the case of likelihood-based

methods; although proof is still needed. On the other hand, because the maximum likelihood

problem is rarely, if ever, solved to optimality its actual sample complexity may be affected.

Another potential advantage of maximum likelihood is that, for some substitution models, good

likelihood-based ancestral estimators exist beyond g∗ [up to a slightly higher threshold (33)],

which may translate into a better SC for maximum likelihood. In the presence of noise, how-

ever, that advantage disappears (27). Finally, under rates-across-sites models, it is possible

for topologically different trees to generate identical distributions of pairwise sequence com-

parisons, making them indistinguishable through distance-matrix computations (34); and more

general summary statistics are needed. Lastly, practical reconstruction algorithms are needed, a

nontrivial task, in order to apply the theoretical insights discussed here.
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Fig. 1. Example of a DNA sequence dataset. The alignment is typically obtained using a

multiple sequence alignment heuristic applied to the collected sequences. The character − is

a gap. The columns are homologous sites, that is, they are derived from a common ancestor

through substitutions. Those columns that include gaps are ignored. For instance, using the

notation introduced in the text, we have k = 10 and the sequences at a = Homo sapiens and

b = Pan are sa1, . . . , s
a
10 = A, C, A, T, G, A, G, A, A, A and sb1, . . . , s

b
10 = A, T, A, T, A, A, G, A, A, A. In

particular, the preceding sequences agree on 8 out of 10 sites, so that p̂a,b = 0.2 and δ̂(a, b) =

0.457 using the Jukes-Cantor formula.

Fig. 2. A. Illustrative example (not to scale) where f0, g0, and g1 values are branch lengths.

The H0, h0, and h1 values indicate numbers of levels. The subtrees B and C are complete

binary trees. The subtree A is a complete binary tree with one subtree at height H0 replaced

by a complete binary tree with h1 levels. The top dashed subtree is referred to as the deep

triplet in the text. The dark subtree is denser, that is, g1 < g0. To satisfy the molecular clock

assumption h1g1 = h0g0. B. Sample complexity for correct reconstruction of the deep triplet

in A with h0 = h1 = 0 (no dense subtree) with WPGMA at 99% confidence level. Results

are shown for various tree depths H0: from 5 (lowest curve; corresponding to n = 3 · 25 = 96

terminal taxa) to 23 (highest curve; corresponding to n = 3 · 223 ≈ 25 · 106). Although f0

and g0 may not be the shortest and longest branch lengths, they play the roles of f and g in the

analysis (24). A normalized branch length of 1 corresponds to g0 = g∗. We factor out the effect

of f by fixing the value of f0 to 2 (which explains the absence of the standard U-shaped form

that is typical for such curves). The bold dashed line indicates the predicted sample complexity

for an infinitely deep tree. The results were obtained from a Gaussian approximation with full

variance-covariance matrix (24).

Fig. 3. On the example of Fig. 2A, a correct reconstruction of the deep triplet using UPGMA or

WPGMA requires that the estimated distance between the cladesA andC exceeds the estimated
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distance between the cladesA andB, or equivalently, that δ = δ̄u(A,C)−δ̄u(A,B) > 0. Shown

is the performance of the test {δ̄u(A,C)− δ̄u(A,B) > 0?} over 3000 Jukes-Cantor simulations

with h1 = H0, h0 = 1, g0 = 0.7, f0 = 2, and sequence length k = 500 (where the subtrees

corresponding to A, B and C are known). The top figure shows the variance of the estimator

δ. The bottom figure shows the success rate. Confidence intervals at 95% are shown (using an

approximation by the central limit theorem).
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