PRACTICE MIDTERM 2

1 Answer the following short questions. You do not need to justify your answers.

a) State formally the linear regression problem on input data \(\{(x_i, y_i)\}_{i=1}^n \).

b) Under what conditions on the data is there a unique solution to the linear regression problem?

2 Let \(V = \{v_1, \ldots, v_m\} \) be a list of \(m \) vectors in \(\mathbb{R}^n \). Define
 \[
 W = \left\{ \frac{v_1 - v_2}{\sqrt{2}}, \frac{v_2 - v_3}{\sqrt{2}}, \ldots, \frac{v_{m-1} - v_m}{\sqrt{2}}, v_m \right\}.
 \]
 Assume that \(V \) is an orthonormal list. Prove that the vectors in \(W \) have unit norm, but that \(W \) is not an orthonormal list. Make sure to justify your answer.

3 Let \(f : \mathbb{R} \to \mathbb{R} \) be twice continuously differentiable, let \(a_1, a_2 \) be vectors in \(\mathbb{R}^d \), and let \(b_1, b_2 \in \mathbb{R} \). Consider the following real-valued function of \(x \in \mathbb{R}^d \):
 \[
 g(x) = \frac{1}{2} f(a_1^T x + b_1) + \frac{1}{2} f(a_2^T x + b_2).
 \]
 a) Compute the gradient of \(g \) in vector form in terms of the derivative \(f' \) of \(f \). (By vector form, we mean that it is not enough to write down each element of \(\nabla g(x) \) separately.)

 b) Compute the Hessian of \(g \) in matrix form in terms of the first derivative \(f' \) and second derivative \(f'' \) of \(f \). (By matrix form, we mean that it is not enough to write down each element of \(H_g(x) \) or each of its columns separately.)

4 Let
 \[
 A = \begin{pmatrix} 2 & -1 \\ 0 & 0 \end{pmatrix}.
 \]
 a) Write \(A \) in outer-product form \(uv^T \).

 b) Use a) to give a compact SVD of \(A \). Make sure to justify your answer.

 c) Give a full SVD of \(A \). Make sure to justify your answer. [Hint: Complete the bases.]

5 Let \(z_1, z_2, z_3 \) be an orthonormal list in \(\mathbb{R}^n \) with \(n > 3 \). Let \(Z \in \mathbb{R}^{n \times 3} \) be the matrix with columns \(z_1, z_2, z_3 \).

 a) Prove that
\[H = I_{n \times n} - 2ZZ^T, \]

is an orthogonal matrix. Make sure to justify your answer.

b) Given \(\varepsilon \neq 0 \), consider the vector

\[\mathbf{u} = \frac{1}{\sqrt{1 + \varepsilon^2}} \begin{pmatrix} 1 \\ \varepsilon \mathbf{z}_1 \end{pmatrix} \in \mathbb{R}^{n+1}. \]

Prove that, if \(\mathbf{O} \in \mathbb{R}^{(n+1) \times (n+1)} \) is an orthogonal matrix, then \(\mathbf{O}\mathbf{u} \) is a unit vector. Make sure to justify your answer. [Hint: First show that \(\mathbf{u} \) is a unit vector.]