HWK 8

1 Recall that the trace) of a square matrix A, denoted $\text{tr}(A)$, is the sum of its diagonal entries.
 a) Show that, for any $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{m \times n}$, it holds that $\text{tr}(AB) = \text{tr}(BA)$.
 b) Use a) to show that more generally $\text{tr}(ABC) = \text{tr}(CAB) = \text{tr}(BCA)$ for any matrices A, B, C for which AB, BC and CA are well-defined.
 c) Show that, for any $A \in \mathbb{R}^{n \times m}$, $\|A\|^2_F = \text{tr}(A^T A)$.
 d) For a matrix $A = (a_{i,j})_{i,j} \in \mathbb{R}^{n \times m}$, the vectorization of A is the following vector
 \[\text{vec}(A) = (a_{1,1}, \ldots, a_{n,1}, a_{1,2}, \ldots, a_{n,2}, \ldots, a_{1,m}, \ldots, a_{n,m}) \]
 that is, it is obtained by stacking the columns of the matrix on top of one another. Show that, for any $A, B \in \mathbb{R}^{n \times m}$, it holds that $\text{tr}(A^T B) = \text{vec}(A)^T \text{vec}(B)$.

2 Let $A = \sum_{j=1}^r \sigma_j u_j v_j^T$ be an SVD of $A \in \mathbb{R}^{n \times m}$ with $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$.
 Define
 \[B = A - \sigma_1 u_1 v_1^T. \]
 Show that
 \[v_2 \in \arg\max\{\|Bv\| : \|v\| = 1\}. \]

3 Let $A \in \mathbb{R}^{n \times n}$ be a square matrix with full SVD $A = U \Sigma V^T$.
 a) Justify the following formula
 \[A = (UV^T)(V\Sigma V^T). \]
 b) Let
 \[Q = UV^T, \quad S = V\Sigma V^T. \]
 Show that Q is orthogonal and that S is positive semidefinite. A factorization of the form $A = QS$ is called a polar decomposition.

4 Assume that, for each i, p_{θ_i} is a univariate Gaussian with mean $\theta_i = x_i^T \mathbf{w}$ and known variance σ_i^2. Show that the maximum likelihood estimator of \mathbf{w} solves the weighted least squares problem, as defined in a previous assignment.
5 a) Show that the exponential family form of the Poisson distribution with mean \(\lambda \) has sufficient statistic \(\phi(y) = y \) and natural parameter \(\theta = \log \lambda \).

b) In Poisson regression, we assume that \(p_\theta(y) \) is Poisson with \(\theta = x^T w \). Compute the gradient and Hessian of the minus log-likelihood in this case.