Modern Discrete Probability

I - Introduction (continued)

Review of Markov chains

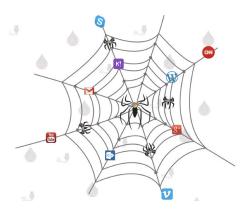
Sébastien Roch

UW-Madison

Mathematics

August 31, 2020

Exploring graphs



Random walk on a graph

Definition

Let G=(V,E) be a countable graph where every vertex has finite degree. Let $c:E\to\mathbb{R}_+$ be a positive edge weight function on G. We call $\mathcal{N}=(G,c)$ a *network*. Random walk on \mathcal{N} is the process on V, started at an arbitrary vertex, which at each time picks a neighbor of the current state proportionally to the weight of the corresponding edge.

Questions:

- How often does the walk return to its starting point?
- How long does it take to visit all vertices once or a particular subset of vertices for the first time?
- How fast does it approach equilibrium?

Undirected graphical models I

Definition

Let S be a finite set and let G=(V,E) be a finite graph. Denote by $\mathcal K$ the set of all cliques of G. A positive probability measure μ on $\mathcal X:=S^V$ is called a *Gibbs random field* if there exist *clique potentials* $\phi_K:S^K\to\mathbb R$, $K\in\mathcal K$, such that

$$\mu(\mathbf{x}) = \frac{1}{\mathcal{Z}} \exp \left(\sum_{\mathbf{K} \in \mathcal{K}} \phi_{\mathbf{K}}(\mathbf{x}_{\mathbf{K}}) \right),$$

where x_K is x restricted to the vertices of K and \mathcal{Z} is a normalizing constant.

Undirected graphical models II

Example

For $\beta>0$, the ferromagnetic Ising model with inverse temperature β is the Gibbs random field with $S:=\{-1,+1\}$, $\phi_{\{i,j\}}(\sigma_{\{i,j\}})=\beta\sigma_i\sigma_j$ and $\phi_K\equiv 0$ if $|K|\neq 2$. The function $\mathcal{H}(\sigma):=-\sum_{\{i,j\}\in E}\sigma_i\sigma_j$ is known as the Hamiltonian. The normalizing constant $\mathcal{Z}:=\mathcal{Z}(\beta)$ is called the partition function. The states $(\sigma_i)_{i\in V}$ are referred to as spins.

Questions:

- How fast is correlation decaying?
- How to sample efficiently?
- How to reconstruct the graph from samples?

Review of Markov chain theory

Application to Gibbs sampling

Directed graphs

Definition

A directed graph (or digraph for short) is a pair G = (V, E) where V is a set of vertices (or nodes, sites) and $E \subseteq V^2$ is a set of directed edges.

A *directed path* is a sequence of vertices x_0, \ldots, x_k with $(x_{i-1}, x_i) \in E$ for all $i = 1, \ldots, k$. We write $u \to v$ if there is such a path with $x_0 = u$ and $x_k = v$. We say that $u, v \in V$ communicate, denoted by $u \leftrightarrow v$, if $u \to v$ and $v \to u$. The \leftrightarrow relation is clearly an equivalence relation. The equivalence classes of \leftrightarrow are called the *(strongly) connected components* of G.

Markov chains I

Definition (Stochastic matrix)

Let V be a finite or countable space. A *stochastic matrix* on V is a nonnegative matrix $P = (P(i,j))_{i,j \in V}$ satisfying

$$\sum_{j\in V} P(i,j) = 1, \qquad \forall i\in V.$$

Let μ be a probability measure on V. One way to construct a $Markov\ chain\ (X_t)$ on V with transition matrix P and initial distribution μ is the following. Let $X_0 \sim \mu$ and let $(Y(i,n))_{i \in V, n \geq 1}$ be a mutually independent array with $Y(i,n) \sim P(i,\cdot)$. Set inductively $X_n := Y(X_{n-1},n),\ n \geq 1$.

Markov chains II

So in particular:

$$\mathbb{P}[X_0 = x_0, \dots, X_t = x_t] = \mu(x_0) P(x_0, x_1) \cdots P(x_{t-1}, x_t).$$

We use the notation \mathbb{P}_x , \mathbb{E}_x for the probability distribution and expectation under the chain started at x. Similarly for \mathbb{P}_{μ} , \mathbb{E}_{μ} where μ is a probability measure.

Example (Simple random walk)

Let G = (V, E) be a finite or countable, locally finite graph. Simple random walk on G is the Markov chain on V, started at an arbitrary vertex, which at each time picks a uniformly chosen neighbor of the current state.

Markov chains III

The *transition graph* of a chain is the directed graph on *V* whose edges are the transitions with nonzero probabilities.

Definition (Irreducibility)

A chain is *irreducible* if V is the unique connected component of its transition graph, i.e., if all pairs of states communicate.

Example

Simple random walk on *G* is irreducible if and only if *G* is connected.

Aperiodicity

Definition (Aperiodicity)

A chain is said to be *aperiodic* if for all $x \in V$

$$gcd\{t: P^t(x,x) > 0\} = 1.$$

Example (Lazy walk)

A *lazy, simple random walk* on G is a Markov chain such that, at each time, it stays put with probability 1/2 or chooses a uniformly random neighbor of the current state otherwise. Such a walk is aperiodic.

Stationary distribution I

Definition (Stationary distribution)

Let (X_t) be a Markov chain with transition matrix P. A stationary measure π is a measure such that

$$\sum_{x\in V}\pi(x)P(x,y)=\pi(y),\qquad\forall y\in V,$$

or in matrix form $\pi = \pi P$. We say that π is a *stationary distribution* if in addition π is a probability measure.

Example

The measure $\pi \equiv 1$ is stationary for simple random walk on \mathbb{L}^d .

Stationary distribution II

Theorem (Existence and uniqueness: finite case)

If P is irreducible and has a finite state space, then it has a unique stationary distribution.

Definition (Reversible chain)

A transition matrix P is *reversible* w.r.t. a measure η if $\eta(x)P(x,y)=\eta(y)P(y,x)$ for all $x,y\in V$. By summing over y, such a measure is necessarily stationary.

By induction, if (X_t) is reversible w.r.t. a stationary distribution π

$$\mathbb{P}_{\pi}[X_0 = X_0, \dots, X_t = X_t] = \mathbb{P}_{\pi}[X_0 = X_t, \dots, X_t = X_0].$$

Stationary distribution III

Example

Let (X_t) be simple random walk on a connected graph G. Then (X_t) is reversible w.r.t. $\eta(v) := \delta(v)$.

Example

The Metropolis algorithm modifies a given irreducible symmetric chain Q to produce a new chain P with the same transition graph and a prescribed positive stationary distribution π . The definition of the new chain is:

$$P(x,y) := \begin{cases} Q(x,y) \left[\frac{\pi(y)}{\pi(x)} \wedge 1 \right], & \text{if } x \neq y, \\ 1 - \sum_{z \neq x} P(x,z), & \text{otherwise.} \end{cases}$$

Convergence

Theorem (Convergence to stationarity)

Suppose P is irreducible, aperiodic and has stationary distribution π . Then, for all $x, y, P^t(x, y) \to \pi(y)$ as $t \to +\infty$.

For probability measures μ, ν on V, let their total variation distance be $\|\mu - \nu\|_{\text{TV}} := \sup_{A \subset V} |\mu(A) - \nu(A)|$.

Definition (Mixing time)

The mixing time is

$$t_{mix}(\varepsilon) := min\{t \geq 0 : d(t) \leq \varepsilon\},$$

where $d(t) := \max_{x \in V} \|P^t(x, \cdot) - \pi(\cdot)\|_{TV}$.

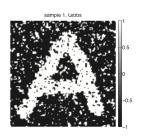
Other useful random walk quantities

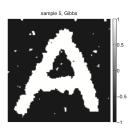
- Hitting times
- Cover times
- Heat kernels

Review of Markov chain theory

2 Application to Gibbs sampling

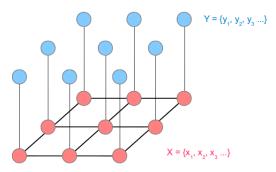
Application: Bayesian image analysis I





Bayesian image analysis II

Observable node variables eg. pixel intensity values



Hidden node variables eg. dispairty values

Recall: Undirected graphical models I

Definition

Let S be a finite set and let G=(V,E) be a finite graph. Denote by $\mathcal K$ the set of all cliques of G. A positive probability measure μ on $\mathcal X:=S^V$ is called a *Gibbs random field* if there exist *clique potentials* $\phi_K:S^K\to\mathbb R$, $K\in\mathcal K$, such that

$$\mu(\mathbf{x}) = \frac{1}{\mathcal{Z}} \exp \left(\sum_{\mathbf{K} \in \mathcal{K}} \phi_{\mathbf{K}}(\mathbf{x}_{\mathbf{K}}) \right),$$

where x_K is x restricted to the vertices of K and \mathcal{Z} is a normalizing constant.

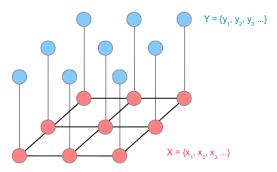
Recall: Undirected graphical models II

Example

For $\beta > 0$, the ferromagnetic Ising model with inverse temperature β is the Gibbs random field with $S := \{-1, +1\}$, $\phi_{\{i,j\}}(\sigma_{\{i,j\}}) = \beta \sigma_i \sigma_j$ and $\phi_K \equiv 0$ if $|K| \neq 2$. The function $\mathcal{H}(\sigma) := -\sum_{\{i,j\} \in \mathcal{E}} \sigma_i \sigma_j$ is known as the Hamiltonian. The normalizing constant $\mathcal{Z} := \mathcal{Z}(\beta)$ is called the partition function. The states $(\sigma_i)_{i \in V}$ are referred to as *spins*.

Back to Bayesian image analysis I

Observable node variables eg. pixel intensity values



Hidden node variables eg. dispairty values

Back to Bayesian image analysis II

We assume the prior (i.e. distribution of hidden variables) is an Ising model $\mu_{\beta}(\sigma)$ on the $L \times L$ grid G = (V, E). The observed variables τ are independent flips of the corresponding hidden variables with flip probability $q \in (0, 1/2)$, i.e.,

$$\begin{split} \mathbb{P}[\tau \,|\, \sigma] &= & \prod_{i \in V} (1-q)^{\mathbb{1}_{\tau_i = \sigma_i}} q^{\mathbb{1}_{\tau_i \neq \sigma_i}} \\ &= & \exp\left(\sum_{i \in V} \left\{ \log(1-q) \frac{1+\sigma_i \tau_i}{2} + \log(q) \frac{1-\sigma_i \tau_i}{2} \right\} \right) \\ &= & \exp\left(\sum_{i \in V} \sigma_i \frac{\tau_i}{2} \log \frac{1-q}{q} + \mathcal{Y}(q) \right). \end{split}$$

Back to Bayesian image analysis III

By Bayes' rule, the posterior is then given by

$$\mathbb{P}[\sigma \mid \tau] = \frac{\mathbb{P}[\tau \mid \sigma]\mu_{\beta}(\sigma)}{\sum_{\sigma} \mathbb{P}[\tau \mid \sigma]\mu_{\beta}(\sigma)}$$
$$= \frac{1}{\mathcal{Z}(\beta, q)} \exp\left(\beta \sum_{i \sim j} \sigma_{i}\sigma_{j} + \sum_{i} h_{i}\sigma_{i}\right),$$

where
$$h_i = \frac{\tau_i}{2} \log \frac{1-q}{q}$$
.

Gibbs sampling I

Definition

Let μ_{β} be the Ising model with inverse temperature $\beta > 0$ on a graph G = (V, E). The *(single-site) Glauber dynamics* is the Markov chain on $\mathcal{X} := \{-1, +1\}^V$ which at each time:

- selects a site $i \in V$ uniformly at random, and
- updates the spin at i according to μ_{β} conditioned on agreeing with the current state at all sites in $V \setminus \{i\}$.

Gibbs sampling II

Specifically, for $\gamma \in \{-1, +1\}$, $i \in \Lambda$, and $\sigma \in \mathcal{X}$, let $\sigma^{i,\gamma}$ be the configuration σ with the spin at i being set to γ . Let n = |V| and $S_i(\sigma) := \sum_{i \sim i} \sigma_i$. Then

$$Q_{\beta}(\sigma, \sigma^{i,\gamma}) := \frac{1}{n} \frac{\frac{1}{Z(\beta)} \exp\left(\beta \sum_{j \sim k} \sigma_{j}^{i,\gamma} \sigma_{k}^{i,\gamma}\right)}{\sum_{i'=-,+} \frac{1}{Z(\beta)} \exp\left(\beta \sum_{j \sim k} \sigma_{j}^{i',\gamma} \sigma_{k}^{i',\gamma}\right)}$$
$$= \frac{1}{n} \cdot \frac{e^{\gamma \beta S_{i}(\sigma)}}{e^{-\beta S_{i}(\sigma)} + e^{\beta S_{i}(\sigma)}}.$$

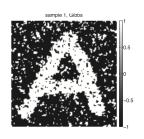
The Glauber dynamics is reversible w.r.t. μ_{β} . How quickly does the chain approach μ_{β} ?

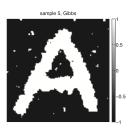
Gibbs sampling III

Proof of reversibility: This chain is clearly irreducible. For all $\sigma \in \mathcal{X}$ and $i \in V$, let $S_{\neq i}(\sigma) := \mathcal{H}(\sigma^{i,+}) + S_i(\sigma) = \mathcal{H}(\sigma^{i,-}) - S_i(\sigma)$. We have

$$\begin{array}{lcl} \mu_{\beta}(\sigma^{i,-})\,Q_{\beta}(\sigma^{i,-},\sigma^{i,+}) & = & \frac{e^{-\beta S_{\neq i}(\sigma)}e^{-\beta S_i(\sigma)}}{\mathcal{Z}(\beta)} \cdot \frac{e^{\beta S_i(\sigma)}}{n[e^{-\beta S_i(\sigma)}+e^{\beta S_i(\sigma)}]} \\ & = & \frac{e^{-\beta S_{\neq i}(\sigma)}}{n\mathcal{Z}(\beta)[e^{-\beta S_i(\sigma)}+e^{\beta S_i(\sigma)}]} \\ & = & \frac{e^{-\beta S_{\neq i}(\sigma)}e^{\beta S_i(\sigma)}}{\mathcal{Z}(\beta)} \cdot \frac{e^{-\beta S_i(\sigma)}}{n[e^{-\beta S_i(\sigma)}+e^{\beta S_i(\sigma)}]} \\ & = & \mu_{\beta}(\sigma^{i,+})\,Q_{\beta}(\sigma^{i,+},\sigma^{i,-}). \end{array}$$

Back to Bayesian image analysis





Go deeper

More details at:

http://www.math.wisc.edu/~roch/mdp/