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Random walk on a graph

Definition
Let G = (V ,E) be a countable graph where every vertex has
finite degree. Let c : E → R+ be a positive edge weight function
on G. We call N = (G, c) a network. Random walk on N is the
process on V , started at an arbitrary vertex, which at each time
picks a neighbor of the current state proportionally to the weight
of the corresponding edge.

Questions:
How often does the walk return to its starting point?
How long does it take to visit all vertices once or a
particular subset of vertices for the first time?
How fast does it approach equilibrium?
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Undirected graphical models I

Definition
Let S be a finite set and let G = (V ,E) be a finite graph.
Denote by K the set of all cliques of G. A positive probability
measure µ on X := SV is called a Gibbs random field if there
exist clique potentials φK : SK → R, K ∈ K, such that

µ(x) =
1
Z

exp

(∑
K∈K

φK (xK )

)
,

where xK is x restricted to the vertices of K and Z is a
normalizing constant.
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Undirected graphical models II

Example
For β > 0, the ferromagnetic Ising model with inverse
temperature β is the Gibbs random field with S := {−1,+1},
φ{i,j}(σ{i,j}) = βσiσj and φK ≡ 0 if |K | 6= 2. The function
H(σ) := −

∑
{i,j}∈E σiσj is known as the Hamiltonian. The

normalizing constant Z := Z(β) is called the partition function.
The states (σi)i∈V are referred to as spins.

Questions:
How fast is correlation decaying?
How to sample efficiently?
How to reconstruct the graph from samples?
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Directed graphs

Definition
A directed graph (or digraph for short) is a pair G = (V ,E)
where V is a set of vertices (or nodes, sites) and E ⊆ V 2 is a
set of directed edges.

A directed path is a sequence of vertices x0, . . . , xk with
(xi−1, xi) ∈ E for all i = 1, . . . , k . We write u → v if there is such
a path with x0 = u and xk = v . We say that u, v ∈ V
communicate, denoted by u ↔ v , if u → v and v → u. The↔
relation is clearly an equivalence relation. The equivalence
classes of↔ are called the (strongly) connected components
of G.
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Markov chains I

Definition (Stochastic matrix)
Let V be a finite or countable space. A stochastic matrix on V
is a nonnegative matrix P = (P(i , j))i,j∈V satisfying∑

j∈V

P(i , j) = 1, ∀i ∈ V .

Let µ be a probability measure on V . One way to construct a
Markov chain (Xt ) on V with transition matrix P and initial
distribution µ is the following. Let X0 ∼ µ and let (Y (i ,n))i∈V ,n≥1
be a mutually independent array with Y (i ,n) ∼ P(i , ·). Set
inductively Xn := Y (Xn−1,n), n ≥ 1.
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Markov chains II

So in particular:

P[X0 = x0, . . . ,Xt = xt ] = µ(x0)P(x0, x1) · · ·P(xt−1, xt ).

We use the notation Px ,Ex for the probability distribution and
expectation under the chain started at x . Similarly for Pµ,Eµ
where µ is a probability measure.

Example (Simple random walk)

Let G = (V ,E) be a finite or countable, locally finite graph.
Simple random walk on G is the Markov chain on V , started at
an arbitrary vertex, which at each time picks a uniformly chosen
neighbor of the current state.
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Markov chains III

The transition graph of a chain is the directed graph on V
whose edges are the transitions with nonzero probabilities.

Definition (Irreducibility)
A chain is irreducible if V is the unique connected component
of its transition graph, i.e., if all pairs of states communicate.

Example
Simple random walk on G is irreducible if and only if G is
connected.
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Aperiodicity

Definition (Aperiodicity)
A chain is said to be aperiodic if for all x ∈ V

gcd{t : P t (x , x) > 0} = 1.

Example (Lazy walk)
A lazy, simple random walk on G is a Markov chain such that,
at each time, it stays put with probability 1/2 or chooses a
uniformly random neighbor of the current state otherwise. Such
a walk is aperiodic.
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Stationary distribution I

Definition (Stationary distribution)

Let (Xt ) be a Markov chain with transition matrix P. A
stationary measure π is a measure such that∑

x∈V

π(x)P(x , y) = π(y), ∀y ∈ V ,

or in matrix form π = πP. We say that π is a stationary
distribution if in addition π is a probability measure.

Example

The measure π ≡ 1 is stationary for simple random walk on Ld .
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Stationary distribution II

Theorem (Existence and uniqueness: finite case)
If P is irreducible and has a finite state space, then it has a
unique stationary distribution.

Definition (Reversible chain)
A transition matrix P is reversible w.r.t. a measure η if
η(x)P(x , y) = η(y)P(y , x) for all x , y ∈ V . By summing over y ,
such a measure is necessarily stationary.

By induction, if (Xt ) is reversible w.r.t. a stationary distribution π

Pπ[X0 = x0, . . . ,Xt = xt ] = Pπ[X0 = xt , . . . ,Xt = x0].
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Stationary distribution III

Example

Let (Xt ) be simple random walk on a connected graph G. Then
(Xt ) is reversible w.r.t. η(v) := δ(v).

Example
The Metropolis algorithm modifies a given irreducible
symmetric chain Q to produce a new chain P with the same
transition graph and a prescribed positive stationary distribution
π. The definition of the new chain is:

P(x , y) :=

{
Q(x , y)

[
π(y)
π(x) ∧ 1

]
, if x 6= y ,

1−
∑

z 6=x P(x , z), otherwise.
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Convergence

Theorem (Convergence to stationarity)

Suppose P is irreducible, aperiodic and has stationary
distribution π. Then, for all x , y, P t (x , y)→ π(y) as t → +∞.

For probability measures µ, ν on V , let their total variation
distance be ‖µ− ν‖TV := supA⊆V |µ(A)− ν(A)|.

Definition (Mixing time)
The mixing time is

tmix(ε) := min{t ≥ 0 : d(t) ≤ ε},

where d(t) := maxx∈V ‖P t (x , ·)− π(·)‖TV.
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Other useful random walk quantities

Hitting times
Cover times
Heat kernels
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Application: Bayesian image analysis I
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Bayesian image analysis II
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Recall: Undirected graphical models I

Definition
Let S be a finite set and let G = (V ,E) be a finite graph.
Denote by K the set of all cliques of G. A positive probability
measure µ on X := SV is called a Gibbs random field if there
exist clique potentials φK : SK → R, K ∈ K, such that

µ(x) =
1
Z

exp

(∑
K∈K

φK (xK )

)
,

where xK is x restricted to the vertices of K and Z is a
normalizing constant.
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Recall: Undirected graphical models II

Example
For β > 0, the ferromagnetic Ising model with inverse
temperature β is the Gibbs random field with S := {−1,+1},
φ{i,j}(σ{i,j}) = βσiσj and φK ≡ 0 if |K | 6= 2. The function
H(σ) := −

∑
{i,j}∈E σiσj is known as the Hamiltonian. The

normalizing constant Z := Z(β) is called the partition function.
The states (σi)i∈V are referred to as spins.
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Back to Bayesian image analysis I
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Back to Bayesian image analysis II

We assume the prior (i.e. distribution of hidden variables) is an
Ising model µβ(σ) on the L× L grid G = (V ,E). The observed
variables τ are independent flips of the corresponding hidden
variables with flip probability q ∈ (0,1/2), i.e.,

P[τ |σ] =
∏
i∈V

(1− q)1τi=σi q1τi 6=σi

= exp

(∑
i∈V

{
log(1− q)

1 + σiτi

2
+ log(q)

1− σiτi

2

})

= exp

(∑
i∈V

σi
τi

2
log

1− q
q

+ Y(q)

)
.
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Back to Bayesian image analysis III

By Bayes’ rule, the posterior is then given by

P[σ | τ ] =
P[τ |σ]µβ(σ)∑
σ P[τ |σ]µβ(σ)

=
1

Z(β,q)
exp

β∑
i∼j

σiσj +
∑

i

hiσi

 ,

where hi = τi
2 log 1−q

q .
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Gibbs sampling I

Definition
Let µβ be the Ising model with inverse temperature β > 0 on a
graph G = (V ,E). The (single-site) Glauber dynamics is the
Markov chain on X := {−1,+1}V which at each time:

selects a site i ∈ V uniformly at random, and
updates the spin at i according to µβ conditioned on
agreeing with the current state at all sites in V\{i}.
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Gibbs sampling II

Specifically, for γ ∈ {−1,+1}, i ∈ Λ, and σ ∈ X , let σi,γ be the
configuration σ with the spin at i being set to γ. Let n = |V | and
Si(σ) :=

∑
j∼i σj . Then

Qβ(σ, σi,γ) :=
1
n

1
Z(β) exp

(
β
∑

j∼k σ
i,γ
j σi,γ

k

)
∑

i ′=−,+
1
Z(β) exp

(
β
∑

j∼k σ
i ′,γ
j σi ′,γ

k

)
=

1
n
· eγβSi (σ)

e−βSi (σ) + eβSi (σ)
.

The Glauber dynamics is reversible w.r.t. µβ. How quickly does
the chain approach µβ?
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Gibbs sampling III

Proof of reversibility: This chain is clearly irreducible. For all σ ∈ X and i ∈ V ,
let S 6=i(σ) := H(σi,+) + Si(σ) = H(σi,−)− Si(σ). We have

µβ(σ
i,−)Qβ(σ

i,−, σi,+) =
e−βS6=i (σ)e−βSi (σ)

Z(β) · eβSi (σ)

n[e−βSi (σ) + eβSi (σ)]

=
e−βS6=i (σ)

nZ(β)[e−βSi (σ) + eβSi (σ)]

=
e−βS6=i (σ)eβSi (σ)

Z(β) · e−βSi (σ)

n[e−βSi (σ) + eβSi (σ)]

= µβ(σ
i,+)Qβ(σ

i,+, σi,−).
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Back to Bayesian image analysis
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Go deeper

More details at:

http://www.math.wisc.edu/˜roch/mdp/
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