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Graph terminology

Definition
An (undirected) graphis a pair G = (V, E) where V is the set of
vertices and

EC {{uv}:uveV}

is the set of edges.
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Graph terminology

An example: the Petersen graph
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Graph terminology

Basic definitions

Definition (Neighborhood)

Two vertices u, v € V are adjacent, denoted by u ~ v, if

{u, v} € E. The set of adjacent vertices of v, denoted by N(v),
is called the neighborhood of v and its size, i.e. §(v) := |[N(v)],
is the degree of v. A vertex v with §(v) = 0 is called isolated.

Example

All vertices in the Petersen graph have degree 3. In particular
there is no isolated vertex.
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Graph terminology

An example: the Petersen graph
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Graph terminology

Paths and connectivity

Definition (Paths)

A pathin G is a sequence of vertices xg ~ Xy ~ -+ ~ Xx. The
number of edges, k, is called the length of the path. If xo = X,
we call it a cycle. We write u <> v if there is a path between u
and v. The equivalence classes of <> are called connected
components. The length of the shortest path between two
vertices u, v is their graph distance, denoted dg(u, v).

Definition (Connectivity)

A graph is connected if any two vertices are linked by a path,
i.e.,,ifu< viorallu,veV.

The Petersen graph is connected.
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Graph terminology

An example: the Petersen graph
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Graph terminology

Adjacency matrix

Definition

Let G = (V, E) be a graph with n = |V|. The adjacency matrix
Aof Gis the n x n matrix defined as Ay, = 1if {x,y} € Eand 0
otherwise.

| A

Example
The adjacency matrix of a triangle (i.e. 3 vertices with all

edges) is
0 1 1
1.0 1].
110

A
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Graph terminology

Examples of finite graphs

@ Kj: clique with n vertices, i.e., graph with all edges present
@ C,: cycle with n non-repeated vertices

@ H": n-dimensional hypercube, i.e., V = {0,1}" and u ~ v if
u and v differ at one coordinate
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Basic examples of stochastic processes on graphs
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Basic examples of stochastic processes on graphs

Random walk on a graph

Definition

Let G = (V, E) be a countable graph where every vertex has
finite degree. Let ¢ : E — R be a positive edge weight function
on G. We call N = (G, c¢) a network. Random walk on N is the
process on V, started at an arbitrary vertex, which at each time
picks a neighbor of the current state proportionally to the weight
of the corresponding edge.

Questions:
@ How often does the walk return to its starting point?

@ How long does it take to visit all vertices once or a
particular subset of vertices for the first time?

@ How fast does it approach equilibrium?

Sébastien Roch, UW-Madison Modern Discrete Probability — Models and Questions



Basic examples of stochastic processes on graphs

Undirected graphical models |

Definition

Let S be a finite set and let G = (V, E) be a finite graph.
Denote by K the set of all cliques of G. A positive probability
measure x on X := SV is called a Gibbs random field if there
exist clique potentials ¢x : SK — R, K € K, such that

H(x) = xp (Z ¢K(XK)> ,

Kek

where xk is x restricted to the vertices of K and Z is a
normalizing constant.
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Basic examples of stochastic processes on graphs

Undirected graphical models Il

Example

For 5 > 0, the ferromagnetic Ising model with inverse
temperature 3 is the Gibbs random field with S := {—1, +1},
QS{,'J}(O‘{,'J}) = ﬁO','O'j and ¢ =0 if |K| =# 2. The function

H(o) :== = > {i jyee 0io;j is known as the Hamiltonian. The
normalizing constant Z := Z([) is called the partition function.
The states (o;);cy are referred to as spins.

Questions:
@ How fast is correlation decaying?
@ How to sample efficiently?
@ How to reconstruct the graph from samples?
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Basic examples of stochastic processes on graphs

Erd6s-Rényi random graph

Definition

Let V = [n] and p € [0, 1]. The Erdés-Rényi graph G = (V, E)
on n vertices with density p is defined as follows: for each pair
x # yin V, the edge {x, y} is in E with probability p
independently of all other edges. We write G ~ Gpp and we
denote the corresponding measure by P, p.

Questions:
@ What is the probability of observing a triangle?
@ Is G connected?

@ What is the typical chromatic number (i.e., the smallest
number of colors needed to color the vertices so that no
two adjacent vertices share the same color)?

Sébastien Roch, UW-Madison Modern Discrete Probability — Models and Questions



Basic examples of stochastic processes on graphs

Erdds-Rényi with n = 100 and p, = 1/100
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Basic examples of stochastic processes on graphs

Erdds-Rényi with n = 100 and p, = 2/100
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Basic examples of stochastic processes on graphs

Erdds-Rényi with n = 100 and p, = 3/100
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Basic examples of stochastic processes on graphs

Erdds-Rényi with n = 100 and p, = 4/100
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Basic examples of stochastic processes on graphs

Erdds-Rényi with n = 100 and p, = 5/100
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Basic examples of stochastic processes on graphs

Erdds-Rényi with n = 100 and p, = 6/100
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Basic examples of stochastic processes on graphs

Clustering in Euclidean space

Cluster plot
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Basic examples of stochastic processes on graphs

Clustering in graphs
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Basic examples of stochastic processes on graphs

Reducing the second problem to the first one
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Basic examples of stochastic processes on graphs

Go deeper

More details at:

http://www.math.wisc.edu/~roch/mdp/
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