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Sébastien Roch
UW–Madison
Mathematics

August 31, 2020
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Processes on graphs
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Modeling complex graphs
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Graphs

Definition
An (undirected) graph is a pair G = (V ,E) where V is the set of
vertices and

E ⊆ {{u, v} : u, v ∈ V},

is the set of edges.
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An example: the Petersen graph
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Basic definitions

Definition (Neighborhood)
Two vertices u, v ∈ V are adjacent, denoted by u ∼ v , if
{u, v} ∈ E . The set of adjacent vertices of v , denoted by N(v),
is called the neighborhood of v and its size, i.e. δ(v) := |N(v)|,
is the degree of v . A vertex v with δ(v) = 0 is called isolated.

Example
All vertices in the Petersen graph have degree 3. In particular
there is no isolated vertex.
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An example: the Petersen graph
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Paths and connectivity

Definition (Paths)
A path in G is a sequence of vertices x0 ∼ x1 ∼ · · · ∼ xk . The
number of edges, k , is called the length of the path. If x0 = xk ,
we call it a cycle. We write u ↔ v if there is a path between u
and v . The equivalence classes of↔ are called connected
components. The length of the shortest path between two
vertices u, v is their graph distance, denoted dG(u, v).

Definition (Connectivity)
A graph is connected if any two vertices are linked by a path,
i.e., if u ↔ v for all u, v ∈ V .

Example
The Petersen graph is connected.
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An example: the Petersen graph
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Adjacency matrix

Definition
Let G = (V ,E) be a graph with n = |V |. The adjacency matrix
A of G is the n× n matrix defined as Axy = 1 if {x , y} ∈ E and 0
otherwise.

Example
The adjacency matrix of a triangle (i.e. 3 vertices with all
edges) is 0 1 1

1 0 1
1 1 0

 .
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Examples of finite graphs

Kn: clique with n vertices, i.e., graph with all edges present
Cn: cycle with n non-repeated vertices
Hn: n-dimensional hypercube, i.e., V = {0,1}n and u ∼ v if
u and v differ at one coordinate

Sébastien Roch, UW–Madison Modern Discrete Probability – Models and Questions



Graph terminology
Basic examples of stochastic processes on graphs

1 Graph terminology

2 Basic examples of stochastic processes on graphs
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Random walk on a graph

Definition
Let G = (V ,E) be a countable graph where every vertex has
finite degree. Let c : E → R+ be a positive edge weight function
on G. We call N = (G, c) a network. Random walk on N is the
process on V , started at an arbitrary vertex, which at each time
picks a neighbor of the current state proportionally to the weight
of the corresponding edge.

Questions:
How often does the walk return to its starting point?
How long does it take to visit all vertices once or a
particular subset of vertices for the first time?
How fast does it approach equilibrium?
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Undirected graphical models I

Definition
Let S be a finite set and let G = (V ,E) be a finite graph.
Denote by K the set of all cliques of G. A positive probability
measure µ on X := SV is called a Gibbs random field if there
exist clique potentials φK : SK → R, K ∈ K, such that

µ(x) =
1
Z

exp

(∑
K∈K

φK (xK )

)
,

where xK is x restricted to the vertices of K and Z is a
normalizing constant.
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Undirected graphical models II

Example
For β > 0, the ferromagnetic Ising model with inverse
temperature β is the Gibbs random field with S := {−1,+1},
φ{i,j}(σ{i,j}) = βσiσj and φK ≡ 0 if |K | 6= 2. The function
H(σ) := −

∑
{i,j}∈E σiσj is known as the Hamiltonian. The

normalizing constant Z := Z(β) is called the partition function.
The states (σi)i∈V are referred to as spins.

Questions:
How fast is correlation decaying?
How to sample efficiently?
How to reconstruct the graph from samples?
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Erdös-Rényi random graph

Definition
Let V = [n] and p ∈ [0,1]. The Erdös-Rényi graph G = (V ,E)
on n vertices with density p is defined as follows: for each pair
x 6= y in V , the edge {x , y} is in E with probability p
independently of all other edges. We write G ∼ Gn,p and we
denote the corresponding measure by Pn,p.

Questions:
What is the probability of observing a triangle?
Is G connected?
What is the typical chromatic number (i.e., the smallest
number of colors needed to color the vertices so that no
two adjacent vertices share the same color)?
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Erdös-Rényi with n = 100 and pn = 1/100
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Erdös-Rényi with n = 100 and pn = 2/100
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Erdös-Rényi with n = 100 and pn = 3/100
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Erdös-Rényi with n = 100 and pn = 4/100

Sébastien Roch, UW–Madison Modern Discrete Probability – Models and Questions



Graph terminology
Basic examples of stochastic processes on graphs

Erdös-Rényi with n = 100 and pn = 5/100
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Erdös-Rényi with n = 100 and pn = 6/100
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Clustering in Euclidean space
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Clustering in graphs
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Reducing the second problem to the first one
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Go deeper

More details at:

http://www.math.wisc.edu/˜roch/mdp/
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