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Mixing time I

Theorem (Convergence to stationarity)

Consider a finite state space V . Suppose the transition matrix
P is irreducible, aperiodic and has stationary distribution π.
Then, for all x , y, P t (x , y)→ π(y) as t → +∞.

For probability measures µ, ν on V , let their total variation
distance be ‖µ− ν‖TV := supA⊆V |µ(A)− ν(A)|.

Definition (Mixing time)
The mixing time is

tmix(ε) := min{t ≥ 0 : d(t) ≤ ε},

where d(t) := maxx∈V ‖P t (x , ·)− π(·)‖TV.
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Mixing time II

Definition (Separation distance)
The separation distance is defined as

sx (t) := max
y∈V

[
1− P t (x , y)

π(y)

]
,

and we let s(t) := maxx∈V sx (t).

Because both {π(y)} and {P t (x , y)} are non-negative and sum
to 1, we have that sx (t) ≥ 0.

Lemma (Separation distance v. total variation distance)

d(t) ≤ s(t).
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Mixing time III

Proof: Because 1 =
∑

y π(y) =
∑

y P t (x , y),∑
y :P t (x,y)<π(y)

[
π(y)− P t (x , y)

]
=

∑
y :P t (x,y)≥π(y)

[
P t (x , y)− π(y)

]
.

So

‖P t (x , ·)− π(·)‖TV =
1
2

∑
y

∣∣∣π(y)− P t (x , y)
∣∣∣

=
∑

y :P t (x,y)<π(y)

[
π(y)− P t (x , y)

]
=

∑
y :P t (x,y)<π(y)

π(y)

[
1− P t (x , y)

π(y)

]
≤ sx (t).
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Reversible chains

Definition (Reversible chain)
A transition matrix P is reversible w.r.t. a measure η if
η(x)P(x , y) = η(y)P(y , x) for all x , y ∈ V . By summing over y ,
such a measure is necessarily stationary.
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Example I

Recall:

Definition (Random walk on a graph)

Let G = (V ,E) be a finite or countable, locally finite graph.
Simple random walk on G is the Markov chain on V , started at
an arbitrary vertex, which at each time picks a uniformly chosen
neighbor of the current state.

Let (Xt ) be simple random walk on a connected graph G. Then
(Xt ) is reversible w.r.t. η(v) := δ(v), where δ(v) is the degree of
vertex v .
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Example II

Definition (Random walk on a network)

Let G = (V ,E) be a finite or countable, locally finite graph. Let
c : E → R+ be a positive edge weight function on G. We call
N = (G, c) a network. Random walk on N is the Markov chain
on V , started at an arbitrary vertex, which at each time picks a
neighbor of the current state proportionally to the weight of the
corresponding edge.

Any countable, reversible Markov chain can be seen as a
random walk on a network (not necessarily locally finite) by
setting c(e) := π(x)P(x , y) = π(y)P(y , x) for all e = {x , y} ∈ E .
Let (Xt ) be random walk on a network N = (G, c). Then (Xt ) is
reversible w.r.t. η(v) := c(v), where c(v) :=

∑
x∼v c(v , x).
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Eigenbasis I

We let n := |V | < +∞. Assume that P is irreducible and reversible w.r.t. its
stationary distribution π > 0. Define

〈f , g〉π :=
∑
x∈V

π(x)f (x)g(x), ‖f‖2
π := 〈f , f 〉π,

(Pf )(x) :=
∑

y

P(x , y)f (y).

We let `2(V , π) be the Hilbert space of real-valued functions on V equipped
with the inner product 〈·, ·〉π (equivalent to the vector space (Rn, 〈·, ·〉π)).

Theorem

There is an orthonormal basis of `2(V , π) formed of eigenfunctions {fj}n
j=1 of

P with real eigenvalues {λj}n
j=1. We can take f1 ≡ 1 and λ1 = 1.
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Eigenbasis II
Proof: We work over (Rn, 〈·, ·〉π). Let Dπ be the diagonal matrix with π on the
diagonal. By reversibility,

M(x , y) :=

√
π(x)

π(y)
P(x , y) =

√
π(y)

π(x)
P(y , x) =: M(y , x).

So M = (M(x , y))x,y = D1/2
π PD−1/2

π , as a symmetric matrix, has real
eigenvectors {φj}n

j=1 forming an orthonormal basis of Rn with corresponding
real eigenvalues {λj}n

j=1. Define fj := D−1/2
π φj . Then

Pfj = PD−1/2
π φj = D−1/2

π D1/2
π PD−1/2

π φj = D−1/2
π Mφj = λjD−1/2

π φj = λj fj ,

and

〈fi , fj〉π = 〈D−1/2
π φi ,D−1/2

π φj〉π

=
∑

x

π(x)[π(x)−1/2φi (x)][π(x)−1/2φj (x)] = 〈φi , φj〉.

Because P is stochastic, the all-one vector is a right eigenvector of P with
eigenvalue 1.
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Eigenbasis III

Lemma
For all j 6= 1,

∑
x π(x)fj(x) = 0.

Proof: By orthonormality, 〈f1, fj〉π = 0. Now use the fact that f1 ≡ 1.

Let δx (y) := 1{x=y}.

Lemma

For all x , y,
∑n

j=1 fj(x)fj(y) = π(x)−1δx (y).

Proof: Using the notation of the theorem, the matrix Φ whose columns are
the φjs is unitary so ΦΦ′ = I. That is,

∑n
j=1 φj (x)φj (y) = δx (y), or∑n

j=1

√
π(x)π(y)fj (x)fj (y) = δx (y). Rearranging gives the result.
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Eigenbasis IV

Lemma

Let g ∈ `2(V , π). Then g =
∑n

j=1〈g, fj〉πfj .

Proof: By the previous lemma, for all x
n∑

j=1

〈g, fj〉πfj (x) =
n∑

j=1

∑
y

π(y)g(y)fj (y)fj (x) =
∑

y

π(y)g(y)[π(x)−1δx (y)] = g(x).

Lemma

Let g ∈ `2(V , π). Then ‖g‖2π =
∑n

j=1〈g, fj〉2π.

Proof: By the previous lemma,

‖g‖2
π =

∥∥∥∥∥∥
n∑

j=1

〈g, fj〉πfj

∥∥∥∥∥∥
2

π

=

〈
n∑

i=1

〈g, fi〉πfi ,
n∑

j=1

〈g, fj〉πfj

〉
π

=
n∑

i,j=1

〈g, fi〉π〈g, fj〉π〈fi , fj〉π,
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Eigenvalues I

Let P be finite, irreducible and reversible.

Lemma
Any eigenvalue λ of P satisfies |λ| ≤ 1.

Proof: Pf = λf =⇒ |λ|‖f‖∞ = ‖Pf‖∞ = maxx |
∑

y P(x , y)f (y)| ≤ ‖f‖∞
We order the eigenvalues 1 ≥ λ1 ≥ · · · ≥ λn ≥ −1. In fact:

Lemma
We have λ2 < 1.

Proof: Any eigenfunction with eigenvalue 1 is P-harmonic. By Corollary 3.22
for a finite, irreducible chain the only harmonic functions are the constant
functions. So the eigenspace corresponding to 1 is one-dimensional. Since
all eigenvalues are real, we must have λ2 < 1.
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Eigenvalues II

Theorem (Rayleigh’s quotient)
Let P be finite, irreducible and reversible with respect to π. The
second largest eigenvalue is characterized by

λ2 = sup

{
〈f ,Pf 〉π
〈f , f 〉π

: f ∈ `2(V , π),
∑

x

π(x)f (x) = 0

}
.

(Similarly, λ1 = supf∈`2(V ,π)
〈f ,Pf 〉π
〈f ,f 〉π .)

Proof: Recalling that f1 ≡ 1, the condition
∑

x π(x)f (x) = 0 is equivalent to
〈f1, f 〉π = 0. For such an f , the eigendecomposition is

f =
n∑

j=1

〈f , fj〉πfj =
n∑

j=2

〈f , fj〉πfj ,
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Eigenvalues III

and

Pf =
n∑

j=2

〈f , fj〉πλj fj ,

so that

〈f ,Pf 〉π
〈f , f 〉π

=

∑n
i=2

∑n
j=2〈f , fi〉π〈f , fj〉πλj〈fi , fj〉π∑n

j=2〈f , fj〉2π
=

∑n
j=2〈f , fj〉

2
πλj∑n

j=2〈f , fj〉2π
≤ λ2.

Taking f = f2 achieves the supremum.
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Dirichlet form I
The Dirichlet form is defined as E(f , g) := 〈f , (I − P)g〉π. Note that

2〈f , (I − P)f 〉π
= 2〈f , f 〉π − 2〈f ,Pf 〉π

=
∑

x

π(x)f (x)2 +
∑

y

π(y)f (y)2 − 2
∑

x

π(x)f (x)f (y)P(x , y)

=
∑
x,y

f (x)2π(x)P(x , y) +
∑
x,y

f (y)2π(y)P(y , x)− 2
∑

x

π(x)f (x)f (y)P(x , y)

=
∑
x,y

f (x)2π(x)P(x , y) +
∑
x,y

f (y)2π(x)P(x , y)− 2
∑

x

π(x)f (x)f (y)P(x , y)

=
∑
x,y

π(x)P(x , y)[f (x)− f (y)]2 = 2E(f )

where
E(f ) :=

1
2

∑
x,y

c(x , y)[f (x)− f (y)]2,

is the Dirichlet energy encountered previously.
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Dirichlet form II

We note further that if
∑

x π(x)f (x) = 0 then

〈f , f 〉π = 〈f − 〈1, f 〉π, f − 〈1, f 〉π〉π = Varπ[f ],

where the last expression denotes the variance under π. So the variational
characterization of λ2 translates into

Varπ[f ] ≤ γ−1E(f ),

where γ = 1− λ2, for all f such that
∑

x π(x)f (x) = 0 (in fact for any f by
considering f − 〈1, f 〉π and noticing that both sides are unaffected by adding
a constant), which is known as a Poincaré inequality.
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Spectral decomposition I

Theorem
Let {fj}nj=1 be the eigenfunctions of a reversible and irreducible
transition matrix P with corresponding eigenvalues {λj}nj=1, as
defined previously. Assume λ1 ≥ · · · ≥ λn. We have the
decomposition

P t (x , y)

π(y)
= 1 +

n∑
j=2

fj(x)fj(y)λt
j .
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Spectral decomposition II

Proof: Let F be the matrix whose columns are the eigenvectors {fj}n
j=1 and let

Dλ be the diagonal matrix with {λj}n
j=1 on the diagonal. Using the notation of

the eigenbasis theorem,

D1/2
π P tD−1/2

π = M t = (D1/2
π F )Dt

λ(D1/2
π F )′,

which after rearranging becomes

P tD−1
π = FDt

λF ′.
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Example: two-state chain I

Let V := {0,1} and, for α, β ∈ (0,1),

P :=

(
1− α α
β 1− β

)
.

Observe that P is reversible w.r.t. to the stationary distribution

π :=

(
β

α + β
,

α

α + β

)
.

We know that f1 ≡ 1 is an eigenfunction with eigenvalue 1. As
can be checked by direct computation, the other eigenfunction
(in vector form) is

f2 :=

(√
α

β
,−
√
β

α

)′
,

with eigenvalue λ2 := 1−α− β. We normalized f2 so ‖f2‖2π = 1.
Sébastien Roch, UW–Madison Modern Discrete Probability – Spectral Techniques



Review
Bounding the mixing time via the spectral gap

Applications: random walk on cycle and hypercube
Infinite networks

Example: two-state chain II

The spectral decomposition is therefore

P tD−1
π =

(
1 1
1 1

)
+ (1− α− β)t

(
α
β −1
−1 β

α

)
.

Put differently,

P t =

(
β

α+β
α

α+β
β

α+β
α

α+β

)
+ (1− α− β)t

(
α

α+β − α
α+β

− β
α+β

β
α+β

)
.

(Note for instance that the case α + β = 1 corresponds to a
rank-one P, which immediately converges.)
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Example: two-state chain III

Assume β ≥ α. Then

d(t) = max
x

1
2

∑
y

|P t (x , y)− π(y)| =
β

α + β
|1− α− β|t .

As a result,

tmix(ε) =


log
(
εα+ββ

)
log |1− α− β|

 =


log ε−1 − log

(
α+β
β

)
log |1− α− β|−1

 .
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Spectral decomposition: again

Recall:

Theorem
Let {fj}nj=1 be the eigenfunctions of a reversible and irreducible
transition matrix P with corresponding eigenvalues {λj}nj=1, as
defined previously. Assume λ1 ≥ · · · ≥ λn. We have the
decomposition

P t (x , y)

π(y)
= 1 +

n∑
j=2

fj(x)fj(y)λt
j .
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Spectral gap

From the spectral decomposition, the speed of convergence of
P t (x , y) to π(y) is governed by the largest eigenvalue of P not
equal to 1.

Definition (Spectral gap)
The absolute spectral gap is γ∗ := 1− λ∗ where
λ∗ := |λ2| ∨ |λn|. The spectral gap is γ := 1− λ2.

Note that the eigenvalues of the lazy version 1
2P + 1

2 I of P are
{1

2(λj + 1)}nj=1 which are all nonnegative. So, there, γ∗ = γ.

Definition (Relaxation time)
The relaxation time is defined as

trel := γ−1
∗ .
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Example continued: two-state chain

There two cases:
α + β ≤ 1: In that case the spectral gap is γ = γ∗ = α + β
and the relaxation time is trel = 1/(α + β).
α + β > 1: In that case the spectral gap is
γ = γ∗ = 2− α− β and the relaxation time is
trel = 1/(2− α− β).

Sébastien Roch, UW–Madison Modern Discrete Probability – Spectral Techniques



Review
Bounding the mixing time via the spectral gap

Applications: random walk on cycle and hypercube
Infinite networks

Mixing time v. relaxation time I

Theorem
Let P be reversible, irreducible, and aperiodic with stationary
distribution π. Let πmin = minx π(x). For all ε > 0,

(trel − 1) log
(

1
2ε

)
≤ tmix(ε) ≤ log

(
1

επmin

)
trel.

Proof: We start with the upper bound. By the lemma, it suffices to find t such
that s(t) ≤ ε. By the spectral decomposition and Cauchy-Schwarz,∣∣∣∣P t (x , y)

π(y)
− 1
∣∣∣∣ ≤ λt

∗

n∑
j=2

|fj (x)fj (y)| ≤ λt
∗

√√√√ n∑
j=2

fj (x)2
n∑

j=2

fj (y)2.

By our previous lemma,
∑n

j=2 fj (x)2 ≤ π(x)−1. Plugging this back above,∣∣∣∣P t (x , y)

π(y)
− 1
∣∣∣∣ ≤ λt

∗
√
π(x)−1π(y)−1 ≤ λt

∗

πmin
=

(1− γ∗)t

πmin
≤ e−γ∗t

πmin
.
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Mixing time v. relaxation time II
The r.h.s. is less than ε when t ≥ log

(
1

επmin

)
trel.

For the lower bound, let f∗ be an eigenfunction associated with an eigenvalue
achieving λ∗ := |λ2| ∨ |λn|. Let z be such that |f∗(z)| = ‖f∗‖∞. By our
previous lemma,

∑
y π(y)f∗(y) = 0. Hence

λt
∗|f∗(z)| = |P t f∗(z)| =

∣∣∣∣∣∑
y

[P t (z, y)f∗(y)− π(y)f∗(y)]

∣∣∣∣∣
≤ ‖f∗‖∞

∑
y

|P t (z, y)− π(y)| ≤ ‖f∗‖∞2d(t),

so d(t) ≥ 1
2λ

t
∗. When t = tmix(ε), ε ≥ 1

2λ
tmix(ε)
∗ . Therefore

tmix(ε)

(
1
λ∗
− 1
)
≥ tmix(ε) log

(
1
λ∗

)
≥ log

(
1
2ε

)
.

The result follows from
(

1
λ∗
− 1
)−1

=
(

1−λ∗
λ∗

)−1
=
(

γ∗
1−γ∗

)−1
= trel − 1.
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Random walk on the cycle I

Consider simple random walk on an n-cycle. That is,
V := {0,1, . . . ,n − 1} and P(x , y) = 1/2 if and only if
|x − y | = 1 mod n.

Lemma (Eigenbasis on the cycle)
For j = 0, . . . ,n − 1, the function

fj(x) := cos
(

2πjx
n

)
, x = 0,1, . . . ,n − 1,

is an eigenfunction of P with eigenvalue

λj := cos
(

2πj
n

)
.
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Random walk on the cycle II

Proof: Note that, for all i , x ,∑
y

P(x , y)fj (y) =
1
2

[
cos

(
2πj(x − 1)

n

)
+ cos

(
2πj(x + 1)

n

)]

=
1
2

[
ei 2πj(x−1)

n + e−i 2πj(x−1)
n

2
+

ei 2πj(x+1)
n + e−i 2πj(x+1)

n

2

]

=

[
ei 2πjx

n + e−i 2πjx
n

2

][
ei 2πj

n + e−i 2πj
n

2

]

=

[
cos

(
2πjx

n

)][
cos

(
2πj
n

)]
= cos

(
2πj
n

)
fj (x).
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Random walk on the cycle III

Theorem (Relaxation time on the cycle)
The relaxation time for lazy simple random walk on the cycle is

trel =
2

1− cos
(2π

n

) = Θ(n2).

Proof: The eigenvalues are

1
2

[
cos

(
2πj
n

)
+ 1
]
.

The spectral gap is therefore 1
2 (1− cos

( 2π
n

)
). By a Taylor expansion,

1− cos
(

2π
n

)
=

4π2

n2 + O(n−4).

Since πmin = 1/n, we get tmix(ε) = O(n2 log n) and
tmix(ε) = Ω(n2). We showed before that in fact tmix(ε) = Θ(n2).
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Random walk on the cycle IV

In this case, a sharper bound can be obtained by working directly with the
spectral decomposition. By Jensen’s inequality,

4‖P t (x , ·)− π(·)‖2
TV =

{∑
y

π(y)

∣∣∣∣P t (x , y)

π(y)
− 1
∣∣∣∣
}2

≤
∑

y

π(y)

(
P t (x , y)

π(y)
− 1
)2

=

∥∥∥∥∥∥
n∑

j=2

λt
j fj (x)fj

∥∥∥∥∥∥
2

π

=
n∑

j=2

λ2t
j fj (x)2.

The last sum does not depend on x by symmetry. Summing over x and
dividing by n, which is the same as multiplying by π(x), gives

4‖P t (x , ·)− π(·)‖2
TV ≤

∑
x

π(x)
n∑

j=2

λ2t
j fj (x)2 =

n∑
j=2

λ2t
j

∑
x

π(x)fj (x)2 =
n∑

j=2

λ2t
j ,

where we used that ‖fj‖2
π = 1.
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Random walk on the cycle V

Consider the non-lazy chain with n odd. We get

4d(t)2 ≤
n∑

j=2

cos
(

2πj
n

)2t

= 2
(n−1)/2∑

j=1

cos
(
πj
n

)2t

.

For x ∈ [0, π/2), cos x ≤ e−x2/2. (Indeed, let h(x) = log(ex2/2 cos x). Then
h′(x) = x − tan x ≤ 0 since (tan x)′ = 1 + tan2 x ≥ 1 for all x and tan 0 = 0.
So h(x) ≤ h(0) = 0.) Then

4d(t)2 ≤ 2
(n−1)/2∑

j=1

exp
(
−π

2j2

n2 t
)
≤ 2 exp

(
−π

2

n2 t
) ∞∑

j=1

exp
(
−π

2(j2 − 1)

n2 t
)

≤ 2 exp
(
−π

2

n2 t
) ∞∑
`=0

exp
(
−3π2t

n2 `

)
=

2 exp
(
−π

2

n2 t
)

1− exp
(
− 3π2t

n2

) ,
where we used that j2 − 1 ≥ 3(j − 1) for all j = 1, 2, 3, . . .. So tmix(ε) = O(n2).
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Random walk on the hypercube I

Consider simple random walk on the hypercube
V := {−1,+1}n where x ∼ y if they differ at exactly one
coordinate. For J ⊆ [n], we let

χJ(x) =
∏
j∈J

xj , x ∈ V .

These are called parity functions.

Lemma (Eigenbasis on the hypercube)

For all J ⊆ [n], the function χJ is an eigenfunction of P with
eigenvalue

λJ :=
n − 2|J|

n
.
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Random walk on the hypercube II

Proof: For x ∈ V and i ∈ [n], let x [i] be x where coordinate i is flipped. Note
that, for all J, x ,

∑
y

P(x , y)χJ (y) =
n∑

i=1

1
n
χJ (x [i]) =

n − |J|
n

χJ (x)− |J|
n
χJ (x) =

n − 2|J|
n

χJ (x).
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Random walk on the hypercube III

Theorem (Relaxation time on the hypercube)
The relaxation time for lazy simple random walk on the
hypercube is

trel = n.

Proof: The eigenvalues are n−|J|
n for J ⊆ [n]. The spectral gap is

γ∗ = γ = 1− n−1
n = 1

n .

Because |V | = 2n, πmin = 1/2n. Hence we have tmix(ε) = O(n2)
and tmix(ε) = Ω(n). We have shown before that in fact
tmix(ε) = Θ(n log n).
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Random walk on the hypercube IV

As we did for the cycle, we obtain a sharper bound by working directly with
the spectral decomposition. By the same argument,

4d(t)2 ≤
∑
J 6=∅

λ2t
J .

Consider the lazy chain again. Then

4d(t)2 ≤
∑
J 6=∅

(
n − |J|

n

)2t

=
n∑
`=1

(
n
`

)(
1− `

n

)2t

≤
n∑
`=1

(
n
`

)
exp

(
−2t`

n

)

=

(
1 + exp

(
−2t

n

))n

− 1.

So tmix(ε) ≤ 1
2 n log n + O(n).
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Some remarks about infinite networks I

Remark (Positive recurrent case)

The previous results cannot in general be extended to infinite networks.
Suppose P is irreducible, aperiodic and positive recurrent. Then it can be
shown that, if π is the stationary distribution, then for all x

‖P t (x , ·)− π(·)‖TV → 0,

as t → +∞. However, one needs stronger conditions on P than reversibility
for the spectral theorem to apply (in a form similar to what we used above),
e.g., compactness (that is, P maps bounded sets to relatively compact sets,
i.e. sets whose closure is compact).
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Some remarks about infinite networks II

Example (A positive recurrent chain whose P is not compact)

For p < 1/2, let (Xt ) be the birth-death chain with
V := {0,1,2, . . .}, P(0,0) := 1− p, P(0,1) = p,
P(x , x + 1) := p and P(x , x − 1) := 1− p for all x ≥ 1, and
P(x , y) := 0 if |x − y | > 1. As can be checked by direct
computation, P is reversible with respect to the stationary
distribution π(x) = (1− γ)γx for x ≥ 0 where γ := p

1−p . For
j ≥ 1, define gj(x) := π(j)−1/21{x=j}. Then ‖gj‖2π = 1 for all j so
{gj}j is bounded in `2(V , π). On the other hand,

Pgj(x) = pπ(j)−1/21{x=j−1} + (1− p)π(j)−1/21{x=j+1}.
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Some remarks about infinite networks III

Example (Continued)
So

‖Pgj‖2π = p2π(j)−1π(j − 1) + (1− p)2π(j)−1π(j + 1) = 2p(1− p).

Hence {Pgj}j is also bounded. However, for j > `

‖Pgj − Pg`‖2π ≥ (1− p)2π(j)−1π(j + 1) + p2π(`)−1π(`− 1)

= 2p(1− p).

So {Pgj}j does not have a converging subsequence and
therefore is not relatively compact.
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Infinite networks: transient and null recurrent cases I

Most random walks on infinite networks we have encountered
so far were transient or null recurrent. In such cases, there is
no stationary distribution to converge to. In fact:

Theorem
If P is an irreducible chain which is either transient or null
recurrent, we have for all x , y

lim
t

P t (x , y) = 0.

Proof:
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Infinite networks: transient and null recurrent cases II

Consider the null recurrent case. Fix x ∈ V . We observe first that:

It suffices to show that P t (x , x)→ 0. Indeed, by irreducibility, for any y
there is s > 0 such that Ps(x , y) > 0. So P t+s(x , x) ≥ P t (x , y)Ps(y , x)
so P t (x , x)→ 0 implies P t (x , y)→ 0.

Let ` = gcd{t : P t (x , x) > 0}. As P t (x , x) = 0 for any t that is not a
multiple of `, it suffices to consider the transition matrix P̃ := P`. That
corresponds to “looking at the chain” at times k`, k ≥ 0. We restrict the
state space to Ṽ := {y ∈ V : ∃s ≥ 0, P̃s(x , y) > 0}. Let (X̃t ) be the
corresponding chain, and let P̃x and Ẽx be the corresponding measure
and expectation. Clearly we still have P̃x [τ+x < +∞] = 1 and
Ẽx [τ+x ] = +∞ because returns to x under P can only happen at times
that are multiples of `. The reason to consider P̃ is that it is irreducible
and aperiodic, as we show next. Note that the irreducibility of P̃ also
implies that P̃ is null recurrent.
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Infinite networks: transient and null recurrent cases III

We first show that P̃ is irreducible. By definition of Ṽ , it suffices to prove
that, for any w ∈ Ṽ , there exists s ≥ 0 such that P̃s(w , x) > 0. Indeed
that then implies that all states in Ṽ communicate through x . Let r ≥ 0
be such that P̃ r (x ,w) > 0. If it were the case that P̃s(w , x) = 0 for all
s ≥ 0, that would imply that P̃x [τ+x = +∞] > P̃ r (x ,w) > 0—a
contradiction.
We claim further that P̃ is aperiodic. Indeed, if P̃ had period k > 1, then
the greatest common divisor of {t : P t (x , x) > 0} would be ≥ k`—a
contradiction.
The chain (X̃t ) has stationary measure

µx (w) = Ẽx

τ+x −1∑
s=0

1{X̃s=w}

 < +∞,

which satisfies µx (x) = 1 by definition and
∑

w µx (w) = +∞ by null
recurrence.

Sébastien Roch, UW–Madison Modern Discrete Probability – Spectral Techniques



Review
Bounding the mixing time via the spectral gap

Applications: random walk on cycle and hypercube
Infinite networks

Infinite networks: transient and null recurrent cases IV

Lemma

For any probability distribution ν on Ṽ ,

lim sup
t

νP̃ t (x) ≤ lim sup
t

P̃ t (x , x).

Proof: Since P̃ν [τ+x = +∞] = 0, for any ε > 0 there is N such that
P̃ν [τ+x > N] ≤ ε. So,

lim sup
t

νP̃ t (x) ≤ ε+ lim sup
t

N∑
s=1

P̃ν [τ+x = s] P̃ t−s(x , x) ≤ ε+ lim sup
t

P̃ t (x , x).

Since ε is arbitrary, the result follows.
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Infinite networks: transient and null recurrent cases V

For M ≥ 0, let F ⊆ Ṽ be a finite set such that µx (F ) ≥ M. Consider the
conditional distribution

νF (W ) :=
µx (W ∩ F )

µx (F )
.

Lemma

(νF P̃ t )(x) ≤ 1
M
, ∀t

Proof: Indeed

(νF P̃ t )(x) ≤ (µx P̃ t )(x)

µx (F )
=
µx (x)

µx (F )
≤ 1

M
,

by stationarity.
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Infinite networks: transient and null recurrent cases VI

Because F is finite and Q is aperiodic, there is m such that P̃m(x , z) > 0 for
all z ∈ F . Then we can choose δ > 0 such that

P̃m(x , ·) = δνF (·) + (1− δ)ν0(·),

for some probability measure ν0. Then

lim sup
t

P̃ t (x , x) = δ lim sup
t

(νF P̃ t−m)(x) + (1− δ) lim sup
t

(ν0P̃ t−m)(x)

≤ δ

M
+ (1− δ) lim sup

t
P̃ t (x , x).

Rearranging gives lim supt P̃ t (x , x) ≤ 1/M. Since M is arbitrary, this
concludes the proof.
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Basic definitions I

Let (Xt ) be an irreducible Markov chain on a countable state
space V with transition matrix P and stationary measure π > 0.
As we did in the finite case, we let (Pf )(x) :=

∑
y P(x , y)f (y).

Let `0(V ) be the set of real-valued functions on V with finite
support and let `2(V , π) be the Hilbert space of real-valued
functions f with ‖f‖2π :=

∑
x π(x)f (x)2 < +∞ equipped with the

inner product

〈f ,g〉π :=
∑
x∈V

π(x)f (x)g(x).

Then P maps `2(V , π) to itself. In fact, we have the stronger
statement:
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Basic definitions II

Lemma

For any f ∈ `2(V , π), Pf is well-defined and further we have
‖Pf‖π ≤ ‖f‖π.

Proof: Note that by Cauchy-Schwarz, Fubini and stationarity

∑
x

π(x)

[∑
y

P(x , y)|f (y)|

]2

≤
∑

x

π(x)
∑

y

P(x , y)f (y)2

=
∑

y

∑
x

π(x)P(x , y)f (y)2

=
∑

y

π(y)f (y)2 = ‖f‖2
π < +∞.

This shows that Pf is well-defined since π > 0. Applying the same argument
to ‖Pf‖2

π gives the inequality.
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Basic definitions III

We consider the operator norm

‖P‖π = sup
{
‖Pf‖π
‖f‖π

: f ∈ `2(V , π), f 6= 0
}
,

and note that by the lemma ‖P‖π ≤ 1. Note that, if V is finite or
more generally if π is summable, then we have ‖P‖π = 1 since
we can take f ≡ 1 above in that case.
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Basic definitions IV

Lemma
If in addition P is reversible with respect to π, then P is
self-adjoint on `2(V , π), that is,

〈f ,Pg〉π = 〈Pf ,g〉π ∀f ,g ∈ `2(V , π).

Proof: First consider f , g ∈ `0(V ). Then by reversibility

〈f ,Pg〉π =
∑
x,y

π(x)P(x , y)f (x)g(y) =
∑
x,y

π(y)P(y , x)f (x)g(y) = 〈Pf , g〉π.

Because `0(V ) is dense in `2(V , π) (just truncate) and the bilinear form above
is continuous in f and g (because |〈f ,Pg〉π| ≤ ‖P‖π‖f‖π‖g‖π by
Cauchy-Schwarz and the definition of the operator norm) the result follows for
f , g ∈ `2(V , π).
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Rayleigh quotient I

For a reversible P, we have the following characterization of the
operator norm in terms of the so-called Rayleigh quotient.

Theorem
Let P be irreducible and reversible with respect to π > 0. Then

‖P‖π = sup
{
〈f ,Pf 〉π
〈f , f 〉π

: f ∈ `0(V ), f 6= 0
}
.

Proof: Let λ1 be the r.h.s. above. By Cauchy-Schwarz |〈f ,Pf 〉π| ≤ ‖f‖π‖Pf‖π.
That gives λ1 ≤ ‖P‖π by dividing both sides by ‖f‖2

π.
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Rayleigh quotient II

In the other direction, note that for a self-adjoint operator P we have the
following “polarization identity”

〈Pf , g〉π =
1
4

[〈P(f + g), f + g〉π − 〈P(f − g), f − g〉π] ,

which can be checked by expanding the r.h.s. Note that if 〈f ,Pf 〉π ≤ λ1〈f , f 〉π
for all f ∈ `0(V ) then the same holds for all f ∈ `2(V , π) because `0(V ) is
dense in `2(V , π). So for any f , g ∈ `2(V , π)

|〈Pf , g〉π| ≤
λ1

4
[〈f + g, f + g〉π + 〈f − g, f − g〉π] = λ1

〈f , f 〉π + 〈g, g〉π
2

.

Taking g := Pf‖f‖π/‖Pf‖π gives

‖Pf‖π‖f‖π ≤ λ1‖f‖2
π,

or ‖P‖π ≤ λ1.
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Spectral radius I

Definition
Let P be irreducible. The spectral radius of P is defined as

ρ(P) := lim sup
t

P t (x , y)1/t ,

which does not depend on x , y .

To see that the lim sup does not depend on x , y , let u, v , x , y ∈ V and
k ,m ≥ 0 such that Pm(u, x) > 0 and Pk (y , v). Then

P t+m+k (u, v)1/(t+m+k)

≥ (Pm(u, x)P t (x , y)Pk (y , v))1/(t+m+k)

≥ Pm(u, x)1/(t+m+k)P t (x , y)1/tPk (y , v)1/(t+m+k),

which shows that lim supt P t (u, v)1/t ≥ lim supt P t (x , y)1/t for all u, v , x , y .
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Spectral radius II

In the positive recurrent case (for instance if the chain is finite),
we have P t (x , y)→ π(y) > 0 and so ρ(P) = 1 = ‖P‖π. The
equality between ρ(P) and ‖P‖π holds in general for reversible
chains.

Theorem
Let P be irreducible and reversible with respect to π > 0. Then

ρ(P) = ‖P‖π.

Moreover for all t

P t (x , y) ≤

√
π(y)

π(x)
‖P‖tπ.

Sébastien Roch, UW–Madison Modern Discrete Probability – Spectral Techniques



Review
Bounding the mixing time via the spectral gap

Applications: random walk on cycle and hypercube
Infinite networks

Spectral radius III
Proof: Because P is self-adjoint and ‖δz‖2

π = π(z) ≤ 1, by Cauchy-Schwarz

π(x)P t (x , y) = 〈δx ,P tδy 〉π ≤ ‖P‖t
π‖δx‖π‖δy‖π = ‖P‖t

π

√
π(x)π(y).

Hence P t (x , y) ≤
√

π(y)
π(x)‖P‖

t
π and further ρ(P) ≤ ‖P‖π.

For the other direction, by self-adjointness and Cauchy-Schwarz, for any
f ∈ `2(V , π)

‖P t+1f‖2
π = 〈P t+1f ,P t+1f 〉π = 〈P t+2f ,P t f 〉π ≤ ‖P t+2f‖π‖P t f‖π,

or

‖P t+1f‖π
‖P t f‖π

≤ ‖P
t+2f‖π

‖P t+1f‖π
.

So ‖P
t+1f‖π
‖P t f‖π

is non-decreasing and therefore has a limit L ≤ +∞. Moreover
‖Pf‖π
‖f‖π ≤ L so it suffices to prove L ≤ ρ(P). As before it suffices to prove this

for f ∈ `0(V ), f 6= 0 by a density argument.

Sébastien Roch, UW–Madison Modern Discrete Probability – Spectral Techniques



Review
Bounding the mixing time via the spectral gap

Applications: random walk on cycle and hypercube
Infinite networks

Spectral radius IV
Observe that(

‖P t f‖π
‖f‖π

)1/t

=

(
‖Pf‖π
‖f‖π

× · · · × ‖P t f‖π
‖P t−1f‖π

)1/t

→ L,

so L = limt ‖P t f‖1/t
π . By self-adjointness again

‖P t f‖2
π = 〈f ,P2t f 〉π =

∑
x,y

π(x)f (x)f (y)P2t (x , y).

By definition of ρ := ρ(P), for any ε > 0, there is t large enough so that
P2t (x , y) ≤ (ρ+ ε)2t for all x , y in the support of f . In that case,

‖P t f‖1/t
π ≤ (ρ+ ε)

(∑
x,y

π(x)|f (x)f (y)|

)1/2t

.

The sum on the l.h.s. is finite because f has finite support. Since ε is
arbitrary, we get lim supt ‖P

t f‖1/t
π ≤ ρ.
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A counter-example

In the non-reversible case, the result generally does not hold. Consider
asymmetric random walk on Z with probability p ∈ (1/2, 1) of going to the

right. Then both π0(x) :=
(

p
1−p

)x
and π1(x) := 1 define stationary measures,

but only π0 is reversible. Under π1, we have ‖P‖π1 = 1. Indeed, let
fn(x) := 1{|x|≤n} and note that

(Pfn)(x) = 1{|x|≤n−1} + p1{x = −n − 1 or−n} + (1− p)1{x = n or n + 1},

so ‖fn‖2
π1 = 2n + 1 and ‖Pfn‖2

π1 ≥ 2(n − 1) + 1. Hence lim supn
‖Pfn‖π1
‖fn‖π1

≥ 1.
On the other hand, E0[Xt ] = (2p − 1)t and Xt , as a sum of t independent
increments in {−1,+1}, is a 2-Lipschitz function. So by the Azuma-Hoeffding
inequality

P t (0, 0)1/t ≤ P0[Xt ≤ 0]1/t = P0[Xt − (2p − 1)t ≤ −(2p − 1)t ]1/t ≤ e−
2(2p−1)2 t2

22 t
1
t .

Therefore ρ(P) ≤ e−(2p−1)2/2 < 1.
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A corollary

Corollary
Let P be irreducible and reversible with respect to π. If
‖P‖π < 1, then P is transient.

Proof: By the theorem, P t (x , x) ≤ ‖P‖t
π so

∑
t P t (x , x) < +∞. Because∑

t P t (x , x) = Ex [
∑

t 1{Xt=x}], we have that
∑

t 1{Xt=x} < +∞, Px -a.s., and
(Xt ) is transient.

This is not an if and only if. Random walk on Z3 is transient, yet
P2t (0,0) = Θ(t−3/2) so ‖P‖π = ρ(P) = 1.
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