Modern Discrete Probability

VI - Spectral Techniques

Background

Sébastien Roch

UW-Madison

Mathematics

November 13, 2017

- Review
- 2 Bounding the mixing time via the spectral gap
- 3 Applications: random walk on cycle and hypercube
- 4 Infinite networks

Mixing time I

Theorem (Convergence to stationarity)

Consider a finite state space V. Suppose the transition matrix P is irreducible, aperiodic and has stationary distribution π . Then, for all $x, y, P^t(x, y) \to \pi(y)$ as $t \to +\infty$.

For probability measures μ, ν on V, let their total variation distance be $\|\mu - \nu\|_{\text{TV}} := \sup_{A \subset V} |\mu(A) - \nu(A)|$.

Definition (Mixing time)

The mixing time is

$$t_{mix}(\varepsilon) := min\{t \geq 0 : d(t) \leq \varepsilon\},$$

where
$$d(t) := \max_{x \in V} \|P^t(x, \cdot) - \pi(\cdot)\|_{TV}$$
.

Mixing time II

Definition (Separation distance)

The separation distance is defined as

$$s_x(t) := \max_{y \in V} \left[1 - \frac{P^t(x, y)}{\pi(y)} \right],$$

and we let $s(t) := \max_{x \in V} s_x(t)$.

Because both $\{\pi(y)\}$ and $\{P^t(x,y)\}$ are non-negative and sum to 1, we have that $s_x(t) \ge 0$.

Lemma (Separation distance v. total variation distance)

$$d(t) \leq s(t)$$
.

Mixing time III

Proof: Because $1 = \sum_{y} \pi(y) = \sum_{y} P^{t}(x, y)$,

$$\sum_{y:P^t(x,y)<\pi(y)} \left[\pi(y)-P^t(x,y)\right] = \sum_{y:P^t(x,y)\geq\pi(y)} \left[P^t(x,y)-\pi(y)\right].$$

So

$$||P^{t}(x,\cdot) - \pi(\cdot)||_{\text{TV}} = \frac{1}{2} \sum_{y} \left| \pi(y) - P^{t}(x,y) \right|$$

$$= \sum_{y:P^{t}(x,y) < \pi(y)} \left[\pi(y) - P^{t}(x,y) \right]$$

$$= \sum_{y:P^{t}(x,y) < \pi(y)} \pi(y) \left[1 - \frac{P^{t}(x,y)}{\pi(y)} \right]$$

$$< s_{x}(t).$$

Bounding the mixing time via the spectral gap applications: random walk on cycle and hypercube Infinite networks

Reversible chains

Definition (Reversible chain)

A transition matrix P is *reversible* w.r.t. a measure η if $\eta(x)P(x,y)=\eta(y)P(y,x)$ for all $x,y\in V$. By summing over y, such a measure is necessarily stationary.

Example I

Recall:

Definition (Random walk on a graph)

Let G = (V, E) be a finite or countable, locally finite graph. Simple random walk on G is the Markov chain on V, started at an arbitrary vertex, which at each time picks a uniformly chosen neighbor of the current state.

Let (X_t) be simple random walk on a connected graph G. Then (X_t) is reversible w.r.t. $\eta(v) := \delta(v)$, where $\delta(v)$ is the degree of vertex v.

Example II

Definition (Random walk on a network)

Let G=(V,E) be a finite or countable, locally finite graph. Let $c:E\to\mathbb{R}_+$ be a positive edge weight function on G. We call $\mathcal{N}=(G,c)$ a *network*. Random walk on \mathcal{N} is the Markov chain on V, started at an arbitrary vertex, which at each time picks a neighbor of the current state proportionally to the weight of the corresponding edge.

Any countable, reversible Markov chain can be seen as a random walk on a network (not necessarily locally finite) by setting $c(e) := \pi(x)P(x,y) = \pi(y)P(y,x)$ for all $e = \{x,y\} \in E$. Let (X_t) be random walk on a network $\mathcal{N} = (G,c)$. Then (X_t) is reversible w.r.t. $\eta(v) := c(v)$, where $c(v) := \sum_{x \sim v} c(v,x)$.

Eigenbasis I

We let $n:=|V|<+\infty$. Assume that P is irreducible and reversible w.r.t. its stationary distribution $\pi>0$. Define

$$\langle f, g \rangle_{\pi} := \sum_{x \in V} \pi(x) f(x) g(x), \quad \|f\|_{\pi}^2 := \langle f, f \rangle_{\pi},$$

$$(Pf)(x) := \sum_{y} P(x, y) f(y).$$

We let $\ell^2(V,\pi)$ be the Hilbert space of real-valued functions on V equipped with the inner product $\langle \cdot, \cdot \rangle_{\pi}$ (equivalent to the vector space $(\mathbb{R}^n, \langle \cdot, \cdot \rangle_{\pi})$).

Theorem

There is an orthonormal basis of $\ell^2(V,\pi)$ formed of eigenfunctions $\{f_j\}_{j=1}^n$ of P with real eigenvalues $\{\lambda_j\}_{j=1}^n$. We can take $f_1 \equiv 1$ and $\lambda_1 = 1$.

Eigenbasis II

Proof: We work over $(\mathbb{R}^n, \langle \cdot, \cdot \rangle_{\pi})$. Let D_{π} be the diagonal matrix with π on the diagonal. By reversibility,

$$M(x,y):=\sqrt{\frac{\pi(x)}{\pi(y)}}P(x,y)=\sqrt{\frac{\pi(y)}{\pi(x)}}P(y,x)=:M(y,x).$$

So $M = (M(x, y))_{x,y} = D_{\pi}^{1/2} P D_{\pi}^{-1/2}$, as a symmetric matrix, has real eigenvectors $\{\phi_i\}_{i=1}^n$ forming an orthonormal basis of \mathbb{R}^n with corresponding real eigenvalues $\{\lambda_i\}_{i=1}^n$. Define $f_i := D_{\pi}^{-1/2}\phi_i$. Then

$$Pf_j = PD_{\pi}^{-1/2}\phi_j = D_{\pi}^{-1/2}D_{\pi}^{1/2}PD_{\pi}^{-1/2}\phi_j = D_{\pi}^{-1/2}M\phi_j = \lambda_jD_{\pi}^{-1/2}\phi_j = \lambda_jf_j,$$
 and

$$\langle f_i, f_j \rangle_{\pi} = \langle D_{\pi}^{-1/2} \phi_i, D_{\pi}^{-1/2} \phi_j \rangle_{\pi} = \sum_{x} \pi(x) [\pi(x)^{-1/2} \phi_i(x)] [\pi(x)^{-1/2} \phi_j(x)] = \langle \phi_i, \phi_j \rangle.$$

Because P is stochastic, the all-one vector is a right eigenvector of P with eigenvalue 1.

Eigenbasis III

Lemma

For all
$$j \neq 1$$
, $\sum_{x} \pi(x) f_{j}(x) = 0$.

Proof: By orthonormality, $\langle f_1, f_j \rangle_{\pi} = 0$. Now use the fact that $f_1 \equiv 1$.

Let
$$\delta_{x}(y) := \mathbf{1}_{\{x=y\}}$$
.

Lemma

For all
$$x, y, \sum_{j=1}^{n} f_{j}(x)f_{j}(y) = \pi(x)^{-1}\delta_{x}(y)$$
.

Proof: Using the notation of the theorem, the matrix Φ whose columns are the ϕ_j s is unitary so $\Phi\Phi'=I$. That is, $\sum_{j=1}^n \phi_j(x)\phi_j(y)=\delta_x(y)$, or $\sum_{i=1}^n \sqrt{\pi(x)\pi(y)}f_i(x)f_i(y)=\delta_x(y)$. Rearranging gives the result.

Eigenbasis IV

Lemma

Let $g \in \ell^2(V, \pi)$. Then $g = \sum_{j=1}^n \langle g, f_j \rangle_\pi f_j$.

Proof: By the previous lemma, for all x

$$\sum_{j=1}^{n} \langle g, f_j \rangle_{\pi} f_j(x) = \sum_{j=1}^{n} \sum_{y} \pi(y) g(y) f_j(y) f_j(x) = \sum_{y} \pi(y) g(y) [\pi(x)^{-1} \delta_x(y)] = g(x).$$

Lemma

Let $g \in \ell^2(V, \pi)$. Then $\|g\|_\pi^2 = \sum_{j=1}^n \langle g, f_j \rangle_\pi^2$.

Proof: By the previous lemma,

$$\|g\|_{\pi}^2 = \left\| \sum_{j=1}^n \langle g, f_j \rangle_{\pi} f_j \right\|_{\pi}^2 = \left\langle \sum_{i=1}^n \langle g, f_i \rangle_{\pi} f_i, \sum_{j=1}^n \langle g, f_j \rangle_{\pi} f_j \right\rangle_{\pi} = \sum_{i,j=1}^n \langle g, f_i \rangle_{\pi} \langle g, f_j \rangle_{\pi} \langle f_i, f_j \rangle_{\pi},$$

Eigenvalues I

Let *P* be finite, irreducible and reversible.

Lemma

Any eigenvalue λ of P satisfies $|\lambda| \leq 1$.

Proof: $Pf = \lambda f \implies |\lambda| ||f||_{\infty} = ||Pf||_{\infty} = \max_{x} |\sum_{y} P(x, y) f(y)| \le ||f||_{\infty}$ We order the eigenvalues $1 \ge \lambda_1 \ge \cdots \ge \lambda_n \ge -1$. In fact:

Lemma

We have $\lambda_2 < 1$.

Proof: Any eigenfunction with eigenvalue 1 is *P*-harmonic. By Corollary 3.22 for a finite, irreducible chain the only harmonic functions are the constant functions. So the eigenspace corresponding to 1 is one-dimensional. Since all eigenvalues are real, we must have $\lambda_2 < 1$.

Eigenvalues II

Theorem (Rayleigh's quotient)

Let P be finite, irreducible and reversible with respect to π . The second largest eigenvalue is characterized by

$$\lambda_2 = \sup \left\{ \frac{\langle f, Pf \rangle_{\pi}}{\langle f, f \rangle_{\pi}} : f \in \ell^2(V, \pi), \sum_{x} \pi(x) f(x) = 0 \right\}.$$

(Similarly,
$$\lambda_1 = \sup_{f \in \ell^2(V,\pi)} \frac{\langle f,Pf \rangle_{\pi}}{\langle f,f \rangle_{\pi}}$$
.)

Proof: Recalling that $f_1 \equiv 1$, the condition $\sum_x \pi(x) f(x) = 0$ is equivalent to $\langle f_1, f \rangle_{\pi} = 0$. For such an f, the eigendecomposition is

$$f = \sum_{j=1}^{n} \langle f, f_j \rangle_{\pi} f_j = \sum_{j=2}^{n} \langle f, f_j \rangle_{\pi} f_j,$$

Eigenvalues III

and

$$Pf = \sum_{j=2}^{n} \langle f, f_j \rangle_{\pi} \lambda_j f_j,$$

so that

$$\frac{\langle f, Pf \rangle_{\pi}}{\langle f, f \rangle_{\pi}} = \frac{\sum_{i=2}^{n} \sum_{j=2}^{n} \langle f, f_{i} \rangle_{\pi} \langle f, f_{j} \rangle_{\pi} \lambda_{j} \langle f_{i}, f_{j} \rangle_{\pi}}{\sum_{j=2}^{n} \langle f, f_{j} \rangle_{\pi}^{2}} = \frac{\sum_{j=2}^{n} \langle f, f_{j} \rangle_{\pi}^{2} \lambda_{j}}{\sum_{j=2}^{n} \langle f, f_{j} \rangle_{\pi}^{2}} \leq \lambda_{2}.$$

Taking $f = f_2$ achieves the supremum.

Dirichlet form I

The *Dirichlet form* is defined as $\mathcal{E}(f,g) := \langle f, (I-P)g \rangle_{\pi}$. Note that

$$2\langle f, (I - P)f \rangle_{\pi}$$

$$= 2\langle f, f \rangle_{\pi} - 2\langle f, Pf \rangle_{\pi}$$

$$= \sum_{x} \pi(x)f(x)^{2} + \sum_{y} \pi(y)f(y)^{2} - 2\sum_{x} \pi(x)f(x)f(y)P(x, y)$$

$$= \sum_{x,y} f(x)^{2}\pi(x)P(x, y) + \sum_{x,y} f(y)^{2}\pi(y)P(y, x) - 2\sum_{x} \pi(x)f(x)f(y)P(x, y)$$

$$= \sum_{x,y} f(x)^{2}\pi(x)P(x, y) + \sum_{x,y} f(y)^{2}\pi(x)P(x, y) - 2\sum_{x} \pi(x)f(x)f(y)P(x, y)$$

$$= \sum_{x,y} \pi(x)P(x, y)[f(x) - f(y)]^{2} = 2\mathcal{E}(f)$$

where

$$\mathcal{E}(f) := \frac{1}{2} \sum_{x,y} c(x,y) [f(x) - f(y)]^2,$$

is the Dirichlet energy encountered previously.

Dirichlet form II

We note further that if $\sum_{x} \pi(x) f(x) = 0$ then

$$\langle f, f \rangle_{\pi} = \langle f - \langle \mathbf{1}, f \rangle_{\pi}, f - \langle \mathbf{1}, f \rangle_{\pi} \rangle_{\pi} = \operatorname{Var}_{\pi}[f],$$

where the last expression denotes the variance under π . So the variational characterization of λ_2 translates into

$$\operatorname{Var}_{\pi}[f] \leq \gamma^{-1} \mathcal{E}(f),$$

where $\gamma=1-\lambda_2$, for all f such that $\sum_x \pi(x) f(x)=0$ (in fact for any f by considering $f-\langle \mathbf{1},f\rangle_{\pi}$ and noticing that both sides are unaffected by adding a constant), which is known as a *Poincaré inequality*.

- Review
- Bounding the mixing time via the spectral gap
- 3 Applications: random walk on cycle and hypercube
- Infinite networks

Spectral decomposition I

Theorem

Let $\{f_j\}_{j=1}^n$ be the eigenfunctions of a reversible and irreducible transition matrix P with corresponding eigenvalues $\{\lambda_j\}_{j=1}^n$, as defined previously. Assume $\lambda_1 \geq \cdots \geq \lambda_n$. We have the decomposition

$$\frac{P^t(x,y)}{\pi(y)}=1+\sum_{j=2}^n f_j(x)f_j(y)\lambda_j^t.$$

Spectral decomposition II

Proof: Let F be the matrix whose columns are the eigenvectors $\{f_j\}_{j=1}^n$ and let D_λ be the diagonal matrix with $\{\lambda_j\}_{j=1}^n$ on the diagonal. Using the notation of the eigenbasis theorem,

$$D_{\pi}^{1/2}P^{t}D_{\pi}^{-1/2}=M^{t}=(D_{\pi}^{1/2}F)D_{\lambda}^{t}(D_{\pi}^{1/2}F)',$$

which after rearranging becomes

$$P^t D_{\pi}^{-1} = F D_{\lambda}^t F'.$$

Example: two-state chain I

Let $V := \{0, 1\}$ and, for $\alpha, \beta \in (0, 1)$,

$$P := \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix}.$$

Observe that *P* is reversible w.r.t. to the stationary distribution

$$\pi := \left(\frac{\beta}{\alpha + \beta}, \frac{\alpha}{\alpha + \beta}\right).$$

We know that $f_1 \equiv 1$ is an eigenfunction with eigenvalue 1. As can be checked by direct computation, the other eigenfunction (in vector form) is

$$f_2 := \left(\sqrt{\frac{lpha}{eta}}, -\sqrt{\frac{eta}{lpha}}\right)',$$

with eigenvalue $\lambda_2 := 1 - \alpha - \beta$. We normalized f_2 so $||f_2||_{\pi}^2 = 1$.

Example: two-state chain II

The spectral decomposition is therefore

$$P^t D_{\pi}^{-1} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + (1 - \alpha - \beta)^t \begin{pmatrix} \frac{\alpha}{\beta} & -1 \\ -1 & \frac{\beta}{\alpha} \end{pmatrix}.$$

Put differently,

$$P^{t} = \begin{pmatrix} \frac{\beta}{\alpha + \beta} & \frac{\alpha}{\alpha + \beta} \\ \frac{\beta}{\alpha + \beta} & \frac{\alpha}{\alpha + \beta} \end{pmatrix} + (1 - \alpha - \beta)^{t} \begin{pmatrix} \frac{\alpha}{\alpha + \beta} & -\frac{\alpha}{\alpha + \beta} \\ -\frac{\beta}{\alpha + \beta} & \frac{\beta}{\alpha + \beta} \end{pmatrix}.$$

(Note for instance that the case $\alpha + \beta = 1$ corresponds to a rank-one P, which immediately converges.)

Example: two-state chain III

Assume $\beta \geq \alpha$. Then

$$d(t) = \max_{x} \frac{1}{2} \sum_{y} |P^{t}(x, y) - \pi(y)| = \frac{\beta}{\alpha + \beta} |1 - \alpha - \beta|^{t}.$$

As a result,

$$t_{mix}(\varepsilon) = \left\lceil \frac{\log\left(\varepsilon\frac{\alpha+\beta}{\beta}\right)}{\log|1-\alpha-\beta|} \right\rceil = \left\lceil \frac{\log\varepsilon^{-1} - \log\left(\frac{\alpha+\beta}{\beta}\right)}{\log|1-\alpha-\beta|^{-1}} \right\rceil.$$

Spectral decomposition: again

Recall:

Theorem

Let $\{f_j\}_{j=1}^n$ be the eigenfunctions of a reversible and irreducible transition matrix P with corresponding eigenvalues $\{\lambda_j\}_{j=1}^n$, as defined previously. Assume $\lambda_1 \geq \cdots \geq \lambda_n$. We have the decomposition

$$\frac{P^t(x,y)}{\pi(y)}=1+\sum_{j=2}^n f_j(x)f_j(y)\lambda_j^t.$$

Spectral gap

From the spectral decomposition, the speed of convergence of $P^t(x, y)$ to $\pi(y)$ is governed by the largest eigenvalue of P not equal to 1.

Definition (Spectral gap)

The absolute spectral gap is $\gamma_* := 1 - \lambda_*$ where

$$\lambda_* := |\lambda_2| \vee |\lambda_n|$$
. The *spectral gap* is $\gamma := 1 - \lambda_2$.

Note that the eigenvalues of the lazy version $\frac{1}{2}P + \frac{1}{2}I$ of P are $\{\frac{1}{2}(\lambda_j + 1)\}_{j=1}^n$ which are all nonnegative. So, there, $\gamma_* = \gamma$.

Definition (Relaxation time)

The relaxation time is defined as

$$t_{rel} := \gamma_*^{-1}$$
.

Example continued: two-state chain

There two cases:

- $\alpha + \beta \le 1$: In that case the spectral gap is $\gamma = \gamma_* = \alpha + \beta$ and the relaxation time is $t_{rel} = 1/(\alpha + \beta)$.
- $\alpha + \beta > 1$: In that case the spectral gap is $\gamma = \gamma_* = 2 \alpha \beta$ and the relaxation time is $t_{rel} = 1/(2 \alpha \beta)$.

Mixing time v. relaxation time I

Theorem

Let P be reversible, irreducible, and aperiodic with stationary distribution π . Let $\pi_{\min} = \min_{x} \pi(x)$. For all $\varepsilon > 0$,

$$\left(t_{rel}-1\right) log\left(\frac{1}{2\varepsilon}\right) \leq t_{mix}(\varepsilon) \leq log\left(\frac{1}{\varepsilon\pi_{min}}\right) t_{rel}.$$

Proof: We start with the upper bound. By the lemma, it suffices to find t such that $s(t) \leq \varepsilon$. By the spectral decomposition and Cauchy-Schwarz,

$$\left|\frac{P^t(x,y)}{\pi(y)} - 1\right| \leq \lambda_*^t \sum_{j=2}^n |f_j(x)f_j(y)| \leq \lambda_*^t \sqrt{\sum_{j=2}^n f_j(x)^2 \sum_{j=2}^n f_j(y)^2}.$$

By our previous lemma, $\sum_{i=2}^{n} f_i(x)^2 \le \pi(x)^{-1}$. Plugging this back above,

$$\left|\frac{P^t(x,y)}{\pi(y)}-1\right| \leq \lambda_*^t \sqrt{\pi(x)^{-1}\pi(y)^{-1}} \leq \frac{\lambda_*^t}{\pi_{\min}} = \frac{(1-\gamma_*)^t}{\pi_{\min}} \leq \frac{e^{-\gamma_* t}}{\pi_{\min}}.$$

Mixing time v. relaxation time II

The r.h.s. is less than ε when $t \geq \log\left(\frac{1}{\varepsilon \pi_{\min}}\right) t_{\text{rel}}$.

For the lower bound, let f_* be an eigenfunction associated with an eigenvalue achieving $\lambda_* := |\lambda_2| \vee |\lambda_n|$. Let z be such that $|f_*(z)| = ||f_*||_{\infty}$. By our previous lemma, $\sum_{v} \pi(y) f_*(y) = 0$. Hence

$$\lambda_*^t |f_*(z)| = |P^t f_*(z)| = \left| \sum_y [P^t(z, y) f_*(y) - \pi(y) f_*(y)] \right|$$

$$\leq \|f_*\|_{\infty} \sum_y |P^t(z, y) - \pi(y)| \leq \|f_*\|_{\infty} 2d(t),$$

so $d(t) \ge \frac{1}{2}\lambda_*^t$. When $t = t_{mix}(\varepsilon)$, $\varepsilon \ge \frac{1}{2}\lambda_*^{t_{mix}(\varepsilon)}$. Therefore

$$t_{mix}(\varepsilon)\left(\frac{1}{\lambda_*}-1\right) \geq t_{mix}(\varepsilon)\log\left(\frac{1}{\lambda_*}\right) \geq \log\left(\frac{1}{2\varepsilon}\right).$$

The result follows from
$$\left(\frac{1}{\lambda_*} - 1\right)^{-1} = \left(\frac{1 - \lambda_*}{\lambda_*}\right)^{-1} = \left(\frac{\gamma_*}{\frac{1 - \gamma_*}{1 - \gamma_*}}\right)^{-1} = t_{\text{rel}} - 1.$$

- Review
- 2 Bounding the mixing time via the spectral gap
- 3 Applications: random walk on cycle and hypercube
- Infinite networks

Random walk on the cycle I

Consider simple random walk on an n-cycle. That is, $V := \{0, 1, ..., n-1\}$ and P(x, y) = 1/2 if and only if $|x - y| = 1 \mod n$.

Lemma (Eigenbasis on the cycle)

For j = 0, ..., n - 1, the function

$$f_j(x) := \cos\left(\frac{2\pi jx}{n}\right), \qquad x = 0, 1, \ldots, n-1,$$

is an eigenfunction of P with eigenvalue

$$\lambda_j := \cos\left(\frac{2\pi j}{n}\right).$$

Random walk on the cycle II

Proof: Note that, for all i, x,

$$\begin{split} \sum_{y} P(x,y) f_{j}(y) &= \frac{1}{2} \left[\cos \left(\frac{2\pi j(x-1)}{n} \right) + \cos \left(\frac{2\pi j(x+1)}{n} \right) \right] \\ &= \frac{1}{2} \left[\frac{e^{i\frac{2\pi j(x-1)}{n}} + e^{-i\frac{2\pi j(x-1)}{n}}}{2} + \frac{e^{i\frac{2\pi j(x+1)}{n}} + e^{-i\frac{2\pi j(x+1)}{n}}}{2} \right] \\ &= \left[\frac{e^{i\frac{2\pi jx}{n}} + e^{-i\frac{2\pi jx}{n}}}{2} \right] \left[\frac{e^{i\frac{2\pi j}{n}} + e^{-i\frac{2\pi j}{n}}}{2} \right] \\ &= \left[\cos \left(\frac{2\pi jx}{n} \right) \right] \left[\cos \left(\frac{2\pi j}{n} \right) \right] \\ &= \cos \left(\frac{2\pi j}{n} \right) f_{j}(x). \end{split}$$

Random walk on the cycle III

Theorem (Relaxation time on the cycle)

The relaxation time for lazy simple random walk on the cycle is

$$t_{\rm rel} = \frac{2}{1 - \cos\left(\frac{2\pi}{n}\right)} = \Theta(n^2).$$

Proof: The eigenvalues are

$$\frac{1}{2}\left[\cos\left(\frac{2\pi j}{n}\right)+1\right].$$

The spectral gap is therefore $\frac{1}{2}(1-\cos\left(\frac{2\pi}{n}\right))$. By a Taylor expansion,

$$1 - \cos\left(\frac{2\pi}{n}\right) = \frac{4\pi^2}{n^2} + O(n^{-4}).$$

Since $\pi_{\min} = 1/n$, we get $t_{\min}(\varepsilon) = O(n^2 \log n)$ and $t_{\min}(\varepsilon) = O(n^2)$. We showed before that in fact $t_{\min}(\varepsilon) = O(n^2)$. Sebastien Roch, UW-Madison Modern Discrete Probability – Spectral Techniques

Random walk on the cycle IV

In this case, a sharper bound can be obtained by working directly with the spectral decomposition. By Jensen's inequality,

$$4\|P^{t}(x,\cdot) - \pi(\cdot)\|_{\text{TV}}^{2} = \left\{ \sum_{y} \pi(y) \left| \frac{P^{t}(x,y)}{\pi(y)} - 1 \right| \right\}^{2} \le \sum_{y} \pi(y) \left(\frac{P^{t}(x,y)}{\pi(y)} - 1 \right)^{2}$$
$$= \left\| \sum_{j=2}^{n} \lambda_{j}^{t} f_{j}(x) f_{j} \right\|_{\pi}^{2} = \sum_{j=2}^{n} \lambda_{j}^{2t} f_{j}(x)^{2}.$$

The last sum does not depend on x by symmetry. Summing over x and dividing by n, which is the same as multiplying by $\pi(x)$, gives

$$4\|P^t(x,\cdot)-\pi(\cdot)\|_{\text{TV}}^2 \leq \sum_x \pi(x) \sum_{j=2}^n \lambda_j^{2t} f_j(x)^2 = \sum_{j=2}^n \lambda_j^{2t} \sum_x \pi(x) f_j(x)^2 = \sum_{j=2}^n \lambda_j^{2t},$$

where we used that $||f_i||_{\pi}^2 = 1$.

Random walk on the cycle V

Consider the non-lazy chain with *n* odd. We get

$$4d(t)^2 \le \sum_{j=2}^n \cos\left(\frac{2\pi j}{n}\right)^{2t} = 2\sum_{j=1}^{(n-1)/2} \cos\left(\frac{\pi j}{n}\right)^{2t}.$$

For $x \in [0, \pi/2)$, $\cos x \le e^{-x^2/2}$. (Indeed, let $h(x) = \log(e^{x^2/2}\cos x)$. Then $h'(x) = x - \tan x \le 0$ since $(\tan x)' = 1 + \tan^2 x \ge 1$ for all x and $\tan 0 = 0$. So $h(x) \le h(0) = 0$.) Then

$$\begin{split} 4d(t)^2 &\leq 2\sum_{j=1}^{(n-1)/2} \exp\left(-\frac{\pi^2 j^2}{n^2}t\right) \leq 2\exp\left(-\frac{\pi^2}{n^2}t\right) \sum_{j=1}^{\infty} \exp\left(-\frac{\pi^2 (j^2-1)}{n^2}t\right) \\ &\leq 2\exp\left(-\frac{\pi^2}{n^2}t\right) \sum_{\ell=0}^{\infty} \exp\left(-\frac{3\pi^2 t}{n^2}\ell\right) = \frac{2\exp\left(-\frac{\pi^2}{n^2}t\right)}{1-\exp\left(-\frac{3\pi^2 t}{n^2}\right)}, \end{split}$$

where we used that $j^2-1\geq 3(j-1)$ for all $j=1,2,3,\ldots$. So $t_{\max}(\varepsilon)=O(n^2)$.

Random walk on the hypercube I

Consider simple random walk on the hypercube $V := \{-1, +1\}^n$ where $x \sim y$ if they differ at exactly one coordinate. For $J \subseteq [n]$, we let

$$\chi_J(x) = \prod_{j \in J} x_j, \qquad x \in V.$$

These are called parity functions.

Lemma (Eigenbasis on the hypercube)

For all $J \subseteq [n]$, the function χ_J is an eigenfunction of P with eigenvalue

$$\lambda_J:=\frac{n-2|J|}{n}.$$

Random walk on the hypercube II

Proof: For $x \in V$ and $i \in [n]$, let $x^{[i]}$ be x where coordinate i is flipped. Note that, for all J, x,

$$\sum_{y} P(x,y)\chi_{J}(y) = \sum_{i=1}^{n} \frac{1}{n}\chi_{J}(x^{[i]}) = \frac{n-|J|}{n}\chi_{J}(x) - \frac{|J|}{n}\chi_{J}(x) = \frac{n-2|J|}{n}\chi_{J}(x).$$

Random walk on the hypercube III

Theorem (Relaxation time on the hypercube)

The relaxation time for lazy simple random walk on the hypercube is

$$t_{\rm rel} = n$$
.

Proof: The eigenvalues are $\frac{n-|J|}{n}$ for $J \subseteq [n]$. The spectral gap is $\gamma_* = \gamma = 1 - \frac{n-1}{n} = \frac{1}{n}$.

Because $|V| = 2^n$, $\pi_{\min} = 1/2^n$. Hence we have $t_{\min}(\varepsilon) = O(n^2)$ and $t_{\min}(\varepsilon) = \Omega(n)$. We have shown before that in fact $t_{\min}(\varepsilon) = \Theta(n \log n)$.

Random walk on the hypercube IV

As we did for the cycle, we obtain a sharper bound by working directly with the spectral decomposition. By the same argument,

$$4d(t)^2 \leq \sum_{J \neq \emptyset} \lambda_J^{2t}.$$

Consider the lazy chain again. Then

$$4d(t)^{2} \leq \sum_{J \neq \emptyset} \left(\frac{n - |J|}{n}\right)^{2t} = \sum_{\ell=1}^{n} \binom{n}{\ell} \left(1 - \frac{\ell}{n}\right)^{2t} \leq \sum_{\ell=1}^{n} \binom{n}{\ell} \exp\left(-\frac{2t\ell}{n}\right)$$
$$= \left(1 + \exp\left(-\frac{2t}{n}\right)\right)^{n} - 1.$$

So $t_{mix}(\varepsilon) \leq \frac{1}{2} n \log n + O(n)$.

- Review
- 2 Bounding the mixing time via the spectral gap
- 3 Applications: random walk on cycle and hypercube
- Infinite networks

Some remarks about infinite networks I

Remark (Positive recurrent case)

The previous results cannot in general be extended to infinite networks. Suppose P is irreducible, aperiodic and positive recurrent. Then it can be shown that, if π is the stationary distribution, then for all x

$$\|P^t(x,\cdot)-\pi(\cdot)\|_{\mathrm{TV}}\to 0,$$

as $t \to +\infty$. However, one needs stronger conditions on P than reversibility for the spectral theorem to apply (in a form similar to what we used above), e.g., compactness (that is, P maps bounded sets to relatively compact sets, i.e. sets whose closure is compact).

Some remarks about infinite networks II

Example (A positive recurrent chain whose *P* is not compact)

For p < 1/2, let (X_t) be the birth-death chain with $V := \{0,1,2,\ldots\}$, P(0,0) := 1-p, P(0,1) = p, P(x,x+1) := p and P(x,x-1) := 1-p for all $x \ge 1$, and P(x,y) := 0 if |x-y| > 1. As can be checked by direct computation, P is reversible with respect to the stationary distribution $\pi(x) = (1-\gamma)\gamma^x$ for $x \ge 0$ where $\gamma := \frac{p}{1-p}$. For $j \ge 1$, define $g_j(x) := \pi(j)^{-1/2} \mathbf{1}_{\{x=j\}}$. Then $\|g_j\|_\pi^2 = 1$ for all j so $\{g_j\}_j$ is bounded in $\ell^2(V,\pi)$. On the other hand,

$$Pg_{j}(x) = p\pi(j)^{-1/2}\mathbf{1}_{\{x=j-1\}} + (1-p)\pi(j)^{-1/2}\mathbf{1}_{\{x=j+1\}}.$$

Some remarks about infinite networks III

Example (Continued)

So

$$||Pg_j||_{\pi}^2 = p^2\pi(j)^{-1}\pi(j-1) + (1-p)^2\pi(j)^{-1}\pi(j+1) = 2p(1-p).$$

Hence $\{Pg_j\}_j$ is also bounded. However, for $j > \ell$

$$||Pg_j - Pg_\ell||_{\pi}^2 \ge (1 - p)^2 \pi(j)^{-1} \pi(j+1) + p^2 \pi(\ell)^{-1} \pi(\ell-1)$$

= $2p(1 - p)$.

So $\{Pg_j\}_j$ does not have a converging subsequence and therefore is not relatively compact.

Infinite networks: transient and null recurrent cases I

Most random walks on infinite networks we have encountered so far were transient or null recurrent. In such cases, there is no stationary distribution to converge to. In fact:

Theorem

If P is an irreducible chain which is either transient or null recurrent, we have for all x, y

$$\lim_t P^t(x,y)=0.$$

Proof:

Infinite networks: transient and null recurrent cases II

Consider the null recurrent case. Fix $x \in V$. We observe first that:

- It suffices to show that $P^t(x,x) \to 0$. Indeed, by irreducibility, for any y there is s > 0 such that $P^s(x,y) > 0$. So $P^{t+s}(x,x) \ge P^t(x,y)P^s(y,x)$ so $P^t(x,x) \to 0$ implies $P^t(x,y) \to 0$.
- Let $\ell = \gcd\{t : P^t(x,x) > 0\}$. As $P^t(x,x) = 0$ for any t that is not a multiple of ℓ , it suffices to consider the transition matrix $\widetilde{P} := P^\ell$. That corresponds to "looking at the chain" at times $k\ell$, $k \geq 0$. We restrict the state space to $\widetilde{V} := \{y \in V : \exists s \geq 0, \ \widetilde{P}^s(x,y) > 0\}$. Let (\widetilde{X}_t) be the corresponding chain, and let $\widetilde{\mathbb{P}}_x$ and $\widetilde{\mathbb{E}}_x$ be the corresponding measure and expectation. Clearly we still have $\widetilde{\mathbb{P}}_x[\tau_x^+ < +\infty] = 1$ and $\widetilde{\mathbb{E}}_x[\tau_x^+] = +\infty$ because returns to x under P can only happen at times that are multiples of ℓ . The reason to consider \widetilde{P} is that it is irreducible and aperiodic, as we show next. Note that the irreducibility of \widetilde{P} also implies that \widetilde{P} is null recurrent.

Infinite networks: transient and null recurrent cases III

- We first show that \widetilde{P} is irreducible. By definition of \widetilde{V} , it suffices to prove that, for any $w \in \widetilde{V}$, there exists $s \geq 0$ such that $\widetilde{P}^s(w,x) > 0$. Indeed that then implies that all states in \widetilde{V} communicate through x. Let $r \geq 0$ be such that $\widetilde{P}^r(x,w) > 0$. If it were the case that $\widetilde{P}^s(w,x) = 0$ for all $s \geq 0$, that would imply that $\widetilde{\mathbb{P}}_x[\tau_x^+ = +\infty] > \widetilde{P}^r(x,w) > 0$ —a contradiction.
- We claim further that \widetilde{P} is aperiodic. Indeed, if \widetilde{P} had period k > 1, then the greatest common divisor of $\{t : P^t(x,x) > 0\}$ would be $\geq k\ell$ —a contradiction.
- The chain (X_t) has stationary measure

$$\mu_{\mathsf{x}}(\mathsf{w}) = \widetilde{\mathbb{E}}_{\mathsf{x}} \left[\sum_{\mathsf{s}=0}^{\tau_{\mathsf{x}}^{+}-1} \mathbf{1}_{\{\widetilde{\mathsf{X}}_{\mathsf{s}}=\mathsf{w}\}} \right] < +\infty,$$

which satisfies $\mu_x(x) = 1$ by definition and $\sum_w \mu_x(w) = +\infty$ by null recurrence.

Infinite networks: transient and null recurrent cases IV

Lemma

For any probability distribution ν on \widetilde{V} ,

$$\limsup_t \nu \widetilde{P}^t(x) \leq \limsup_t \widetilde{P}^t(x,x).$$

Proof: Since $\widetilde{\mathbb{P}}_{\nu}[\tau_{\mathsf{X}}^+ = +\infty] = 0$, for any $\varepsilon > 0$ there is N such that $\widetilde{\mathbb{P}}_{\nu}[\tau_{\mathsf{X}}^+ > N] \leq \varepsilon$. So,

$$\limsup_t \nu \widetilde{P}^t(x) \leq \varepsilon + \limsup_t \sum_{s=1}^N \widetilde{\mathbb{P}}_{\nu}[\tau_x^+ = s] \widetilde{P}^{t-s}(x,x) \leq \varepsilon + \limsup_t \widetilde{P}^t(x,x).$$

Since ε is arbitrary, the result follows.

Infinite networks: transient and null recurrent cases V

For $M \ge 0$, let $F \subseteq \widetilde{V}$ be a finite set such that $\mu_x(F) \ge M$. Consider the conditional distribution

$$\nu_F(W) := \frac{\mu_X(W \cap F)}{\mu_X(F)}.$$

Lemma

$$(\nu_F \widetilde{P}^t)(x) \leq \frac{1}{M}, \quad \forall t$$

Proof: Indeed

$$(\nu_F \widetilde{P}^t)(x) \leq \frac{(\mu_X \widetilde{P}^t)(x)}{\mu_X(F)} = \frac{\mu_X(x)}{\mu_X(F)} \leq \frac{1}{M},$$

by stationarity.

Infinite networks: transient and null recurrent cases VI

Because F is finite and Q is aperiodic, there is m such that $\widetilde{P}^m(x,z)>0$ for all $z\in F$. Then we can choose $\delta>0$ such that

$$\widetilde{P}^m(x,\cdot) = \delta \nu_F(\cdot) + (1-\delta)\nu_0(\cdot),$$

for some probability measure ν_0 . Then

$$\limsup_{t} \widetilde{P}^{t}(x,x) = \delta \limsup_{t} (\nu_{F} \widetilde{P}^{t-m})(x) + (1-\delta) \limsup_{t} (\nu_{0} \widetilde{P}^{t-m})(x)$$

$$\leq \frac{\delta}{M} + (1-\delta) \limsup_{t} \widetilde{P}^{t}(x,x).$$

Rearranging gives $\limsup_{t} \widetilde{P}^{t}(x, x) \leq 1/M$. Since M is arbitrary, this concludes the proof.

Basic definitions I

Let (X_t) be an irreducible Markov chain on a countable state space V with transition matrix P and stationary measure $\pi > 0$. As we did in the finite case, we let $(Pf)(x) := \sum_y P(x,y)f(y)$. Let $\ell_0(V)$ be the set of real-valued functions on V with finite support and let $\ell^2(V,\pi)$ be the Hilbert space of real-valued functions f with $\|f\|_\pi^2 := \sum_x \pi(x)f(x)^2 < +\infty$ equipped with the inner product

$$\langle f,g\rangle_{\pi}:=\sum_{x\in V}\pi(x)f(x)g(x).$$

Then P maps $\ell^2(V,\pi)$ to itself. In fact, we have the stronger statement:

Basic definitions II

Lemma

For any $f \in \ell^2(V, \pi)$, Pf is well-defined and further we have $\|Pf\|_{\pi} \leq \|f\|_{\pi}$.

Proof: Note that by Cauchy-Schwarz, Fubini and stationarity

$$\sum_{x} \pi(x) \left[\sum_{y} P(x, y) |f(y)| \right]^{2} \le \sum_{x} \pi(x) \sum_{y} P(x, y) f(y)^{2}$$

$$= \sum_{y} \sum_{x} \pi(x) P(x, y) f(y)^{2}$$

$$= \sum_{y} \pi(y) f(y)^{2} = ||f||_{\pi}^{2} < +\infty.$$

This shows that Pf is well-defined since $\pi > 0$. Applying the same argument to $\|Pf\|_{\pi}^2$ gives the inequality.

Basic definitions III

We consider the operator norm

$$\|P\|_{\pi} = \sup \left\{ \frac{\|Pf\|_{\pi}}{\|f\|_{\pi}} : f \in \ell^{2}(V, \pi), f \neq \mathbf{0} \right\},$$

and note that by the lemma $||P||_{\pi} \le 1$. Note that, if V is finite or more generally if π is summable, then we have $||P||_{\pi} = 1$ since we can take $f \equiv 1$ above in that case.

Basic definitions IV

Lemma

If in addition P is reversible with respect to π , then P is self-adjoint on $\ell^2(V,\pi)$, that is,

$$\langle f, Pg \rangle_{\pi} = \langle Pf, g \rangle_{\pi} \qquad \forall f, g \in \ell^2(V, \pi).$$

Proof: First consider $f, g \in \ell_0(V)$. Then by reversibility

$$\langle f, Pg \rangle_{\pi} = \sum_{x,y} \pi(x) P(x,y) f(x) g(y) = \sum_{x,y} \pi(y) P(y,x) f(x) g(y) = \langle Pf, g \rangle_{\pi}.$$

Because $\ell^0(V)$ is dense in $\ell^2(V,\pi)$ (just truncate) and the bilinear form above is continuous in f and g (because $|\langle f,Pg\rangle_\pi|\leq \|P\|_\pi\|f\|_\pi\|g\|_\pi$ by Cauchy-Schwarz and the definition of the operator norm) the result follows for $f,g\in\ell^2(V,\pi)$.

Rayleigh quotient I

For a reversible *P*, we have the following characterization of the operator norm in terms of the so-called *Rayleigh quotient*.

Theorem

Let P be irreducible and reversible with respect to $\pi > 0$. Then

$$\|P\|_{\pi} = \sup \left\{ \frac{\langle f, Pf \rangle_{\pi}}{\langle f, f \rangle_{\pi}} : f \in \ell_0(V), f \neq \mathbf{0} \right\}.$$

Proof: Let λ_1 be the r.h.s. above. By Cauchy-Schwarz $|\langle f, Pf \rangle_{\pi}| \leq \|f\|_{\pi} \|Pf\|_{\pi}$. That gives $\lambda_1 \leq \|P\|_{\pi}$ by dividing both sides by $\|f\|_{\pi}^2$.

Rayleigh quotient II

In the other direction, note that for a self-adjoint operator ${\it P}$ we have the following "polarization identity"

$$\langle Pf,g
angle_{\pi}=rac{1}{4}\left[\langle P(f+g),f+g
angle_{\pi}-\langle P(f-g),f-g
angle_{\pi}
ight],$$

which can be checked by expanding the r.h.s. Note that if $\langle f, Pf \rangle_{\pi} \leq \lambda_1 \langle f, f \rangle_{\pi}$ for all $f \in \ell_0(V)$ then the same holds for all $f \in \ell^2(V, \pi)$ because $\ell_0(V)$ is dense in $\ell^2(V, \pi)$. So for any $f, g \in \ell^2(V, \pi)$

$$|\langle Pf,g\rangle_{\pi}|\leq \frac{\lambda_1}{4}\left[\langle f+g,f+g\rangle_{\pi}+\langle f-g,f-g\rangle_{\pi}\right]=\lambda_1\frac{\langle f,f\rangle_{\pi}+\langle g,g\rangle_{\pi}}{2}.$$

Taking $g := Pf \|f\|_{\pi} / \|Pf\|_{\pi}$ gives

$$||Pf||_{\pi}||f||_{\pi} \leq \lambda_1 ||f||_{\pi}^2$$

or
$$||P||_{\pi} \leq \lambda_1$$
.

Spectral radius I

Definition

Let P be irreducible. The spectral radius of P is defined as

Infinite networks

$$\rho(P) := \limsup_{t} P^{t}(x, y)^{1/t},$$

which does not depend on x, y.

To see that the lim sup does not depend on x, y, let $u, v, x, y \in V$ and $k, m \ge 0$ such that $P^m(u, x) > 0$ and $P^k(y, v)$. Then

$$P^{t+m+k}(u,v)^{1/(t+m+k)}$$

$$\geq (P^m(u,x)P^t(x,y)P^k(y,v))^{1/(t+m+k)}$$

$$\geq P^m(u,x)^{1/(t+m+k)}P^t(x,y)^{1/t}P^k(y,v)^{1/(t+m+k)},$$

which shows that $\limsup_{t} P^{t}(u, v)^{1/t} \ge \limsup_{t} P^{t}(x, y)^{1/t}$ for all u, v, x, y.

Spectral radius II

In the positive recurrent case (for instance if the chain is finite), we have $P^t(x,y) \to \pi(y) > 0$ and so $\rho(P) = 1 = \|P\|_{\pi}$. The equality between $\rho(P)$ and $\|P\|_{\pi}$ holds in general for reversible chains.

Theorem

Let P be irreducible and reversible with respect to $\pi > 0$. Then

$$\rho(P) = \|P\|_{\pi}.$$

Moreover for all t

$$P^t(x,y) \leq \sqrt{\frac{\pi(y)}{\pi(x)}} \|P\|_{\pi}^t.$$

Spectral radius III

Proof: Because *P* is self-adjoint and $\|\delta_z\|_{\pi}^2 = \pi(z) \le 1$, by Cauchy-Schwarz

$$\pi(x)P^t(x,y) = \langle \delta_x, P^t \delta_y \rangle_\pi \leq \|P\|_\pi^t \|\delta_x\|_\pi \|\delta_y\|_\pi = \|P\|_\pi^t \sqrt{\pi(x)\pi(y)}.$$

Hence
$$P^t(x,y) \leq \sqrt{\frac{\pi(y)}{\pi(x)}} \|P\|_{\pi}^t$$
 and further $\rho(P) \leq \|P\|_{\pi}$.

For the other direction, by self-adjointness and Cauchy-Schwarz, for any $f \in \ell^2(V, \pi)$

$$\|P^{t+1}f\|_{\pi}^{2} = \langle P^{t+1}f, P^{t+1}f \rangle_{\pi} = \langle P^{t+2}f, P^{t}f \rangle_{\pi} \leq \|P^{t+2}f\|_{\pi} \|P^{t}f\|_{\pi},$$

or

$$\frac{\|P^{t+1}f\|_{\pi}}{\|P^{t}f\|_{\pi}} \leq \frac{\|P^{t+2}f\|_{\pi}}{\|P^{t+1}f\|_{\pi}}.$$

So $\frac{\|P^{t+1}f\|_{\pi}}{\|P^t\|_{\pi}}$ is non-decreasing and therefore has a limit $L \leq +\infty$. Moreover $\frac{\|Pf\|_{\pi}}{\|f\|_{\pi}} \leq L$ so it suffices to prove $L \leq \rho(P)$. As before it suffices to prove this for $f \in \ell_0(V)$, $f \neq \mathbf{0}$ by a density argument.

Spectral radius IV

Observe that

$$\left(\frac{\|P^t f\|_{\pi}}{\|f\|_{\pi}}\right)^{1/t} = \left(\frac{\|Pf\|_{\pi}}{\|f\|_{\pi}} \times \cdots \times \frac{\|P^t f\|_{\pi}}{\|P^{t-1} f\|_{\pi}}\right)^{1/t} \to L,$$

so $L = \lim_{t \to 0} \|P^{t}f\|_{\pi}^{1/t}$. By self-adjointness again

$$||P^t f||_{\pi}^2 = \langle f, P^{2t} f \rangle_{\pi} = \sum_{x,y} \pi(x) f(x) f(y) P^{2t}(x,y).$$

By definition of $\rho := \rho(P)$, for any $\varepsilon > 0$, there is t large enough so that $P^{2t}(x,y) < (\rho + \varepsilon)^{2t}$ for all x, y in the support of f. In that case,

$$\|P^t f\|_{\pi}^{1/t} \leq (\rho + \varepsilon) \left(\sum_{x,y} \pi(x) |f(x)f(y)| \right)^{1/2t}.$$

The sum on the l.h.s. is finite because f has finite support. Since ε is arbitrary, we get $\limsup_{t} ||P^{t}f||_{\pi}^{1/t} < \rho$. 4 D > 4 P > 4 E > 4 E > E 990

A counter-example

In the non-reversible case, the result generally does not hold. Consider asymmetric random walk on $\mathbb Z$ with probability $p\in(1/2,1)$ of going to the right. Then both $\pi_0(x):=\left(\frac{p}{1-p}\right)^x$ and $\pi_1(x):=1$ define stationary measures, but only π_0 is reversible. Under π_1 , we have $\|P\|_{\pi_1}=1$. Indeed, let $f_n(x):=\mathbf{1}_{\{|x|\leq n\}}$ and note that

$$(Pf_n)(x) = \mathbf{1}_{\{|x| \le n-1\}} + p\mathbf{1}_{\{x = -n-1 \text{ or } -n\}} + (1-p)\mathbf{1}_{\{x = n \text{ or } n+1\}},$$

so $\|f_n\|_{\pi_1}^2=2n+1$ and $\|Pf_n\|_{\pi_1}^2\geq 2(n-1)+1$. Hence $\limsup_n \frac{\|Pf_n\|_{\pi_1}}{\|f_n\|_{\pi_1}}\geq 1$. On the other hand, $\mathbb{E}_0[X_t]=(2p-1)t$ and X_t , as a sum of t independent increments in $\{-1,+1\}$, is a 2-Lipschitz function. So by the Azuma-Hoeffding inequality

$$P^{t}(0,0)^{1/t} \leq \mathbb{P}_{0}[X_{t} \leq 0]^{1/t} = \mathbb{P}_{0}[X_{t} - (2p-1)t] \leq -(2p-1)t]^{1/t} \leq e^{-\frac{2(2p-1)^{2}t^{2}}{2^{2}t}} \frac{1}{t}.$$

Therefore $\rho(P) \le e^{-(2p-1)^2/2} < 1$.

A corollary

Corollary

Let P be irreducible and reversible with respect to π . If $||P||_{\pi} < 1$, then P is transient.

Proof: By the theorem, $P^t(x,x) \leq \|P\|_{\pi}^t$ so $\sum_t P^t(x,x) < +\infty$. Because $\sum_t P^t(x,x) = \mathbb{E}_x[\sum_t \mathbf{1}_{\{X_t=x\}}]$, we have that $\sum_t \mathbf{1}_{\{X_t=x\}} < +\infty$, \mathbb{P}_x -a.s., and (X_t) is transient.

This is not an if and only if. Random walk on \mathbb{Z}^3 is transient, yet $P^{2t}(0,0) = \Theta(t^{-3/2})$ so $||P||_{\pi} = \rho(P) = 1$.