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Data science application: Community detection

Clustering in Euclidean space

Cluster plot
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Data science application: Community detection

Reducing the graph problem to clustering
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Data science application: Community detection

Recall: Laplacian

Definition (Laplacian Matrix)

Let G = (V, E) be a graph with vertices V = {1,...,n} and
adjacency matrix A € R™". Let D = diag(d(1),...,d(n)) be the
degree matrix. The Laplacian matrix associated to G is defined
as L =D — A. Its entries are

() ifi=j
li=4q—-1 if{i,jteE
0 0.W.
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Data science application: Community detection

Recall: Variational characterization

Corollary (Extremal Characterization of p»)

Let G= (V,E) be a graph with n = | V| vertices. Assume the
Laplacian L of G has spectral decomposition L = >"1_, u,-y,-y,-T
WithO = piq < pip < --- < pp andyq = %(1,...,1)T. Then

X, — X,)2 @
Mgzmin{z{u7v}EE( u = X) :X#(LZXUZO}.
u=1

22:1 XS

Can think of it as a relaxation of the problem of minimizing the
size of the cut between two balanced clusters

min{ Z (xuxv)z:xe{1,+1}”,znzxu0}.
u=1

{u,v}cE
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Data science application: Community detection

Stochastic blockmodel with two balanced blocks

Definition
Let V = [n] with neven, let V; = {1,...,n/2} and
Vo={n/2+1,...,n},and let0 < g < p < 1. We draw a graph
G = (V, E) at random as follows. For each pair x # y in V, the
edge {x, y} is in E with probability:

@ pifx,ye Vy,orx,y e Vo;

@ gifxeViandy e Vb,orx e Voand y € Vy;
independently of all other edges. We write G ~ SBM,,, 4 and
we denote the corresponding measure by P p g-

Community detection problem: Given G (without the node
labels), output V4, Vs (possibly approximately).
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Data science application: Community detection

Stochastic blockmodel by picture
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Data science application: Community detection

Expected adjacency matrix

Let G ~ SBM; 5 and let A be the adjacency matrix of G.

Theorem

p+q pP—q
D:nTu1u1T+n 5

usu) —pl,

Whereu1_f(1 ,1)T andu, = %(1,...,1,—1,...,—1)T.

Proof: Note that D is a block matrix with diagonal blocks all-p and
off-diagonal blocks all-g, all of size n/2 x n/2, with the exception of the
diagonal which is all-0. [ |

Idea: Compute the second eigenvector of A and cluster by sign.
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Data science application: Community detection

Spectral clustering: a positive result

Let G ~ SBM; 4 and let A be the adjacency matrix of G. Let
p=min{q, 252} > 0. Clustering according to the sign of the
second eigenvector of A identifies the two communities of G
with probability at least 1 — e~ ", except for C/u? misclassified
nodes for some constant C > 0.
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Data science application: Community detection

Matrix perturbation

Theorem (A version of Davis-Kahan)

Let S and T be symmetric n x n matrices. Let \;(S) be the i-th
largest eigenvalue of S with corresponding unit eigenvector
v;(S) (and similarly for T). If

¢ == min [Xi(S) — Xi(S)| > 0,
j#i

then there is 6 € {+1,—1} such that

_4s-TI

[vi(S) — Ovi(T)l2 5
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Data science application: Community detection

Bounding the spectral norm

The following lemma is proved in the next section.

Lemma

Let G ~ SBM; g, let A be the adjacency matrix of G and let
D = Enpq[A]. Then, there is a constant C > 0 such that

IA—D|l < CVn,

with probability at least1 — e~ ".
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Data science application: Community detection

Spectral clustering: proof |

Proof of spectral clustering theorem: The eigenvalues of D are

pP+q pP—q B
i S ey o} P,

s0 A2(D) =n&3% —pand

_ (DY — i [P~ G _
5 = min[Xo(D) )\,(D)|_mm{n . 7nq}_.nu>0.

By Davis-Kahan and the previous lemma, with probability at least 1 — e™",
there is 6 € {+1,—1} such that
4Cv/n < c

np = Vnp

[v2(D) — 6 v2(A)l2 <
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Data science application: Community detection

Spectral clustering: proof Il

Proof of spectral clustering theorem (continued): Put differently,
(C)
u2

> [VA(va(D)); - Vno (v2(A)ifF <

If the signs of (v2(D)); and 6 (v2(A)); disagree, then the i-th term in the sum
above is > 1. So there can be at most (C’)?/u? of those. That establishes
the desired bound on the number of misclassified nodes. |
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Bounding the spectral norm

Recall;: Sub-Gaussian variables

We say that a centered random variable X is sub-Gaussian
with variance factor v > 0 if for all s € R

which is denoted by X € G(v). By the Chernoff-Cramér bound
2

PIX < —8]VPIX > B] < exp (—ﬁy)

where we used that X € G(v) implies —X € G(v).
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Bounding the spectral norm

Recall: Hoeffding’s inequality

Theorem (General Hoeffding inequality)

Let Xi, ..., X, be independent centered random variables with
Xi € G(vj) for0 < vj < 400 and let (o, ...,an) € R". Let
Sn =Y. i<n@iXi. Then Sy € G(3_1_ ofv;) and for all 5 > 0,

62
P[Sh > B] < exp <—W) :
i=1 Q7 Vi

Proof: By independence,

2 2y,
Vs, (8) =D Wax(s)=> Wx(sa) <> (So‘é)z”f _ S Xia®ivi

. ‘ . 2
i<n i<n i<n

Sébastien Roch, UW-Madison Modern Discrete Probability: A Toolkit



Bounding the spectral norm

Recall: Epsilon-nets

Definition (e-net)
Let T be a subset of a pseudometric space (M, p) and let ¢ > 0.
The collection of points N C M is called an e-net of T if

TC U B,(t,¢),

teN

where B,(t,e) = {s e T : p(s,t) < e}, that is, each element of
T is within distance ¢ of an element in N. The smallest
cardinality of an e-net of T is called the covering number

N(T,p,e) =inf{|N| : Nis an e-net of T}.
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Bounding the spectral norm

Recall: Epsilon-nets by picture

a) This covering of a pentagon K by seven
e-balls shows that V(K e) < 7.
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Bounding the spectral norm

Recall: Epsilon-net on sphere

Let S*~' be the sphere of radius 1 centered around the origin in
RX with the Euclidean metric. Let 0 < ¢ < 1. We claim that

N(S,p,e) < <3>k.

93
Let N be any e-net of S. The balls of radius /2 around points
in N, {BX(x;,e/2) : x; € N}, satisfy two properties:
@ Pairwise disjoint: if z € B¥(x;,£/2) N BX(x;,¢/2), then
1xi — Xxill2 < ||xi — 2|2 + ||X; — z||2 < €, a contradiction.
@ Contained in BX(0,3/2): if z € BX(x;,£/2), then
12ll2 < lz = xill2 + [Ixill <e/2+1 < 3/2.

The volume of a ball of radius is £/2 is % and that of a

ball of radius 3/2 is % Divide one by the other.
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Bounding the spectral norm

Spectral norm of random matrix |

For a m x n matrix A € R™*" recall that the spectral norm is
defined as

AX2
1A= sup X2 g, = sup (Axy),
xerm\{0} IIX[l2  xesn—1 xesn—1
yeS’"“

where S"~1 is the sphere of radius 1 around the origin in R”.

(To see the rightmost equality above, note that Cauchy-Schwarz implies
(AX,y) < ||AX]|2|ly||2 and that one can take y = Ax/||Ax||2 for any x such that
Ax # 0 in the rightmost expression.)
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Bounding the spectral norm

Spectral norm of random matrix Il

Theorem

Let A € R™*" be a random matrix whose entries are centered,
independent and sub-Gaussian with variance factor v. Then
there exist a constant 0 < C < oo such that, for all t > 0,

Al < CVv(vVm+Vn+t),

with probability at least 1 — e~t.

Without independence of the entries, the spectral norm can be
much larger. Say A is all-(+1) or all-(—1) with equal probability.
Taking the vector x = (1/+/n, ..., 1//n) shows that ||A|| > n
with probability 1.
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Bounding the spectral norm

Spectral norm of random matrix Ill

Proof: We seek to bound

A = sup_ (Ax,y) = sup > xiyAj,

xes"™ xes" ! ij
yeSm 1 yeSm 17

where we note that the last quantity is a linear combination of independent
variables. Fix e = 1/4. We proceed in two steps:

@ We first apply the general Hoeffding inequality to control the deviations
of the supremum restricted to e-nets N and M of S"™~' and S™~".

@ We then extend the bound to the full supremum by continuity.
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Bounding the spectral norm

Spectral norm of random matrix IV

Let N and M be as above. For C large enough, for all't > 0,

P | max (Ax,y) > %Cﬁ(\/ﬁ—k Vvn+ t)] <e "
X

yeM

Proof: By the general Hoeffding inequality, (Ax,y) is sub-Gaussian with
variance factor

> Cay) v =Xz lylEv = v,

i

forallx € Nandy € M. In particular, for all 8 > 0,

P[(AX,y) > 8] < exp <—§) .
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Bounding the spectral norm

Spectral norm of random matrix V

Proof of lemma (continued): Hence, by a union bound over N and M,
P [maNx (Ax,y) > L CVo(Vim+ v+ t)]

<> op [ty > fovivme vas o)

xeN
yem

1 (1 2
< IN|IM]exp (2 [Levivmvitn) )

C2
n+m 2
<12 exp(fg{m+n+t)})

for C2/8 = log 12 > 1, where in the third inequality we ignored all
cross-products since they are non-negative. |
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Bounding the spectral norm

Spectral norm of random matrix VI

For any e-nets N and M of S"~" and S™' respectively, the following
inequalities hold

1
sup (AX,y) < [|A]l < 35 sup (AX,y).
XeEN € xeN
yeM yeM

Proof: The first inequality is immediate. For the second inequality, we will use
the following observation

(AX,y) — (AXo,Yo) = (AX,¥ — Yo) + (A(X — Xo), Yo)-

Fix x € S" " and y € S such that (Ax,y) = ||A||, and let xo € N and
Yo € M such that

[Xx=Xoll2<e and [y —yol2 <e.
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Bounding the spectral norm

Spectral norm of random matrix VII

Proof of lemma (continued): Then the inequality above, Cauchy-Schwarz and
the definition of the spectral norm imply

Al = (Axo, Yo) < [IAIl[IX[l2]]y — Yoll2 + [|A[[[[X — Xoll2[lyoll2 < 2¢[|A]-

Rearranging gives the claim. |
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Bounding the spectral norm

Application: Back to the SBM

Lemma

Let G ~ SBM; g, let A be the adjacency matrix of G and let
D = Enpql[A]l. Then, there is a constant C > 0 such that

A= D| < CVn,

with probability at least1 — e~ ".

Proof: The entries of R are centered, independent and sub-Gaussian with
variance factor 1/4. [ ]
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Bounding the spectral norm

Go deeper

Course website:

http://www.math.wisc.edu/~roch/mdp/

For more on community detection, see e.g. (available online):

@ Community Detection and Stochastic Block Models by
Abbé
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