
Chapter 6

Branching processes

Branching processes, which are the focus of this chapter , arise naturally in the
study of stochastic processes on trees and locally tree-like graphs. Similarly to
martingales, finding a hidden (or not-so-hidden) branching process within a prob-
abilistic model can lead to useful bounds and insights into asymptotic behavior.
After a review of the basic extinction theory of branching processes in Section 6.1
and of a fruitful random-walk perspective in Section 6.2, we give a couple exam-
ples of applications in discrete probability in Section 6.3. In particular we analyze
the height of a binary search tree, a standard data structure in computer science.
We also give an introduction to phylogenetics, where a “multitype” variant of the
Galton-Watson branching process plays an important role; we use the techniques
derived in this chapter to establish a phase transition in the reconstruction of an-
cestral molecular sequences. We end this chapter in Section 6.4 with a detailed
look into the phase transition of the Erdős-Rényi graph model. The random-walk
perspective mentioned above allows one to analyze the “exploration” of a largest
connected component, leading to information about the “evolution” of its size as
edge density increases. Tools from all chapters come to bear on this final, marquee
application.

6.1 Background

We begin with a review of the theory of Galton-Watson branching processes, a
standard stochastic model for population growth. In particular we discuss extinc-
tion theory. We also briefly introduce a multitype variant, where branching process
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and Markov chain aspects interact to produce interesting new behavior.

6.1.1 Basic definitions

Recall the definition of a Galton-Watson process.

Definition 6.1.1. A Galton-Watson branching process is a Markov chain of the
Galton-Watson

process
following form:

• Let Z0 := 1.

• Let X(i, t), i ≥ 1, t ≥ 1, be an array of i.i.d. Z+-valued random variables
with finite mean m = E[X(1, 1)] < +∞, and define inductively,

Zt :=
∑

1≤i≤Zt−1

X(i, t).

We denote by {pk}k≥0 the law of X(1, 1). We also let f(s) := E[sX(1,1)] be
the corresponding probability generating function. To avoid trivialities we assume
P[X(1, 1) = i] < 1 for all i ≥ 0. We further assume that p0 > 0.

In words, Zt models the size of a population at time (or generation) t. The random
variable X(i, t) corresponds to the number of offspring of the i-th individual (if
there is one) in generation t − 1. Generation t is formed of all offspring of the
individuals in generation t− 1.

By tracking genealogical relationships, that is, who is whose child, we obtain
a tree T rooted at the single individual in generation 0 with a vertex for each indi-
vidual in the progeny and an edge for each parent-child relationship. We refer to T
as a Galton-Watson tree.

Galton-Watson

tree
A basic observation about Galton-Watson processes is that their growth (or

decay) is exponential in t.

Lemma 6.1.2 (Exponential growth I). Let

Wt := m−tZt. (6.1.1)

Then (Wt) is a nonnegative martingale with respect to the filtration

Ft = σ(Z0, . . . , Zt).

In particular, E[Zt] = mt.
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Proof. We use Lemma B.6.17. Observe that on {Zt−1 = k}

E[Zt | Ft−1] = E

 ∑
1≤j≤k

X(j, t)

∣∣∣∣∣Ft−1

 = mk = mZt−1.

This is true for all k. Rearranging shows that (Wt) is a martingale. For the second
claim, note that E[Wt] = E[W0] = 1.

In fact, the martingale convergence theorem (Theorem 3.1.47) gives the following.

Lemma 6.1.3 (Exponential growth II). We have Wt → W∞ < +∞ almost surely
for some nonnegative random variable W∞ ∈ σ(∪tFt) with E[W∞] ≤ 1.

Proof. This follows immediately from the martingale convergence theorem for
nonnegative martingales (Corollary 3.1.48).

6.1.2 Extinction

Observe that 0 is a fixed point of the process. The event

{Zt → 0} = {∃t : Zt = 0},

is called extinction. Establishing when extinction occurs is a central question in
extinction

branching process theory. We let η be the probability of extinction. Recall that, to
avoid trivialities, we assume that p0 > 0 and p1 < 1. Here is a first observation
about extinction.

Lemma 6.1.4. Almost surely either Zt → 0 or Zt → +∞.

Proof. The process (Zt) is integer-valued and 0 is the only fixed point of the pro-
cess under the assumption that p1 < 1. From any state k, the probability of never
coming back to k > 0 is at least pk0 > 0, so every state k > 0 is transient. So the
only possibilities left are Zt → 0 and Zt → +∞, and the claim follows.

In the critical case, that immediately implies almost sure extinction.

Theorem 6.1.5 (Extinction: critical case). Assume m = 1. Then Zt → 0 almost
surely, that is, η = 1.

Proof. When m = 1, (Zt) itself is a martingale. Hence (Zt) must converge to 0
by Lemma 6.1.3.
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We address the general case using probability generating functions. Let ft(s) =
E[sZt ], where by convention we set ft(0) := P[Zt = 0]. Note that, by monotonic-
ity,

η = P[∃t ≥ 0 : Zt = 0] = lim
t→+∞

P[Zt = 0] = lim
t→+∞

ft(0). (6.1.2)

Moreover, by the tower property (Lemma B.6.16) and the Markov property (The-
orem 1.1.18), ft has a natural recursive form

ft(s) = E[sZt ]

= E[E[sZt | Ft−1]]

= E[f(s)Zt−1 ]

= ft−1(f(s)) = · · · = f (t)(s), (6.1.3)

where f (t) is the t-th iterate of f . The subcritical case below has an easier proof
(see Exercise 6.1).

Theorem 6.1.6 (Extinction: subcriticial and supercritical cases). The probability
of extinction η is given by the smallest fixed point of f in [0, 1]. Moreover:

(i) (Subcritical regime) If m < 1 then η = 1.

(ii) (Supercritical regime) If m > 1 then η < 1.

Proof. The case p0 + p1 = 1 is straightforward: the process dies almost surely
after a geometrically distributed time. So we assume p0 + p1 < 1 for the rest of
the proof.

We first summarize without proof some properties of f which follow from
standard power series facts.

Lemma 6.1.7. On [0, 1], the function f satisfies:

(i) f(0) = p0, f(1) = 1;

(ii) f is infinitely differentiable on [0, 1);

(iii) f is strictly convex and increasing; and

(iv) lims↑1 f
′(s) = m < +∞.

We first characterize the fixed points of f . See Figure 6.1 for an illustration.

Lemma 6.1.8. We have the following.

(i) If m > 1 then f has a unique fixed point η0 ∈ [0, 1).
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Figure 6.1: Fixed points of f in subcritical (left) and supercritical (right) cases.

(ii) If m < 1 then f(t) > t for t ∈ [0, 1). Let η0 := 1 in that case.

Proof. Assume m > 1. Since f ′(1) = m > 1, there is δ > 0 such that f(1− δ) <
1 − δ. On the other hand f(0) = p0 > 0 so by continuity of f there must be a
fixed point in (0, 1− δ). Moreover, by strict convexity and the fact that f(1) = 1,
if x ∈ (0, 1) is a fixed point then f(y) < y for y ∈ (x, 1), proving uniqueness.

The second part follows by strict convexity and monotonicity.

It remains to prove convergence of the iterates to the appropriate fixed point.
See Figure 6.2 for an illustration.

Lemma 6.1.9. We have the following.

(i) If x ∈ [0, η0), then f (t)(x) ↑ η0.

(ii) If x ∈ (η0, 1) then f (t)(x) ↓ η0.

Proof. We only prove (i). The argument for (ii) is similar. By monotonicity, for
x ∈ [0, η0), we have x < f(x) < f(η0) = η0. Iterating

x < f (1)(x) < · · · < f (t)(x) < f (t)(η0) = η0.
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Figure 6.2: Convergence of iterates to a fixed point.

So f (t)(x) ↑ L ≤ η0 as t → ∞. By continuity of f , we can take the limit t → ∞
inside of f on the right-hand side of the equality

f (t)(x) = f(f (t−1)(x)),

to get L = f(L). So by definition of η0 we must have L = η0.

The result then follows from the above lemmas together with Equations (6.1.2)
and (6.1.3).

Example 6.1.10 (Poisson branching process). Consider the offspring distribution
X(1, 1) ∼ Poi(λ) with mean λ > 0. We refer to this case as the Poisson branching
process. Then

f(s) = E[sX(1,1)] =
∑
i≥0

e−λ
λi

i!
si = eλ(s−1).

So the process goes extinct with probability 1 when λ ≤ 1. For λ > 1, the
probability of extinction η is the smallest solution in [0, 1] to the equation

e−λ(1−x) = x.
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The survival probability ζλ := 1− η satisfies 1− e−λζλ = ζλ. J

We can use these extinction results to obtain more information on the limit in
Lemma 6.1.3. Recall the definition of (Wt) in (6.1.1). Of course, conditioned on
extinction, W∞ = 0 almost surely. On the other hand:

Lemma 6.1.11 (Exponential growth III). Conditioned on nonextinction, either
W∞ = 0 almost surely or W∞ > 0 almost surely.

As a result, P[W∞ = 0] ∈ {η, 1}.

Proof of Lemma 6.1.11. A property of rooted trees is said to be inherited if all
finite trees satisfy the property and whenever a tree satisfies the property then so
do all subtrees rooted at the children of the root. The property {W∞ = 0}, as a
property of the Galton-Watson tree T , is inherited, seeing that Zt is a sum over the
children of the root of the number of descendants at the corresponding generation
t− 1. The result then follows from the following 0-1 law.

Lemma 6.1.12 (0-1 law for inherited properties). For a Galton-Watson tree T , an
inherited property A has, conditioned on nonextinction, probability 0 or 1.

Proof. Let T (1), . . . , T (Z1) be the descendant subtrees of the children of the root.
We use the notation T ∈ A to mean that tree T satisfies A. By the tower property,
the definition of inherited, and conditional independence,

P[A] = E[P[T ∈ A |Z1]]

≤ E[P[T (i) ∈ A, ∀i ≤ Z1 |Z1]]

= E[P[A]Z1 ]

= f(P[A]).

So P[A] ∈ [0, η] ∪ {1} by the proof of Lemma 6.1.8.
Moreover since A holds for finite trees, we have P[A] ≥ η, where recall that

η is the probability of extinction. Hence, in fact, P[A] ∈ {η, 1}. Conditioning on
nonextinction gives the claim.

That concludes the proof.

A further moment assumption provides a more detailed picture.

Lemma 6.1.13 (Exponential growth IV). Let (Zt) be a Galton-Watson branching
process with m = E[X(1, 1)] > 1 and σ2 = Var[X(1, 1)] < +∞. Then, (Wt)
converges in L2 and, in particular, E[W∞] = 1. Further, P[W∞ = 0] = η.
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Proof. We bound E[W 2
t ] by computing it explicitly by induction. From the orthog-

onality of increments (Lemma 3.1.50), it holds that

E[W 2
t ] = E[W 2

t−1] + E[(Wt −Wt−1)2].

Since E[Wt | Ft−1] = Wt−1 by the martingale property,

E[(Wt −Wt−1)2 | Ft−1] = Var[Wt | Ft−1]

= m−2t Var[Zt | Ft−1]

= m−2t Var

Zt−1∑
i=1

X(i, t)

∣∣∣∣∣∣Ft−1


= m−2tZt−1σ

2.

Hence, taking expectations and using Lemma 6.1.2, we get

E[W 2
t ] = E[W 2

t−1] +m−t−1σ2.

Since E[W 2
0 ] = 1, induction gives

E[W 2
t ] = 1 + σ2

t+1∑
i=2

m−i,

which is uniformly bounded from above when m > 1.
By the convergence theorem for martingales bounded in L2 (Theorem 3.1.51),

(Wt) converges almost surely and in L2 to a finite limit W∞ and

1 = E[Wt]→ E[W∞].

The last statement follows from Lemma 6.1.11.

Remark 6.1.14. A theorem of Kesten and Stigum gives a necessary and sufficient condition
for E[W∞] = 1 to hold [KS66b]. See, e.g., [LP16, Chapter 12].

6.1.3 . Percolation: Galton-Watson trees

Let T be the Galton-Watson tree for an offspring distribution with mean m > 1.
Now perform bond percolation on T with density p (see Definition 1.2.1). Let C0

be the open cluster of the root in T . Recall from Section 2.3.3 that the critical value
is

pc(T ) = sup{p ∈ [0, 1] : θ(p) = 0},

where the percolation function (conditioned on T ) is θ(p) = Pp[|C0| = +∞|T ].
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Theorem 6.1.15 (Bond percolation on Galton-Watson trees). Assumem > 1. Con-
ditioned on nonextinction of T ,

pc(T ) =
1

m
,

almost surely.

Proof. We can think of C0 (or more precisely, its size on each level) as being itself
generated by a Galton-Watson branching process, where this time the offspring
distribution is the law of

∑X(1,1)
i=1 Ii where the Iis are i.i.d. Ber(p) and X(1, 1) is

distributed according to the offspring distribution of T . In words, we are “thinning”
T . By conditioning onX(1, 1) and then using the tower property (Lemma B.6.16),
the offspring mean under the process generating C0 is mp.

If mp ≤ 1 then by the extinction theory (Theorems 6.1.5 and 6.1.6)

1 = Pp[|C0| < +∞] = E[Pp[|C0| < +∞|T ]],

and we must have Pp[|C0| < +∞|T ] = 1 almost surely. Taking p = 1/m, we
get pc(T ) ≥ 1

m almost surely. That holds, in particular, on the nonextinction of T
which happens with positive probability.

For the other direction, fix p such thatmp > 1. The property of trees {Pp[|C0| <
+∞|T ] = 1} is inherited. So by Lemma 6.1.12, conditioned on nonextinction of
T , it has probability 0 or 1. That probability is of course 1 on extinction. By
Theorem 6.1.6,

1 > Pp[|C0| < +∞] = E[Pp[|C0| < +∞|T ]],

and, conditioned on nonextinction of T , we must have Pp[|C0| < +∞|T ] = 0—
i.e., pc(T ) < p—almost surely. Repeating this argument for a sequence pn ↓
1/m simultaneously (i.e., on the same T ) and using the monotonicity of Pp[|C0| <
+∞|T ], we get that pc(T ) ≤ 1/m almost surely conditioned on nonextinction of
T . That proves the claim.

6.1.4 Multitype branching processes

Multitype branching processes are a useful generalization of Galton-Watson pro-
multitype

branching

processes

cesses (Definition 6.1.1). Their behavior combines aspects of branching processes
(exponential growth, extinction, etc.) and Markov chains (reducibility, mixing,
etc.). We will not develop the full theory here. In this section, we define this class
of processes and hint (largely without proofs) at their properties. In Section 6.3.2,
we illustrate some of the more intricate interplay between the driving phenomena
involved in a special example of practical importance.
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Definition In a multitype branching process, each individual has one of τ types,
which we will denote in this section by 1, . . . , τ for simplicity. Each type α ∈ [τ ] =

{1, . . . , τ} has its own offspring distribution {p(α)
k : k ∈ Zτ+}, which specifies the

distribution of the number of offspring of each type it has. Just to emphasize, this
is a collection of (typically distinct) multivariate distributions.

For reasons that will become clear below, it will be convenient to work with
row vectors. For each α ∈ [τ ], let

X(α)(i, t) =
(
X

(α)
1 (i, t), . . . , X(α)

τ (i, t)
)
, ∀i, t ≥ 1

be an array of i.i.d. Zτ+-valued random row vectors with distribution {p(α)
k }. Let

Z0 = k0 ∈ Zτ+,

be the initial population at time 0, again as a row vector. Recursively, the popula-
tion vector

Zt = (Zt,1, . . . , Zt,τ ) ∈ Zτ+,

at time t ≥ 1 is set to

Zt :=
τ∑

α=1

Zt−1,α∑
i=1

X(α)(i, t). (6.1.4)

In words, the i-th individual of type α at generation t − 1 produces X(α)
β (i, t)

individuals of type β at generation t (before itself dying). Let Ft = σ(Z0, . . . ,Zt)
be the corresponding filtration. We assume throughout that P[‖X(α)(1, 1)‖1 =
1] < 1 for at least one α (which is referred to as the nonsingular case); otherwise

nonsingular

case
the process reduces to a simple finite Markov chain.

Martingales As in the single-type case, the means of the offspring distributions
play a key role in the theory. This time however they form a matrix, the so-called
mean matrix M = (mα,β) with entries

mean matrix

mα,β = E
[
X

(α)
β (1, 1)

]
, ∀α, β ∈ [τ ].

That is, mα,β is the expected number of offspring of type β of an individual of type
α. We assume throughout that mα,β < +∞ for all α, β.
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To see how M drives the growth of the process, we generalize the proof of
Lemma 6.1.2. By the recursive formula (6.1.4),

E [Zt | Ft−1] = E

 τ∑
α=1

Zt−1,α∑
i=1

X(α)(i, t)

∣∣∣∣∣∣Ft−1


=

τ∑
α=1

Zt−1,α∑
i=1

E
[
X(α)(i, t)

∣∣∣Ft−1

]
=

τ∑
α=1

Zt−1,α E
[
X(α)(1, 1)

]
= Zt−1M, (6.1.5)

where recall that Zt−1 and Zt are row vectors. Inductively,

E [Zt |Z0] = Z0M
t. (6.1.6)

Moreover any real right eigenvector u (as a column vector) of M with real eigen-
value λ 6= 0 gives rise to a martingale

Ut := λ−tZtu, t ≥ 0, (6.1.7)

since

E[Ut | Ft−1] = E[λ−tZtu | Ft−1]

= λ−t E[Zt | Ft−1]u

= λ−tZt−1Mu

= λ−tZt−1λu

= Ut−1.

Extinction The classical Perron-Frobenius Theorem characterizes the direction
of largest growth of the matrix M . We state a version of it without proof in the
case where all entries of M are strictly positive, which is referred to as the positive
regular case. Note that, unlike the case of simple finite Markov chains, the matrix

positive

regular case
M is not in general stochastic, as it also reflects the “growth” of the population in
addition to the “transitions” between types. We encountered the following concept
in Section 5.2.5 and Exercise 5.5.

Definition 6.1.16. The spectral radius ρ(A) of a matrix A is the maximum of the
spectral

radius
eigenvalues of A in absolute value.
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Theorem 6.1.17 (Perron-Frobenius theorem: positive regular case). Let M be a
strictly positive, square matrix. Then ρ := ρ(M) is an eigenvalue of M with al-
gebraic and geometric multiplicities 1. It is also the only eigenvalue with absolute
value ρ. The corresponding left and right eigenvectors, denoted by v (as a row
vector) and w (as a column vector) respectively, are positive vectors. They are
referred to as left and right Perron vector. We assume that they are normalized so

Perron

vector
that 1w = 1 and vw = 1. Here 1 is the all-one row vector.

Because w is positive, the martingale

Wt := ρ−tZtw, t ≥ 0,

is nonnegative. Therefore it converges almost surely to a random limit with a finite
mean by Corollary 3.1.48. When ρ < 1, an argument based on Markov’s inequality
(Theorem 2.1.1) implies that the process goes extinct almost surely. Formally, let
q(α) be the probability of extinction when started with a single individual of type
α, that is,

q(α) := P[Zt = 0 for some t |Z0 = eα],

where eα ∈ Zτ+ is the standard basis row vector with a one in the α-th coordinate,
and let q := (q(1), . . . , q(τ)). Then

ρ < 1 =⇒ q = 1. (6.1.8)

Exercise 6.1 asks for the proof. We state the following more general result without
proof. We use the notation of Theorem 6.1.17. We will also refer to the generating
functions

f (α)(s) := E

 τ∏
β=1

s
X

(α)
β (1,1)

β

 , s ∈ [0, 1]τ

with f = (f (1), . . . , f (τ)).

Theorem 6.1.18 (Extinction: multitype case). Let (Z)t be a positive regular, non-
singular multitype branching process with a finite mean matrix M .

(i) If ρ ≤ 1 then q = 1.

(ii) If ρ > 1 then:

a- It holds that q < 1.

b- The unique solution to f(s) = s in [0, 1)τ is q.
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c- Almost surely
lim

t→+∞
ρ−tZt = vW∞,

where W∞ is a nonnegative random variable.

d- If in addition Var[X
(α)
β (1, 1)] < +∞ for all α, β then

E[W∞ |Z0 = eα] = wα,

and
q(α) = P[W∞ = 0 |Z0 = eα],

for all α ∈ [τ ].

Remark 6.1.19. As in the single-type case, a theorem of Kesten and Stigum gives a neces-
sary and sufficient condition for the last claim of Theorem 6.1.18 (ii) to hold [KS66b].

Linear functionals Theorem 6.1.18 also characterizes the limit behavior of lin-
ear functionals of the form Ztu for any vector that is not orthogonal to v. In
contrast, interesting new behavior arises when u is orthogonal to v. We will not
derive the general theory here. We only show through a second moment calculation
that a phase transition takes place.

We restrict ourselves to the supercritical case ρ > 1 and to u = (u1, . . . , uτ )
being a real right eigenvector of M with a real eigenvalue λ /∈ {0, ρ}. Let Ut be
the corresponding martingale from (6.1.7). The vector u is necessarily orthogonal
to v. Indeed vMu is equal to both ρvu and λvu. Because ρ 6= λ by assumption,
this is only possible if all three expressions are 0. That implies vu = 0 since we
also have ρ 6= 0 by assumption.

To compute the second moment of Ut, we mimic the computations in the proof
of Lemma 6.1.13. We have

E[U2
t |Z0] = E[U2

t−1 |Z0] + E[(Ut − Ut−1)2 |Z0],

by the orthogonality of increments (Lemma 3.1.50). Since E[Ut | Ft−1] = Ut−1 by
the martingale property, we get

E[(Ut − Ut−1)2 | Ft−1] = Var[Ut | Ft−1]

= Var[λ−tZtu | Ft−1]

= λ−2t Var

 τ∑
α=1

Zt−1,α∑
i=1

X(α)(i, t)

u

∣∣∣∣∣∣Ft−1


= λ−2t

τ∑
α=1

Zt−1,α Var
[
X(α)(1, 1)u

]
= λ−2tZt−1S

(u),
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where S(u) = (Var[X(1)(1, 1)u], . . . ,Var[X(τ)(1, 1)u]) as a column vector. In
the last display, we used (6.1.4) on the third line and the independence of the
random vectors X(α)(i, t) on the fourth line. Hence, taking expectations and us-
ing (6.1.6), we get

E[U2
t |Z0] = E[U2

t−1 |Z0] + λ−2tZ0M
t−1S(u).

and finally

E[U2
t |Z0] = (Z0u)2 +

t∑
s=1

λ−2sZ0M
s−1S(u). (6.1.9)

The case S(u) = 0 is trivial (see Exercise 6.4), so we exclude it from the following
lemma.

Lemma 6.1.20 (Second moment of Ut). Assume S(u) 6= 0 and Z0 6= 0. The
sequence E[U2

t |Z0], t = 0, 1, 2, . . ., is non-decreasing and satisfies

sup
t≥0
E[U2

t |Z0]

{
< +∞ if ρ < λ2,
= +∞ otherwise.

Proof. Because S(u) 6= 0 and nonnegative and the matrix M is strictly positive by
assumption, we have that

S̃(u) := MS(u) > 0.

Since w is also strictly positive, there is 0 < C− ≤ C+ < +∞ such that

C−w ≤ S̃(u) ≤ C+w.

Moreover, since M is positive, each inequality is preserved when multiplying on
both sides by M , that is, for any s ≥ 1

C−ρsw ≤M sS̃(u) ≤ C+ρsw. (6.1.10)

Now rewrite (6.1.9) as

E[U2
t |Z0] = (Z0u)2 + λ−2Z0S

(u) + λ−4
t∑

s=2

Z0(1/λ2)s−2M s−2S̃(u).

There are two cases:

- When ρ < λ2, using (6.1.10), the sum on the right-hand side can be bounded
above by

C+Z0w

t∑
s=2

( ρ
λ2

)s−2
≤ C+Z0w

1

1− (ρ/λ2)
< +∞,

uniformly in t.
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- When ρ ≥ λ2, the same sum can be bounded from below by

C−Z0w
t∑

s=2

( ρ
λ2

)s−2
→ +∞,

as t → +∞. Indeed, Z0 6= 0 implies that the inner product Z0w is strictly
positive.

That proves the claim.

In the case ρ < λ2, the martingale (Ut) is bounded in L2 and therefore con-
verges almost surely to a limit U∞ with E[U∞ |Z0] = Z0u by Theorem 3.1.51.
On the other hand, when ρ ≥ λ2, it can be shown (we will not do this here) that
Ztu/

√
Ztw satisfies a central limit theorem with a limit independent of Z0. Im-

plications of these claims are illustrated in Section 6.3.2.

6.2 Random-walk representation

In this section, we develop a random-walk representation of the Galton-Watson
process. We give two applications: a characterization of the Galton-Watson process
conditioned on extinction in terms of a dual branching process; and a formula for
the size of the total progeny. We illustrate both in Section 6.2.4, where we revisit
percolation on the infinite b-ary tree.

6.2.1 Exploration process

We introduce an exploration process where a random-walk perspective will natu-
rally arise.

Exploration of a graph

Because this will be useful again later, we describe it first in the context of a locally
finite graph G = (V,E). The exploration process starts at an arbitrary vertex
v ∈ V and has 3 types of vertices:

active

explored

neutral
- At: active vertices,

- Et: explored vertices,

- Nt: neutral vertices.
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Figure 6.3: Exploration process for Cv.

At the beginning, we have A0 := {v}, E0 := ∅, and N0 contains all other vertices
inG. At time t, ifAt−1 = ∅ (i.e., there are no active vertices) we let (At, Et,Nt) :=
(At−1, Et−1,Nt−1). Otherwise, we pick an element, at, from At−1 (say in first-
come, first-served basis to be explicit) and set:

- At := (At−1\{at}) ∪ {x ∈ Nt−1 : {x, at} ∈ E}

- Et := Et−1 ∪ {at}

- Nt := Nt−1\{x ∈ Nt−1 : {x, at} ∈ E}

We imagine revealing the edges of G as they are encountered in the exploration
process. In words, starting with v, the connected component Cv of v is progres-
sively grown by adding to it at each time a vertex adjacent to one of the previously
explored vertices and uncovering its remaining neighbors in G. In this process, Et
is the set of previously explored vertices and At—the frontier of the process—is
the set of vertices who are known to belong to Cv but whose full neighborhood is
waiting to be uncovered. The rest of the vertices form the set Nt. See Figure 6.3.

Let At := |At|, Et := |Et|, and Nt := |Nt|. Note that (Et)—not to be
confused with the edge set—is non-decreasing while (Nt) is non-increasing. Let

τ0 := inf{t ≥ 0 : At = 0},

be the first time At is 0 (which by convention is +∞ if there is no such t). The
process is fixed for all t > τ0. Notice that Et = t for all t ≤ τ0, as exactly one
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vertex is explored at each time until the set of active vertices is empty. The size of
the connected component of v can be characterized as follows.

Lemma 6.2.1.
τ0 = |Cv|.

Proof. Indeed a single vertex of Cv is explored at each time until all of Cv has been
visited. At that point, At is empty.

Random-walk representation of a Galton-Watson tree

Let (Zi)i≥0 be a Galton-Watson branching process and let T be the corresponding
Galton-Watson tree. We run the exploration process above on T started at the
root 0. We will refer to the index i in Zi as a “generation,” and to the index t
in the exploration process as “time”—they are not the same. Let (At, Et,Nt) and
At := |At|, Et := |Et|, and Nt := |Nt| be as above. Let (Ft) be the corresponding
filtration. Because we explore the vertices on first-come, first-served basis, we
exhaust all vertices in generation i before considering vertices in generation i + 1
(i.e., we perform breadth-first search).

The random-walk representation is the following. Observe that the process
(At) admits a simple recursive form. We start with A0 := 1. Then, conditioning
on Ft−1:

- If At−1 = 0, the exploration process has finished its course and At = 0.

- Otherwise, (a) one active vertex becomes an explored vertex and (b) its off-
spring become active vertices. That is,

At =


At−1 +

(
−1︸︷︷︸
(a)

+ Xt︸︷︷︸
(b)

)
if t− 1 < τ0,

0 otherwise,

where Xt is distributed according to the offspring distribution.

We let Yt := Xt − 1 and

St := 1 +
t∑

s=1

Ys,

with S0 := 1. Then

τ0 = inf{t ≥ 0 : St = 0},
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and
(At) = (St∧τ0),

is a random walk started at 1 with i.i.d. increments (Yt) stopped when it hits 0 for
the first time.

We refer to
H = (X1, . . . , Xτ0),

as the history of the process (Zi). Observe that, under breadth-first search, the
history

process (Zi) can be reconstructed from H: Z0 = 1, Z1 = X1, Z2 = X2 + . . . +
XZ1+1, and so forth. (Exercise 6.5 asks for a general formula.) As a result, (Zi)
can be recovered from (St) as well. We call (x1, . . . , xt) a valid history if

valid

history1 + (x1 − 1) + · · ·+ (xs − 1) > 0,

for all s < t and
1 + (x1 − 1) + · · ·+ (xt − 1) = 0.

Note that a valid history may have probability 0 under the offspring distribution.

6.2.2 Duality principle

The random-walk representation above is useful to prove the following duality
principle.

Theorem 6.2.2 (Duality principle). Let (Zi) be a branching process with offspring
distribution {pk}k≥0 and extinction probability η < 1. Let (Z ′i) be a branching
process with offspring distribution {p′k}k≥0 where

p′k = ηk−1pk.

Then (Zi) conditioned on extinction has the same distribution as (Z ′i), which is
referred to as the dual branching process.

dual branching

processLet f be the probability generating function of the offspring distribution of (Zi).
Note that ∑

k≥0

p′k =
∑
k≥0

ηk−1pk = η−1f(η) = 1,

because η is a fixed point of f by Theorem 6.1.6. So {p′k}k≥0 is indeed a probabil-
ity distribution. Note further that its expectation is∑

k≥0

kp′k =
∑
k≥0

kηk−1pk = f ′(η) < 1,



CHAPTER 6. BRANCHING PROCESSES 433

since, by Lemma 6.1.7, f ′ is strictly increasing, f(η) = η < 1 and f(1) = 1
(which would not be possible if f ′(η) were greater or equal to 1; see Figure 6.1 for
an illustration). So the dual branching process is subcritical.

Proof of Theorem 6.2.2. We use the random-walk representation. LetH = (X1, . . . , Xτ0)
and H ′ = (X ′1, . . . , X

′
τ ′0

) be the histories of (Zi) and (Z ′i) respectively. In the case
of extinction of (Zi), the history H has finite length.

By definition of the conditional probability, for a valid history (x1, . . . , xt) with
a finite t,

P[H = (x1, . . . , xt) | τ0 < +∞] =
P[H = (x1, . . . , xt)]

P[τ0 < +∞]
= η−1

t∏
s=1

pxs .

Because (x1 − 1) + · · ·+ (xt − 1) = −1,

η−1
t∏

s=1

pxs = η−1
t∏

s=1

η1−xsp′xs =
t∏

s=1

p′xs = P[H ′ = (x1, . . . , xt)].

Since this is true for all valid histories and the processes can be recovered from
their histories, we have proved the claim.

Example 6.2.3 (Poisson branching process). Let (Zi) be a Galton-Watson branch-
ing process with offspring distribution Poi(λ) where λ > 1. Then the dual proba-
bility distribution is given by

p′k = ηk−1pk = ηk−1e−λ
λk

k!
= η−1e−λ

(λη)k

k!
,

where recall from Example 6.1.10 that e−λ(1−η) = η, so

p′k = eλ(1−η)e−λ
(λη)k

k!
= e−λη

(λη)k

k!
.

That is, the dual branching process has offspring distribution Poi(λη). J

6.2.3 Hitting-time theorem

The random-walk representation also gives a formula for the distribution of the size
of the progeny.
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Law of total progeny The key is the following claim.

Lemma 6.2.4 (Total progeny and random-walk representation). LetW be the total
progeny of the Galton-Watson branching process (Zi). Then

W = τ0.

Proof. Recall that
τ0 := inf{t ≥ 0 : At = 0}.

If the process does not go extinct, then τ0 = +∞ as there are always more vertices
to explore.

Suppose the process goes extinct and that W = n. Notice that Et = t for all
t ≤ τ0, as exactly one vertex is explored at each time until the set of active vertices
is empty. Moreover, for all t, (At, Et,Nt) forms a partition of [n] so

At + t+Nt = n, ∀t ≤ τ0.

At t = τ0, At = Nt = 0 and we get

τ0 = n.

That proves the claim.

To compute the distribution of W = τ0, we use the following hitting-time
theorem, which is proved later in this subsection.

Theorem 6.2.5 (Hitting-time theorem). Let (Rt) be a random walk started at 0
with i.i.d. increments (Ut) satisfying

P[Ut ≤ 1] = 1.

Fix a positive integer `. Let σ` be the first time t such that Rt = `. Then

P[σ` = t] =
`

t
P[Rt = `].

Finally we get:

Theorem 6.2.6 (Law of total progeny). Let (Zt) be a Galton-Watson branching
process with total progeny W . In the random-walk representation of (Zt),

P[W = t] =
1

t
P[X1 + · · ·+Xt = t− 1],

for all t ≥ 1.
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Proof. Recall that Yt := Xt − 1 ≥ −1 and

St = 1 +
t∑

s=1

Ys,

with S0 = 1, and that

τ0 = inf{t ≥ 0 : St = 0}
= inf{t ≥ 0 : 1 + (X1 − 1) + · · ·+ (Xt − 1) = 0}
= inf{t ≥ 0 : X1 + · · ·+Xt = t− 1}.

Define Rt := 1− St and Ut := −Yt for all t. Then R0 := 0,

{X1 + · · ·+Xt = t− 1} = {Rt = 1},

and
τ0 = inf{t ≥ 0 : Rt = 1}.

The process (Rt) satisfies the assumptions of the hitting-time theorem (Theo-
rem 6.2.5) with ` = 1 and σ` = τ0 = W . Applying the theorem gives the
claim.

Example 6.2.7 (Poisson branching process (continued)). Let (Zi) be a Galton-
Watson branching process with offspring distribution Poi(λ) where λ > 0. Let W
be its total progeny. By the hitting-time theorem, for t ≥ 1,

P[W = t] =
1

t
P[X1 + · · ·+Xt = t− 1]

=
1

t
e−λt

(λt)t−1

(t− 1)!

= e−λt
(λt)t−1

t!
,

where we used that a sum of independent Poisson is Poisson. J

Spitzer’s combinatorial lemma Before proving the hitting-time theorem, we
begin with a combinatorial lemma of independent interest. Let u1, . . . , ut ∈ R and
define r0 := 0 and rj := u1+· · ·+uj for 1 ≤ j ≤ t. We say that j is a ladder index
if rj > r0 ∨ · · · ∨ rj−1. Consider the cyclic permutations of u = (u1, . . . , ut), that
is, u(0) = u, u(1) = (u2, . . . , ut, u1), . . . , u(t−1) = (ut, u1, . . . , ut−1). Define
the corresponding partial sums r(β)

j := u
(β)
1 + · · · + u

(β)
j for j = 1, . . . , t and

β = 0, . . . , t− 1.
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Lemma 6.2.8 (Spitzer’s combinatorial lemma). Assume rt > 0. Let ` be the num-
ber of cyclic permutations such that t is a ladder index. Then ` ≥ 1 and each such
cyclic permutation has exactly ` ladder indices.

Proof. We will need the following observation

(r
(β)
1 , . . . , r

(β)
t )

= (rβ+1 − rβ, rβ+2 − rβ, . . . , rt − rβ,
[rt − rβ] + r1, [rt − rβ] + r2, . . . , [rt − rβ] + rβ)

= (rβ+1 − rβ, rβ+2 − rβ, . . . , rt − rβ,
rt − [rβ − r1], rt − [rβ − r2], . . . , rt − [rβ − rβ−1], rt). (6.2.1)

We first show that ` ≥ 1, that is, there is at least one cyclic permutation where
t is a ladder index. Let β ≥ 1 be the smallest index achieving the maximum of
r1, . . . , rt, that is,

rβ > r1 ∨ · · · ∨ rβ−1 and rβ ≥ rβ+1 ∨ · · · ∨ rt.

Moreover, rt > 0 = r0 by assumption. Hence,

rβ+j − rβ ≤ 0 < rt, ∀j = 1, . . . , t− β,

and
rt − [rβ − rj ] < rt, ∀j = 1, . . . , β − 1.

From (6.2.1), in u(β), t is a ladder index.
For the second claim, since ` ≥ 1, we can assume without loss of generality

that u is such that t is a ladder index. (Note that r(β)
t = rt for all β.) We show

that β is a ladder index in u if and only if t is a ladder index in u(β). That does
indeed imply the claim as there are ` cyclic permutations where t is a ladder index
by assumption. We use (6.2.1) again. Observe that β is a ladder index in u if and
only if

rβ > r0 ∨ · · · ∨ rβ−1,

which holds if and only if

rβ > r0 = 0 and rt − [rβ − rj ] < rt, ∀j = 1, . . . , β − 1. (6.2.2)

Moreover, because rt > rj for all j by the assumption that t is ladder index, the
last display holds if and only if

rβ+j − rβ < rt, ∀j = 1, . . . , t− β, (6.2.3)
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and
rt − [rβ − rj ] < rt, ∀j = 1, . . . , β − 1, (6.2.4)

that is, if and only if t is a ladder index in u(β) by (6.2.1). Indeed, the second
condition (i.e., (6.2.4)) is intact from (6.2.2), while the first one (i.e., (6.2.3)) can
be rewritten as rβ > −(rt − rβ+j) where the right-hand side is < 0 for j =
1, . . . , t− β − 1 and = 0 for j = t− β.

Proof of hitting-time theorem We are now ready to prove the hitting-time the-
orem. We only handle the case ` = 1 (which is the one we used for the law of the
total progeny). Exercise 6.6 asks for the full proof.

Proof of Theorem 6.2.5. Recall that Rt =
∑t

s=1 Us and σ1 = inf{j ≥ 0 : Rj =
1}. By the assumption that Us ≤ 1 almost surely for all s,

{σ1 = t} = {t is the first ladder index in R1, . . . , Rt}.

By symmetry, for all β = 0, . . . , t− 1,

P[t is the first ladder index in R1, . . . , Rt]

= P[t is the first ladder index in R(β)
1 , . . . , R

(β)
t ].

Let Eβ be the event on the last line. Then,

P[σ1 = t] = E[1E0 ] =
1

t
E

 t−1∑
β=0

1Eβ

 .
By Spitzer’s combinatorial lemma (Lemma 6.2.8), there is at most one cyclic

permutation where t is the first ladder index. (There is at least one cyclic permu-
tation where t is a ladder index—but it may not be the first one, that is, there may
be multiple ladder indices.) In particular,

∑t−1
β=0 1Eβ ∈ {0, 1}. So, by the previous

display,

P[σ1 = t] =
1

t
P
[
∪t−1
β=0Eβ

]
.

Finally we claim that {Rt = 1} = ∪t−1
β=0Eβ . Indeed, because R0 = 0 and

Us ≤ 1 for all s, the partial sum at the j-th ladder index must take value j. So the
event∪t−1

β=0Eβ implies {Rt = 1} since the last partial sum of all cyclic permutations
is Rt. Similarly, because there is at least one cyclic permutation such that t is a
ladder index, the event {Rt = 1} implies that t is in fact the first ladder index in
that cyclic permutation, and therefore it implies ∪tβ=1Eβ . Hence,

P[σ1 = t] =
1

t
P [Rt = 1] ,

which concludes the proof (for the case ` = 1).
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6.2.4 . Percolation: critical exponents on the infinite b-ary tree

In this section, we use branching processes to study bond percolation (Defini-
tion 1.2.1) on the infinite b-ary tree T̂b and derive explicit expressions for quan-
tities of interest. Close to the critical value, we prove the existence of “critical
exponents.” We illustrate the use of both the duality principle (Theorem 6.2.2) and
the hitting-time theorem (Theorem 6.2.6).

Critical value We denote the root by 0. Similarly to what we did in Section 6.1.3,
we think of the open cluster of the root, C0, as the progeny of a branching process
as follows. Denote by ∂n the n-th level of T̂b, that is, the vertices of T̂b at graph
distance n from the root. In the branching process interpretation, we think of the
immediate descendants in C0 of a vertex v as the offspring of v. By construction, v
has at most b children, independently of all other vertices in the same generation.
In this branching process, the offspring distribution {qk}bk=0 is binomial with pa-
rameters b and p; Zn := |C0 ∩ ∂n| represents the size of the progeny at generation
n; and W := |C0| is the total progeny of the process. In particular |C0| < +∞ if
and only if the process goes extinct. Because the mean number of offspring is bp,
by Theorem 6.1.6, this leads immediately to a second proof of (a rooted variant of)
Claim 2.3.9:

Claim 6.2.9.
pc

(
T̂b
)

=
1

b
.

Percolation function The generating function of the offspring distribution is
φ(s) := ((1−p)+ps)b. So, by Theorems 6.1.5 and 6.1.6, the percolation function

θ(p) = Pp[|C0| = +∞],

is 0 on [0, 1/b], while on (1/b, 1] the quantity η(p) := 1 − θ(p) is the unique
solution in [0, 1) of the fixed point equation

s = ((1− p) + ps)b. (6.2.5)

For b = 2, for instance, we can compute the fixed point explicitly by noting that

0 = ((1− p) + ps)2 − s
= p2s2 + [2p(1− p)− 1]s+ (1− p)2,
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whose solution for p ∈ (1/2, 1] is

s∗ =
−[2p(1− p)− 1]±

√
[2p(1− p)− 1]2 − 4p2(1− p)2

2p2

=
−[2p(1− p)− 1]±

√
1− 4p(1− p)

2p2

=
−[2p(1− p)− 1]± (2p− 1)

2p2

=
2p2 + [(1− 2p)± (2p− 1)]

2p2
.

So, rejecting the fixed point 1,

θ(p) = 1− 2p2 + 2(1− 2p)

2p2
=

2p− 1

p2
.

We have proved:

Claim 6.2.10. For b = 2,

θ(p) =

{
0, 0 ≤ p ≤ 1

2 ,
2(p− 1

2
)

p2
1
2 < p ≤ 1.

Since η(p) = (1− θ(p)), we have in that case

η(p) =

{
1, 0 ≤ p ≤ 1

2 ,
(1−p)2

p2
1
2 < p ≤ 1.

Conditioning on a finite cluster The expected size of the population at genera-
tion n is (bp)n by Lemma 6.1.2, so for p ∈ [0, 1

b )

Ep|C0| =
∑
n≥0

(bp)n =
1

1− bp
. (6.2.6)

For p ∈ (1
b , 1), the total progeny is infinite with positive probability (and in par-

ticular the expectation is infinite), but we can compute the expected cluster size on
the event that |C0| < +∞. For this purpose we use the duality principle.
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Recall that qk =
(
b
k

)
pk(1 − p)b−k, k = 0, . . . , b, is the offspring distribution.

For 0 ≤ k ≤ b, we let the dual offspring distribution be

q̂k := [η(p)]k−1qk

= [η(p)]k−1

(
b

k

)
pk(1− p)b−k

=
[η(p)]k

((1− p) + p η(p))b

(
b

k

)
pk(1− p)b−k

=

(
b

k

)(
p η(p)

(1− p) + p η(p)

)k ( 1− p
(1− p) + p η(p)

)b−k
=:

(
b

k

)
p̂k (1− p̂)b−k ,

where we used (6.2.5) and implicitly defined the dual density

p̂ :=
p η(p)

(1− p) + p η(p)
. (6.2.7)

In particular {q̂k} is a probability distribution as expected under Theorem 6.2.2—
it is in fact binomial with parameters b and p̂. Summarizing the implications of
Theorem 6.2.2:

Claim 6.2.11. Conditioned on |C0| < +∞, (supercritical) percolation on T̂b with
density p ∈ (1

b , 1) has the same distribution as (subcritical) percolation on T̂b with
density defined by (6.2.7).

Hence, using (6.2.6) with both p and p̂ as well as the fact that Pp[|C0| < +∞] =
η(p), we have the following.

Claim 6.2.12.

χf(p) := Ep
[
|C0|1{|C0|<+∞}

]
=

{
1

1−bp , p ∈ [0, 1
b ),

η(p)
1−bp̂ , p ∈ (1

b , 1).

For b = 2, η(p) = 1− θ(p) =
(

1−p
p

)2
so

p̂ =
p
(

1−p
p

)2

(1− p) + p
(

1−p
p

)2 =
(1− p)2

p(1− p) + (1− p)2
= 1− p,

and
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Claim 6.2.13. For b = 2,

χf(p) =


1/2
1
2
−p , p ∈ [0, 1

2),

1
2

(
1−p
p

)2

p− 1
2

, p ∈ (1
2 , 1).

Distribution of the open cluster size In fact the hitting-time theorem gives an
explicit formula for the distribution of |C0|. Namely, recall that |C0|

d
= τ0 where

τ0 = inf{t ≥ 0 : St = 0},

for St =
∑

`≤tX` − (t − 1) where S0 = 1 and the X`s are i.i.d. binomial with
parameters b and p. By Theorem 6.2.6,

P[τ0 = t] =
1

t
P[St = 0],

and we have

Pp[|C0| = `] =
1

`
P

∑
i≤`

X` = `− 1

 =
1

`

(
b`

`− 1

)
p`−1(1− p)b`−(`−1),

(6.2.8)

where we used that a sum of independent binomials with the same p is itself bino-
mial. In particular at criticality (where |C0| < +∞ almost surely; see Claim 3.1.52),
using Stirling’s formula (see Appendix A) it can be checked that

Ppc [|C0| = `] ∼ 1

`

1√
2πpc(1− pc)b`

=
1√

2π(1− pc)`3
,

as `→ +∞.

Critical exponents Close to criticality, physicists predict that many quantities
behave according to power laws of the form |p − pc|β , where the exponent is re-
ferred to as a critical exponent. The critical exponents are believed to satisfy certain

critical

exponent
“universality” properties. But even proving the existence of such exponents in gen-
eral remains a major open problem. On trees, though, we can simply read off the
critical exponents from the above formulas. For b = 2, Claims 6.2.10 and 6.2.13
imply for instance that, as p→ pc,

θ(p) ∼ 8(p− pc)1{p>1/2},
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and
χf(p) ∼ 1

2
|p− pc|−1.

In fact, as can be seen from Claim 6.2.12, the critical exponent of χf(p) does not
depend on b. The same holds for θ(p) (see Exercise 6.9). Using (6.2.8), the higher
moments of |C0| can also be studied around criticality (see Exercise 6.10).

6.3 Applications

We develop two applications of branching processes in discrete probability. First,
we prove a result about the height of a random binary search tree. Then we describe
a phase transition in an Ising model on a tree with applications to evolutionary
biology. In the next section, we also use branching processes to study the phase
transition of Erdős-Rényi random graph model.

6.3.1 . Probabilistic analysis of algorithms: binary search tree

A binary search tree (BST) is a commonly used data structure in computer science.
binary

search tree
It consists of a rooted binary tree Tn = (Vn, En). Each vertex has a “left” and
“right” subtree (possibly empty) and a “key” from an input sequence x1, . . . , xn ∈
R (which we assume are distinct) that satisfies the BST property: the key at vertex
v ∈ V is greater than all keys in the left subtree below it and less than all keys
in the right subtree below it. Such a data structure can be used for a variety of
algorithmic tasks, such as searching for keys or sorting them.

The tree is constructed recursively as follows. Assume that the keys x1, . . . , xi
have already been inserted and that the current tree Ti satisfies the BST property.
To insert xi+1:

- start at the root;

- if the root’s key is strictly larger than xi+1, then move to its left descendant,
otherwise move to its right descendant;

- if such a descendant does not exist then create it and assign it xi+1 as its key;

- otherwise repeat.

Inserting keys (and other operations such as deleting keys, which we do not de-
scribe) takes time proportional to the height Hn of the tree Tn, that is, the length
of the longest path from the root to a leaf. While, in general, the height can be as
large as n (if keys are inserted in order for instance), the typical behavior can be
much smaller.
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Indeed, here we study the case of n keys X1, . . . , Xn i.i.d. from a continuous
distribution on R and establish a much better behavior for the random height. Let
γ be the unique solution greater than 1 of(

1

e

)(
2e

γ

)γ
= 1. (6.3.1)

See Exercise 6.14 for a proof that γ is well-defined and that the left-hand side is
strictly decreasing at γ. We show:

Claim 6.3.1. Hn/ log n→p γ as n→∞.

Alternative representation of the height

The main idea of the proof is to relate the height Hn of the tree Tn to a product
of independent uniform random variables. We make a series of observations about
the structure of the tree. First:

Observation 1. Keys affect the construction of the binary search tree
only through their ordering. Let σ be the corresponding (random)
permutation, that is,

Xσ(1) < Xσ(2) < · · · < Xσ(n).

Let t[σ] be the binary search tree generated by the permutation σ.

Second, by symmetry:

Observation 2. The permutation σ is uniformly distributed.

Denote by Sv the size of the subtree rooted at v (including v itself) in t[σ]. At the
root ρ, we have Sρ = n. What is the size of the subtree rooted at the left descendant
ρ′ of ρ? Eventually all keys with a rank lower than σ−1(1), that is, those keys with
indices in

{
σ(i) : i < σ−1(1)

}
, find their way into the left subtree of the root. In

other words,
Sρ′ = σ−1(1)− 1.

Similarly, denoting by ρ′′ the right descendant of ρ, we see that

Sρ′′ = n− σ−1(1).

We refer to σ−1(1) as the rank of the root. By Observation 2:

Observation 3. The rank σ−1(1) of the root is uniformly distributed
in [n]. Moreover it is identically distributed to bSρWρc+1, where Wρ

is uniform in [0, 1].
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The second part of this last observation can be checked by direct computation.
Rename X ′1, . . . , X

′
Sρ′

the keys in the subtree rooted at ρ′ in the order that they are
inserted and let σ′ be the (random) permutation corresponding to their ordering,
that is,

X ′σ′(1) < X ′σ′(2) < · · · < X ′σ′(Sρ′ )
.

Define σ′′ similarly for ρ′′. Again by symmetry:

Observation 4. Conditioned on σ−1(1) (and therefore on Sρ′ and
Sρ′′), the permutations σ′ and σ′′ are independent and uniformly dis-
tributed.

Finally, recursively:

Observation 5. The binary search tree t[σ] is obtained by appending
the left subtree t[σ′] and right subtree t[σ′′] to the root ρ.

If Sρ′ = 0, then t[σ′] = ∅ (and there is in fact no ρ′); while, if Sρ′ = 1, the tree t[σ′]
is comprised of the single vertex ρ′. Similarly for σ′′. Hence this recursive process
stops whenever we reach a vertex v with Sv ∈ {0, 1}. But it will be convenient to
extend it indefinitely to produce an infinite binary tree T = T̂2, where all additional
vertices v are assigned Sv = 0.

The upshot of all these observations is that we obtain the following alternative
characterization of the height Hn:

- assign an independent U [0, 1] (i.e., uniform in [0, 1]) random variable Wv to
each vertex v in the infinite binary tree T ;

- at the root ρ, set
Sρ = n;

- then recursively from the root down, set

Sv′ := bSvWvc and Sv′′ := bSv(1−Wv)c, (6.3.2)

where v′ and v′′ are the left and right descendants of v in T .

It can be checked that Sv′ + Sv′′ = Sv − 1 almost surely, provided Sv ≥ 1 (see
Exercise 6.15). Moreover notice that, when Sv = 1, then Sv′ = Sv′′ = 0 almost
surely; while, if Sv = 0, then Sv′ = Sv′′ = 0. Finally the height Hn is the highest
level containing a vertex with subtree size at least 1, that is,

Hn = sup {h : ∃v ∈ Lh, Sv ≥ 1} , (6.3.3)

where Lh is the set of vertices of T at graph distance h from the root.
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Key technical bound

Because W ∼ U [0, 1] implies also that (1 −W ) ∼ U [0, 1], we immediately get
from (6.3.2) that:

Lemma 6.3.2 (Distribution of subtree size). Let v be a vertex at topological dis-
tance ` from the root of T . Let U1, . . . , U` be i.i.d. U [0, 1]. Then we have the
equality in distribution

Sv
d
= b· · · bbnU1cU2c · · ·U`c.

From Lemma 6.3.2 and the characterization of the height in (6.3.3), we need to
control how fast products of independent uniforms decrease. But that is only half
of the story: the number of paths of length ` from the root grows exponentially
with `. The following lemma, which takes both effects into account, will play a
key role in the analysis. It also explains the definition of γ in (6.3.1). Note that
we ignore—for the time being—the repeated rounding in Lemma 6.3.2; it will turn
out to have a minor effect.

Lemma 6.3.3 (Product of uniforms). Let U1, U2, . . . be i.i.d. U [0, 1]. Then

lim
`→+∞

2` P
[
U1 · · ·U` ≥ e−`/c

]
=

{
+∞ if c < γ,

0 if c > γ.

Proof. Taking logarithms turns the product on the left-hand side into a sum of
i.i.d. random variables

2` P
[
U1 · · ·U` ≥ e−`/c

]
= 2` P

[∑̀
i=1

(− logUi) ≤ `/c

]
. (6.3.4)

Now it is elementary to bound the right-hand side.

Lemma 6.3.4 (A tail bound). Let U1, . . . , U` be i.i.d. U [0, 1]. Then for any y > 0

y`e−y

`!
≤ P

[∑̀
i=1

(− logUi) ≤ y

]
≤ y`e−y

`!

(
1

1− y
`+1

)
. (6.3.5)

Proof. We prove a more general claim, specifically

P

[∑̀
i=1

(− logUi) ≤ y

]
= e−y

{
+∞∑
i=`

yi

i!

}
,
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from which (6.3.5) follows: the lower bound is obtained by keeping only the first
term in the sum; the upper bound is obtained by factoring out y`e−y/`! and relating
the remaining sum to a geometric series.

So it remains to prove the general claim. First note that − logU1 is exponen-
tially distributed. Indeed, for any y ≥ 0,

P [− logU1 > y] = P
[
U1 < e−y

]
= e−y.

So

P [− logU1 ≤ y] = 1− e−y = e−y

{
+∞∑
i=0

yi

i!
− 1

}
= e−y

{
+∞∑
i=1

yi

i!

}
,

as claimed in the base case ` = 1.
Proceeding by induction, suppose the claim holds up to `− 1. Then

P

[∑̀
i=1

(− logUi) > y

]
=

∫ +∞

0
e−z P

[
`−1∑
i=1

(− logUi) > y − z

]
dz

= e−y +

∫ y

0
e−z P

[
`−1∑
i=1

(− logUi) > y − z

]
dz

= e−y +

∫ y

0
e−ze−(y−z)

{
`−2∑
i=0

(y − z)i

i!

}
dz

= e−y + e−y
`−2∑
i=0

yi+1

i!(i+ 1)

= e−y
`−1∑
j=0

yj

j!
.

That proves the claim.

We return to the proof of Lemma 6.3.3. Plugging (6.3.5) into (6.3.4), we get

2`(`/c)`e−(`/c)

`!
≤ 2` P

[
U1 · · ·U` ≥ e−`/c

]
≤ 2`(`/c)`e−(`/c)

`!

(
1

1− (`/c)
`+1

)
. (6.3.6)

As `→ +∞,
1

1− (`/c)
`+1

→ 1

1− 1
c

, (6.3.7)
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which is positive when c > 1. We will use the standard bound (see Exercise 1.3
for a proof)

``

e`−1
≤ `! ≤ ``+1

e`−1
.

It implies immediately that

2`(`/c)`e−(`/c)e`−1

``+1
≤ 2`(`/c)`e−(`/c)

`!
≤ 2`(`/c)`e−(`/c)e`−1

``
,

which after simplifying gives

(e`)−1

[(
1

e

)(
2e

c

)c]`/c
≤ 2`

(`/c)`e−(`/c)

`!
≤ e−1

[(
1

e

)(
2e

c

)c]`/c
. (6.3.8)

By (6.3.1) and the remark following it, the expression in square brackets is > 1 or
< 1 depending on whether c < γ or c > γ. Combining (6.3.6), (6.3.7) and (6.3.8)
and taking a limit as `→ +∞ gives the claim.

As an immediate consequence of Lemma 6.3.3, we bound the height from
above. Fix any ε > 0 and let h := (γ + ε) log n. We use a union bound as
follows

P [Hn ≥ h] = P

 ⋃
v∈Lh

{Sv ≥ 1}

 ≤ ∑
v∈Lh

P [Sv ≥ 1] = 2h P [Sv ≥ 1] , (6.3.9)

for any v ∈ Lh, where the first equality follows from (6.3.3). Since

b· · · bbnU1cU2c · · ·Uhc ≤ nU1U2 · · ·Uh,

Lemmas 6.3.2 and 6.3.3 imply that

2h P [Sv ≥ 1] ≤ 2h P [nU1U2 · · ·Uh ≥ 1]

= 2h P
[
U1U2 · · ·Uh ≥ e−h/(γ+ε)

]
→ 0, (6.3.10)

as h→ +∞. From (6.3.9) and (6.3.10), we obtain finally that for any ε > 0

P [Hn/ log n ≥ γ + ε]→ 0,

as n→ +∞, which establishes one direction of Claim 6.3.1.
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Lower bounding the height: a branching process

Establishing the other direction is where branching processes enter the scene. We
will need some additional notation. Fix c < γ and let ` be a positive integer that
will be set later on. For any pair of vertex v, w ∈ T with w a descendant of v,
let Q[v, w] be the set of vertices on the path between v and w, including v but
excluding w. Further, recalling (6.3.2), define

U [v, w] =
∏

z∈Q[u,v]

Uv,wz ,

where Uv,wz = Wz (respectively 1 − Wz) if the path from v to w takes the left
(respectively right) edge upon exiting z. Denote by L`[v] the set of descendant
vertices of v in T at graph distance ` from v and consider the random subset

L∗` [v] =
{
w ∈ L`[v] : U [v, w] ≥ e−`/c

}
.

Fix a vertex u ∈ T . We define the following Galton-Watson branching process.

- Initialize Zu,`0 := 1 and u0,1 := u.

- For t ≥ 1, set

Zu,`t =

Zu,`t−1∑
r=1

|L∗` [ut−1,r]| ,

and let ut,1, . . . , ut,Zu,`t
be the vertices in ∪Z

u,`
t−1

r=1 L∗` [ut−1,r] from left to right.

In words, Zu,`1 counts the number of vertices ` levels below u whose subtree sizes
(ignoring rounding) have not decreased “too much” compared to that of u (in the
sense of Lemma 6.3.3). We let such vertices (if any) be u1,1, . . . , u1,Zu,`1

. Sim-

ilarly, Zu,`2 counts the same quantity over all vertices ` levels below the vertices
u1,1, . . . , u1,Zu,`1

, and so forth.
Because the Wvs are i.i.d., this process is indeed a Galton-Watson branching

process. The expectation of the offspring distribution (which by symmetry does
not depend on the choice of u) is

m = E
[
Zu,`1

]
= 2` P

[
U1 · · ·U` ≥ e−`/c

]
,

where we used the notation of Lemma 6.3.3. By that lemma, we can choose `
large enough that m > 1. Fix such an ` for the rest of the proof. In that case, by
Theorem 6.1.6, the process survives with probability 1− η for some 0 ≤ η < 1.

The relevance of this observation can be seen from taking u = ρ.
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Claim 6.3.5. Let c′ < c. Conditioned on survival of (Zρ,`t ), for n large enough
Hn ≥ c′ log n− θn` almost surely for some θn ∈ [0, 1).

Proof. To account for the rounding, we will need the inequality

b· · · bbnU1cU2c · · ·Usc ≥ nU1U2 · · ·Us − s, (6.3.11)

which holds for all n, s ≥ 1, as can be checked by induction. Write s = k` for
some positive integer k to be determined. Conditioned on survival of (Zρ,`t ), the
population at generation k satisfies

Zρ,`k ≥ 1,

which implies that, for some v∗ ∈ Ls[ρ], it holds that

nU [ρ, v∗] ≥ n(e−`/c)k.

Now take s = c′ log n − θn` with c′ < c and θn ∈ [0, 1) such that s is a multiple
of `. Then

n(e−`/c)k = n(e−s/c) = n(n−c
′/ce−θn`/c) = n1−c′/ce−θn`/c

≥ c′ log n− θn`+ 1 = s+ 1, (6.3.12)

for all n large enough, where we used that 1 − c′/c > 0, θn ∈ [0, 1) and ` is
fixed. So, using the characterization of the height in (6.3.2) and (6.3.3) together
with inequality (6.3.11), we derive

Sv∗ ≥ nU [ρ, v∗]− s ≥ n(e−`/c)k − s ≥ 1. (6.3.13)

That is, Hn ≥ c′ log n− θn`.

But this is not quite what we want: this last claim holds only conditioned on
survival; or put differently, it holds with probability 1 − η, a value which could
be significantly smaller than 1 in general. To handle this last issue, we consider a
large number of independent copies of the Galton-Watson process above in order
to “boost” the probability that at least one of them survives to a value arbitrarily
close to 1.

Claim 6.3.6. For any δ > 0, there is a J so that Hn ≥ c′ log n − θn` + J` with
probability at least 1− δ for all n large enough.

Proof. Let J` be a multiple of ` and let

u∗1, . . . , u
∗
2J`
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be the vertices on level J` from left to right. Each process(
Z
u∗i ,`
t

)
t≥0

, i = 1, . . . , 2J`,

is an independent copy of (Zρ,`t )t≥0.
We define two “bad events”:

- (No survival) Let B1 be the event that all (Z
u∗i ,`
t )s go extinct and choose J

large enough that this event has probability < δ/2, that is,

P[B1] = η2J` < δ/2.

Under Bc1, at least one of the branching processes survives; let I be the lowest
index among them.

- (Fast decay at the top) To bound the height, we also need to control the effect
of the first J` levels on the subtree sizes. Let B2 be the event that at least
one of the W -values associated with the 2J`− 1 vertices ancestral to the u∗i s
is outside the interval (α, 1− α). Choose α small enough that this event has
probability < δ/2, that is,

P[B2] ≤ (2α)(2J` − 1) < δ/2.

Under Bc2, we have almost surely the lower bound

U [ρ, u∗I ] ≥ αJ`, (6.3.14)

since it in fact holds for all u∗i s simultaneously.

We are now ready to conclude. Assume Bc1 and Bc2 hold. Taking

s = k` = c′ log n− θn`,

as before, we have Zu
∗
I ,`

k ≥ 1 so there is v∗ ∈ Ls[u∗I ] such that

nU [ρ, v∗] = nU [ρ, u∗I ]U [u∗I , v
∗] ≥ nαJ`(e−`/c)k,

where we used (6.3.14). Observe that (6.3.12) remains valid (for potentially larger
n) even after multiplying all expressions on the left-hand side of the inequality by
αJ`. Arguing as in (6.3.13), we get that Hn ≥ c′ log n − θn` + J`. This event
holds with probability at least

P[(B1 ∪ B2)c] = 1− P[B1]− P[B2] ≥ 1− δ.

We have proved the claim.



CHAPTER 6. BRANCHING PROCESSES 451

For any ε > 0, we can choose c′ = γ − ε and c′ < c < γ. Further, δ can
be made arbitrarily small (provided n is large enough). Put differently, we have
proved that for any ε > 0

P [Hn/ log n ≥ γ − ε]→ 1,

as n→ +∞, which establishes the other direction of Claim 6.3.1.

6.3.2 . Data science: the reconstruction problem, the Kesten-Stigum
bound and a phase transition in phylogenetics

In this section, we explore an application of multitype branching processes in sta-
tistical phylogenetics, the reconstruction of evolutionary trees from molecular data.
Informally, we consider a ferromagnetic Ising model (Example 1.2.5) on an infi-
nite binary tree and we ask: when do the states at level h “remember” the state
at the root? We establish the existence of a phase transition. Before defining the
problem formally and explaining its connection to evolutionary biology, we de-
scribe an equivalent definition of the model. This alternative “Markov chain on a
tree” perspective will make it easier to derive recursions for quantities of interest.
Equivalence between the two models is proved in Exercise 6.16.

The reconstruction problem

Consider a rooted infinite binary tree T = T̂2, where the root is denoted by 0. Fix
a parameter 0 < p < 1/2, which we will refer to as the mutation probability for

mutation

probability
reasons that will be explained below. We assign a state σv in C = {+1,−1} to
each vertex v as follows. At the root 0, the state σ0 is picked uniformly at random
in {+1,−1}. Moving away from the root, the state σv at a vertex v, conditioned
on the state at its immediate ancestor u, is equal to σu with probability 1 − p and
to −σu with probability p. In the computational biology literature, this model is
referred to as the Cavender-Farris-Neyman (CFN) model.

CFN model
For h ≥ 0, let Lh be the set of vertices in T at graph distance h from the

root. We denote by σh = (σ`)`∈Lh the vector of states at level h and we denote
by µh the distribution of σh. The reconstruction problem consists in trying to

reconstruction

problem
“guess” the state at the root σ0 given the states σh at level h. We first note that
in general we cannot expect an arbitrarily good estimator. Indeed, rewriting the
Markov transition matrix along the edges (i.e., the matrix encoding the probability
of the state at a vertex given the state at its immediate ancestor) in its random
cluster form

P :=

(
1− p p
p 1− p

)
= (1− 2p)

(
1 0
0 1

)
+ (2p)

(
1/2 1/2
1/2 1/2

)
, (6.3.15)
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we see that the states σ1 at the first level are completely randomized (i.e., indepen-
dent of σ0) with probability (2p)2—in which case we cannot hope to reconstruct
the root state better than a coin flip. Intuitively the reconstruction problem is solv-
able if we can find an estimator of the root state which outperforms a random coin
flip as h grows to +∞. Let µ+

h be the distribution µh conditioned on the root state
σ0 being +1, and similarly for µ−h . Observe that µh = 1

2µ
+
h + 1

2µ
−
h . Recall also

that
‖µ+

h − µ
−
h ‖TV =

1

2

∑
sh∈{+1,−1}2h

|µ+
h (sh)− µ−h (sh)|.

Definition 6.3.7 (Reconstruction solvability). We say that the reconstruction prob-
lem for 0 < p < 1/2 is solvable if

reconstruction

solvabilitylim inf
h→+∞

‖µ+
h − µ

−
h ‖TV > 0,

otherwise the problem is unsolvable.

(Exercise 6.17 asks for a proof that ‖µ+
h − µ

−
h ‖TV is monotone in h and therefore

has a limit.)
To see the connection with the description above, consider an arbitrary root

estimator σ̂0(sh). Then the probability of a mistake is

P[σ̂0(σh) 6= σ0] =
1

2

∑
sh∈{+1,−1}2h

µ−h (sh)1{σ̂0(sh) = +1}

+
1

2

∑
sh∈{+1,−1}2h

µ+
h (sh)1{σ̂0(sh) = −1}.

This expression is minimized by choosing for each sh separately

σ̂0(sh) =

{
+1 if µ+

h (sh) ≥ µ−h (sh),
−1 otherwise.

Let µh(s0|sh) be the posterior probability of the root state, that is, the conditional
probability of the root state s0 given the states sh at level h. By Bayes’ rule,

µh(+1|sh) =
(1/2)µ+

h (sh)

µh(sh)
,

and similarly for µh(+1|sh). Hence the choice above is equivalent to

σ̂0(sh) =

{
+1 if µh(+1|sh) ≥ µh(−|sh),
−1 otherwise.
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which is known as the maximum a posteriori (MAP) estimator. (We encountered
MAP estimator

it in a different context in Section 5.1.4.) For short, we will denote it by σ̂MAP
0 .

Now note that

P[σ̂MAP
0 (σh) = σ0]− P[σ̂MAP

0 (σh) 6= σ0]

=
1

2

∑
sh∈{+1,−1}2h

µ+
h (sh) [1{σ̂MAP

0 (sh) = +1} − 1{σ̂MAP
0 (sh) = −1}]

+
1

2

∑
sh∈{+1,−1}2h

µ−h (sh) [1{σ̂MAP
0 (sh) = −1} − 1{σ̂MAP

0 (sh) = +1}]

=
1

2

∑
sh∈{+1,−1}2h

µ+
h (sh) σ̂MAP

0 (sh)

− 1

2

∑
sh∈{+1,−1}2h

µ−h (sh) σ̂MAP
0 (sh)

=
1

2

∑
sh∈{+1,−1}2h

|µ+
h (sh)− µ−h (sh)|

= ‖µ+
h − µ

−
h ‖TV,

where the third equality comes from

|a− b| = (a− b)1{a ≥ b}+ (b− a)1{a < b}.

Since P[σ̂0(σh) = σ0] + P[σ̂0(σh) 6= σ0] = 1, the display above can be rewritten
as

P[σ̂MAP
0 (σh) 6= σ0] =

1

2
− 1

2
‖µ+

h − µ
−
h ‖TV.

Given that σ̂MAP
0 was chosen to minimize the error probability, we also have that

for any root estimator σ̂0

P[σ̂0(σh) 6= σ0] ≥ 1

2
− 1

2
‖µ+

h − µ
−
h ‖TV.

Since this last inequality also applies to the estimator −σ̂0, we have also that

P[σ̂0(σh) 6= σ0] ≤ 1

2
.

The next lemma summarizes the discussion above.

Lemma 6.3.8 (Probability of erroneous reconstruction). The probability of an er-
roneous root reconstruction behaves as follows.
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(i) If the reconstruction problem is solvable, then

lim
h→+∞

P[σ̂MAP
0 (σh) 6= σ0] <

1

2
.

(ii) If the reconstruction problem is unsolvable, then for any root estimator σ̂0

lim
h→+∞

P[σ̂0(σh) 6= σ0] =
1

2
.

It turns out that the accuracy of the MAP estimator undergoes a phase transition
at a critical mutation probability p∗. Our main theorem is the following.

Theorem 6.3.9 (Solvability). Let θ∗ be the unique positive solution to

2θ2
∗ = 1,

and set p∗ = 1−θ∗
2 . Then the reconstruction problem is:

(i) solvable if 0 < p < p∗;

(ii) unsolvable if p∗ ≤ p < 1/2.

We will prove this theorem in the rest of the section.
But first, what does all of this have to do with evolutionary biology? Trun-

cate T at level h to obtain a finite tree Th with leaf set Lh. In phylogenetics, one
uses such a tree to depict evolutionary relationships between extant species that are
represented by its leaves. Each internal branching corresponds to a past specia-
tion event. Extinctions have been pruned from the tree. The genomes of ancestral
species, starting from the most recent common ancestor at the root, are posited to
have evolved along the (deterministic) tree Th according to a random process of
single-site substitutions. To simplify, each position in the genome is assumed to
take one of two values, +1 or−1, and it evolves independently from all other posi-
tions under a CFN model on Th. That is, on each edge of the tree a mutation occurs
with probability p, changing the state of the immediate descendant species at that
position. This is of course only a toy model, but it is not far from what evolution-
ary biologists actually use in practice with great success. One practical problem
of interest is to reconstruct the genome of ancestors given access to contemporary
genomes. This is, in a nutshell, the reconstruction problem.
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Kesten-Stigum bound

The condition in Theorem 6.3.9 is referred to as the Kesten-Stigum bound. We
Kesten-Stigum

bound
explain why next. We showed in Lemma 6.3.8 that the MAP estimator has an error
probability bounded away from 1/2 if and only if the reconstruction problem is
solvable. Of course, other estimators may also achieve that same desirable out-
come. In fact, from the lemma, to establish reconstruction solvability it suffices to
exhibit one such “better-than-random” estimator. So, rather than analyzing σ̂MAP

0 ,
we look at a simpler estimator first and prove half of Theorem 6.3.9. The other half
will be proven below using different ideas.

The key is to notice that a multitype branching process (see Section 6.1.4) hides
in the background. For h ≥ 0, consider the random row vector Zh = (Zh,+, Zh,−)
where the first component records the number of +1 states (which we refer to as
belonging to the + type) in σh and, likewise, the second component counts the
−1 states (referred to as of − type). Then (Zh)h≥0 is a two-type Galton-Watson
process where each individual has exactly two children. Their types depend on the
type of the parent. A type + individual has the following offspring distribution:

p
(+)
k =


(1− p)2 if k = (2, 0),
2p(1− p) if k = (1, 1),
p2 if k = (0, 2),
0 otherwise.

Similar expressions hold for p(−)
k . The mean matrix is given by

M =

(
2(1− p)2 + 2p(1− p) 2p(1− p) + 2p2

2p(1− p) + 2p2 2(1− p)2 + 2p(1− p)

)
= 2

(
(1− p)(1− p+ p) p(1− p+ p)
p(1− p+ p) (1− p)(1− p+ p)

)
= 2

(
1− p p
p 1− p

)
= 2P,

where (not coincidentally) we have already encountered the matrix P in (6.3.15).
As a symmetric matrix, by the spectral theorem (Theorem 5.1.1), P has a real
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eigenvector decomposition

P =

(
1− p p
p 1− p

)
=

(
1/2 1/2
1/2 1/2

)
+ (1− 2p)

(
1/2 −1/2
−1/2 1/2

)
= λ1x1x

T
1 + λ2x2x

T
2 ,

where the eigenvalues and eigenvectors are

λ1 = 1, λ2 = 1− 2p, x1 =

(
1/
√

2

1/
√

2

)
x2 =

(
1/
√

2

−1/
√

2

)
.

The eigenvalues of M are twice those of P while the eigenvectors are the same.
In particular, using the notation and convention of the Perron-Frobenius Theorem
(Theorem 6.1.17), we have

ρ = 2, w =

(
1/2
1/2

)
.

These should not come entirely as a surprise. In particular, recall from Theo-
rem 6.1.18 that ρ can be interpreted as an “overall rate of growth” of the popu-
lation, which here is two since each individual has exactly two children (ignoring
the types).

Let u = (1,−1) be a column vector proportional to the second right eigenvec-
tor of M . We know from Section 6.1.4 that

Uh = (2λ2)−hZhu =
1

2hθh

∑
`∈Lh

σ`, h ≥ 0,

is a martingale, where we used the notation

θ := λ2 = 1− 2p.

Upon looking more closely, the quantity Uh has a natural interpretation: its sign is
the majority estimator, that is, sgn(Uh) = +1 if a majority of individuals at level h

majority

estimator
are of type + (breaking ties in favor of +), and is −1 otherwise. We indicated pre-
viously that we only need to find one estimator with an error probability bounded
away from 1/2 to establish reconstruction solvability for a given value of p. The
majority estimator

σ̂Maj
0 := sgn(Uh),
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is an obvious one to try. What is less obvious is that it works—all the way to the
threshold. This essentially follows from the results of Section 6.1.4, as we detail
next.

We begin with an informal discussion. When can σ̂Maj
0 be expected to work?

We will not in fact bound the error probability of σ̂Maj
0 , but instead analyze directly

the properties of (Uh). By our modeling assumptions, Z0 is either (1, 0) or (0, 1)
with equal probability. Hence, by the martingale property, we obtain that

E[Uh |Z0] = Z0u = σ0. (6.3.16)

In words, Uh is “centered” around the root state. Intuitively, its second moment
therefore captures how informative it is about σ0. Lemma 6.1.20 exhibits a phase
transition for E[U2

h |Z0]. The condition for that lemma to hold is

(Var[X(+)(1, 1)u],Var[X(−)(1, 1)u]) 6= 0,

where X(+)(1, 1) ∼ {p(+)
k } and X(−)(1, 1) ∼ {p(−)

k }. This is indeed satisfied.
The lemma then states that E[U2

h |Z0] is uniformly bounded if and only if ρ <
(2λ2)2, or after rearranging

2θ2 > 1. (6.3.17)

Note that this is the condition in Theorem 6.3.9. It arises as a tradeoff between
the rate of growth ρ = 2 and the second largest eigenvalue λ2 = θ of the Markov
transition matrix P . One way to make sense of it is to observe the following:

- On any infinite path out of the root, the process performs a finite Markov
chain with transition matrix P . We know from Theorem 5.2.14 (see in partic-
ular Example 5.2.8) that the chain mixes—and therefore “forgets” its starting
state σ0—at a rate governed by the spectral gap 1− λ2.

- On the other hand, the tree itself is growing at rate ρ = 2, which produces
an exponentially large number of (overlapping) paths out of the root. That
growth helps preserve the information about σ0 down the tree through the
duplication of the state (with mutation) at each branching.

- The condition ρ < (2λ2)2 says in essence that when mixing is slow enough—
corresponding to larger values of λ2—compared to the growth, then the re-
construction problem is solvable. Lemma 6.1.20 was first proved by Kesten
and Stigum, and (6.3.17) is thereby known as the Kesten-Stigum bound.

It remains to turn these observations into a formal proof.
Denote by E+ the expectation conditioned on σ0 = +1, and similarly for E−.

The following lemma is a consequence of (6.3.16). We give a quick alternative
proof.
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Lemma 6.3.10 (Unbiasedness of Uh). We have

E+[Uh] = +1, E−[Uh] = −1.

Proof. By applying the Markov transition matrix P on the first level and using the
symmetries of the model, for any ` ∈ Lh and `′ ∈ Lh−1, we have

E+[σ`] = (1− p)E+[σ`′ ] + pE−[σ`′ ]

= (1− p)E+[σ`′ ] + pE+[−σ`′ ]
= (1− 2p)E+[σ`′ ]

= θE+[σ`′ ].

Iterating, we get E+[σ`] = θh. The claim follows by linearity of expectation.

Although we do not strictly need it, we also derive an explicit formula for the
variance. The proof is typical of how conditional independence properties of this
kind of Markov model on trees can be used to derive recursions for quantities of
interest.

Lemma 6.3.11 (Variance of Uh). We have

Var[Uh]→

{
1/2

1−(2θ2)−1 if 2θ2 > 1,

+∞, otherwise.

Proof. By the conditional variance formula

Var[Uh] = Var[E[Uh |σ0]] + E[Var[Uh |σ0]]

= Var[σ0] + E[Var[Uh |σ0]]

= 1 + Var+[Uh], (6.3.18)

where the last line follows from symmetry, with Var+ indicating the conditional
variance given that the root state σ0 is +1. Write Uh = U̇h + Üh as a sum over the
left and right subtrees below the root respectively. Using the conditional indepen-
dence of those two subtrees given the root state, we get from (6.3.18) that

Var[Uh] = 1 + Var+[Uh]

= 1 + Var+
[
U̇h + Üh

]
= 1 + 2Var+

[
U̇h

]
= 1 + 2

(
E+
[
U̇2
h

]
− E+

[
U̇h

]2
)
. (6.3.19)
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We now use the Markov transition matrix on the first level to derive a recursion
in h. Let σ̇0 be the state at the left child of the root. We use the fact that the random
variables 2θU̇h conditioned on σ̇0 = +1 and Uh−1 conditioned on σ0 = +1 are
identically distributed. Using E+[U̇h] = 1/2 (by Lemma 6.3.10 and symmetry),
we get from (6.3.19) that

Var[Uh] = 1− 2E+
[
U̇h

]2
+ 2E+

[
U̇2
h

]
= 1− 2(1/2)2 + 2

[
(1− p)E+

[
(2θ)−2U2

h−1

]
+ pE−

[
(2θ)−2U2

h−1

]]
= 1/2 + (2θ2)−1E+[U2

h−1]

= 1/2 + (2θ2)−1Var[Uh−1], (6.3.20)

where we used that

Var[Uh−1] = E[U2
h−1] = E+[U2

h−1] = E−[U2
h−1],

by symmetry and the fact that E[Uh−1] = 0. Solving the affine recursion (6.3.20)
gives

Var[Uh] = (2θ2)−h + (1/2)

h−1∑
i=0

(2θ2)−i,

where we used that Var[U0] = Var[σ0] = 1. The result follows.

We can now prove the first part of Theorem 6.3.9.

Proof of Theorem 6.3.9 (i). Let µ̄h be the distribution of Uh and define µ̄+
h and µ̄−h

similarly. We give a bound on ‖µ+
h − µ

−
h ‖TV through a bound on ‖µ̄+

h − µ̄
−
h ‖TV.

Let s̄h be the Uh-value associated to sh = (sh,`)`∈Lh ∈ {+1,−1}2h , that is,

s̄h =
1

2hθh

∑
`∈Lh

sh,`.

Then, by marginalizing and the triangle inequality,

∑
z

|µ̄+
h (z)− µ̄−h (z)| =

∑
z

∣∣∣∣∣ ∑
sh:s̄h=z

(µ+
h (sh)− µ−h (sh))

∣∣∣∣∣
≤

∑
z

∑
sh:s̄h=z

|µ+
h (sh)− µ−h (sh)|

=
∑

sh∈{+1,−1}2h
|µ+
h (sh)− µ−h (sh)|,
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where the first sum is over the support of µ̄h. So it suffices to bound from below
the left-hand side on the first line.

For that purpose, we apply Cauchy-Schwarz and use the variance bound in
Lemma 6.3.11. First note that 1

2 µ̄
+
h + 1

2 µ̄
−
h = µ̄h so that, by the triangle inequality,

|µ̄+
h (z)− µ̄−h (z)|

2µ̄h(z)
≤
µ̄+
h (z) + µ̄−h (z)

2µ̄h(z)
= 1. (6.3.21)

Hence, we get

∑
z

|µ̄+
h (z)− µ̄−h (z)| =

∑
z

|µ̄+
h (z)− µ̄−h (z)|

2µ̄h(z)
2µ̄h(z)

≥ 2
∑
z

(
µ̄+
h (z)− µ̄−h (z)

2µ̄h(z)

)2

µ̄h(z)

≥ 2

(∑
z z
(
µ̄+
h (z)−µ̄−h (z)

2µ̄h(z)

)
µ̄h(z)

)2

∑
z z

2µ̄h(z)

≥ 1

2

(∑
z z
(
µ̄+
h (z)− µ̄−h (z)

))2∑
z z

2µ̄h(z)

=
1

2

(E+[Uh]− E−[Uh])2

Var[Uh]

≥ 4(1− (2θ2)−1) > 0,

where we used (6.3.21) on the second line, Cauchy-Schwarz on the third line (after
rearranging), and Lemmas 6.3.10 and 6.3.11 on the last line.

Remark 6.3.12. The proof above and a correlation inequality of [EKPS00, Theorem 1.4]
give a lower bound on the probability of reconstruction of the majority estimator.

Impossibility of reconstruction

The previous result was based on showing that majority voting, that is, σ̂Maj
0 , pro-

duces a good root-state estimator—up to p = p∗. Here we establish that this result
is best possible. Majority is not in fact the best root-state estimator: in general its
error probability can be higher than σ̂MAP

0 as the latter also takes into account the
configuration of the states at level h. However, perhaps surprisingly, it turns out
that the critical threshold for σ̂Maj

0 coincides with that of σ̂MAP
0 in the CFN model.

To prove the second part of Theorem 6.3.9 we analyze the MAP estimator.
Recall that µh(s0|sh) is the conditional probability of the root state s0 given the
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states sh at level h. It will be more convenient to work with the following “root
magnetization”

Rh := µh(+1|σh)− µh(−1|σh),

which, as a function of σh, is a random variable. Note that E[Rh] = 0 by symme-
try. By Bayes’ rule and the fact that µh(+1|σh) + µh(−1|σh) = 1, we have the
following alternative formulas which will prove useful

Rh =
1

2µh(σh)
[µ+
h (σh)− µ−h (σh)], (6.3.22)

Rh = 2µh(+1|σh)− 1 =
µ+
h (σh)

µh(σh)
− 1, (6.3.23)

Rh = 1− 2µh(−1|σh) = 1−
µ−h (σh)

µh(σh)
. (6.3.24)

It turns out to be enough to prove an upper bound on the variance of Rh.

Lemma 6.3.13 (Second moment bound). It holds that

‖µ+
h − µ

−
h ‖TV ≤

√
E[R2

h].

Proof. By (6.3.22),

1

2

∑
sh∈{+1,−1}2h

|µ+
h (sh)− µ−h (sh)|

=
∑

sh∈{+1,−1}2h
µh(sh) |µh(+1|sh)− µh(−1|sh)|

= E|Rh|

≤
√
E[R2

h],

where we used Cauchy-Schwarz on the last line.

Let z̄h = E[R2
h]. In view of Lemma 6.3.13, the proof of Theorem 6.3.9 (ii) will

follow from establishing the limit

lim
h→+∞

z̄h = 0.

We apply the same kind of recursive argument we used for the analysis of majority
(see in particular Lemma 6.3.11): we condition on the root to exploit conditional
independence; we use the Markov transition matrix on the top edges.

We first derive a recursion for Rh itself—as a random variable. We proceed in
two steps:
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- Step 1: we break up the first h levels of the tree into two identical (h − 1)-
level trees with an additional edge at their respective root through conditional
independence;

- Step 2: we account for that edge through the Markov transition matrix.

We will need some notation. Let σ̇h be the states at level h (from the root) below
the left child of the root and let µ̇h be the distribution of σ̇h (and use a superscript
+ to denote the conditional probability given the root is +, and so on). Define

Ẏh = µ̇h(+1|σ̇h)− µ̇h(−1|σ̇h),

where µ̇h(s0|ṡh) is the conditional probability that the root is s0 given that σ̇h =
ṡh. Similarly, denote with a double dot the same quantities with respect to the
subtree below the right child of the root. Expressions similar to (6.3.22), (6.3.23)
and (6.3.24) also hold.

Lemma 6.3.14 (Recursion: Step 1). It holds almost surely that

Rh =
Ẏh + Ÿh

1 + ẎhŸh
.

Proof. Using µ+
h (sh) = µ̇+

h (ṡh)µ̈+
h (s̈h) by conditional independence, (6.3.22) ap-

plied to Rh, and (6.3.23) and (6.3.24) applied to Ẏh and Ÿh, we get

Rh =
1

2

∑
γ=+,−

γ
µγh(σh)

µh(σh)

=
1

2

µ̇h(σ̇h)µ̈h(σ̈h)

µh(σh)

∑
γ=+,−

γ
µ̇γh(σ̇h)µ̈γh(σ̈h)

µ̇h(σ̇h)µ̈h(σ̈h)

=
1

2

µ̇h(σ̇h)µ̈h(σ̈h)

µh(σh)

∑
γ=+,−

γ
(

1 + γẎh

)(
1 + γŸh

)
=

µ̇h(σ̇h)µ̈h(σ̈h)

µh(σh)
(Ẏh + Ÿh).
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The factor in front can be computed as follows

µh(σh)

µ̇h(σ̇h)µ̈h(σ̈h)
=

∑
γ=+,−

1

2

µγh(σh)

µ̇h(σ̇h)µ̈h(σ̈h)

=
∑

γ=+,−

1

2

µ̇γh(σ̇h)µ̈γh(σ̈h)

µ̇h(σ̇h)µ̈h(σ̈h)

=
1

2

∑
γ=+,−

(
1 + γẎh

)(
1 + γŸh

)
= 1 + ẎhŸh.

That proves the claim.

For the second step of the recursion, we define

Ḋh = ν̇h(+1|σ̇h)− ν̇h(−1|σ̇h),

where ν̇h(ṡ0|ṡh) is the conditional probability that the left child of the root is ṡ0

given that the states at level h (from the root) below the left child are σ̇h = ṡh;
and similarly for the right child of the root. Again expressions similar to (6.3.22),
(6.3.23) and (6.3.24) hold. The following lemma is left as an exercise (see Exer-
cise 6.18).

Lemma 6.3.15 (Recursion: Step 2). It holds almost surely that

Ẏh = θḊh.

We are now ready to prove the second half of our main theorem.

Proof of Theorem 6.3.9 (ii). Putting Lemmas 6.3.14 and 6.3.15 together, we get

Rh =
θ(Ḋh + D̈h)

1 + θ2ḊhD̈h

. (6.3.25)

We now take expectations. Recall that we seek to compute the second moment of
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Rh. However an important simplification arises from the following observation

E+[Rh] =
∑

sh∈{+1,−1}2h
µ+
h (sh)Rh(sh)

=
∑

sh∈{+1,−1}2h
µh(sh)

µ+
h (sh)

µh(sh)
Rh(sh)

=
∑

sh∈{+1,−1}2h
µh(sh)(1 +Rh(sh))Rh(sh)

= E[(1 +Rh)Rh]

= E[R2
h],

where we used (6.3.23) on the third line and E[Rh] = 0 on the fifth line. So it
suffices to compute the conditional first moment.

Using the expansion

1

1 + r
= 1− r +

r2

1 + r
,

with r = θ2ḊhD̈h, we have by (6.3.25) that

Rh = θ(Ḋh + D̈h)− θ3(Ḋh + D̈h)ḊhD̈h + θ4Ḋ2
hD̈

2
hRh

≤ θ(Ḋh + D̈h)− θ3(Ḋh + D̈h)ḊhD̈h + θ4Ḋ2
hD̈

2
h, (6.3.26)

where we used |Rh| ≤ 1.
We will need the conditional first and second moments of Ḋh. For the first

moment, note that by symmetry (more precisely, by the fact that Rh−1 conditioned
on σ0 = −1 is equal in distribution to −Rh−1 conditioned on σ0 = +1)

E+[Ḋh] = (1− p)E+[Rh−1] + pE−[Rh−1]

= (1− p)E+[Rh−1] + pE+[−Rh−1]

= (1− 2p)E+[Rh−1]

= θE+[Rh−1].

Similarly, for the second moment, we have

E+[Ḋ2
h] = (1− p)E+[R2

h−1] + pE−[R2
h−1]

= E[R2
h−1]

= E+[Rh−1],
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where we used that E+[R2
h−1] = E−[R2

h−1] by symmetry so that E[R2
h−1] =

(1/2)E+[R2
h−1] + (1/2)E−[R2

h−1] = E+[R2
h−1].

Taking expectations in (6.3.26), using conditional independence, and plugging
in the formulas for E+[Ḋh] and E+[Ḋ2

h] above, we obtain

z̄h = E+[Rh]

≤ θ(E+[Ḋh] + E+[D̈h])− θ3(E+[Ḋ2
h]E+[D̈h] + E+[D̈2

h]E+[Ḋh])

+θ4E+[Ḋ2
h]E+[D̈2

h]

= 2θ2E+[Rh−1]− 2θ4E+[Rh−1]2 + θ4E+[Rh−1]2

= 2θ2z̄h−1 − θ4z̄2
h−1. (6.3.27)

We analyze this recursion next. At h = 0, we have z̄0 = E+[R0] = 1.

- When 2θ2 < 1, the sequence z̄h decreases to 0 exponentially fast

z̄h ≤ (2θ2)h, h ≥ 0.

- When 2θ2 = 1 on the other hand, convergence to 0 occurs at a slower rate.
We show by induction that

z̄h ≤
4

h
, h ≥ 0.

Note that z̄1 ≤ z̄0 − θ4z̄2
0 = 3/4 ≤ 4 since θ4 = 1/4, which proves the base

case. Assuming the bound holds for h− 1, we have from (6.3.27) that

z̄h ≤ z̄h−1 −
1

4
z̄2
h−1

≤ 4

h− 1
− 4

(h− 1)2

= 4
h− 2

(h− 1)2

≤ 4

h
,

where the last line follows from checking that h(h− 2) ≤ (h− 1)2.

Since
lim

h→+∞
z̄h = 0,

the claim follows from Lemma 6.3.13.

Remark 6.3.16. While Theorem 6.3.9 part (i) can be generalized beyond the CFN model
(see, e.g., [MP03]), part (ii) cannot. A striking construction of [Mos01] shows that, under
more general models, certain root-state estimators taking into account the configuration
of the states at level h can “beat” the Kesten-Stigum bound.
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6.4 . Finale: the phase transition of the Erdős-Rényi model

A compelling way to view an Erdős-Rényi random graph—as its density varies—
is the following coupling or “evolution.” For each pair {i, j}, let U{i,j} be in-
dependent uniform random variables in [0, 1] and set G(p) := ([n], E(p)) where
{i, j} ∈ E(p) if and only if U{i,j} ≤ p. Then G(p) is distributed according toGn,p.
As p varies from 0 to 1, we start with an empty graph and progressively add edges
until the complete graph is obtained.

We showed in Section 2.3.2 that logn
n is a threshold function for connectivity.

Before connectivity occurs in the evolution of the random graph, a quantity of
interest is the size of the largest connected component. As we show in the current
section, this quantity itself undergoes a remarkable phase transition: when p =
λ
n with λ < 1, the largest component has size Θ(log n); as λ crosses 1, many
components quickly merge to form a so-called “giant component” of size Θ(n).

This celebrated result is often referred to as “the” phase transition of the Erdős-
Rényi graph model. Although the proof is quite long, it is well worth studying in
details. It employs most tools we have seen up to this point: first and second
moment methods, Chernoff-Cramér bounds, martingale techniques, coupling and
stochastic domination, and branching processes. It is quintessential discrete prob-
ability.

6.4.1 Statement and proof sketch

Before stating the main theorems, we recall a basic result from Chapter 2.

- (Poisson tail) Let Sn be a sum of n i.i.d. Poi(λ) variables. Recall from (2.4.10)
and (2.4.11) that for a > λ

− 1

n
logP[Sn ≥ an] ≥ a log

(a
λ

)
− a+ λ =: IPoi

λ (a), (6.4.1)

and similarly for a < λ

− 1

n
logP[Sn ≤ an] ≥ IPoi

λ (a). (6.4.2)

To simplify the notation, we let

Iλ := IPoi
λ (1) = λ− 1− log λ ≥ 0, (6.4.3)

where the inequality follows from the convexity of Iλ and the fact that it
attains its minimum at λ = 1 where it is 0.
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We let p = λ
n and denote by Cmax a largest connected component. In the subcritical

case, that is, when λ < 1, we show that the largest connected component has
logarithmic size in n.

Theorem 6.4.1 (Subcritical case: upper bound on the largest cluster). Let Gn ∼
Gn,pn where pn = λ

n with λ ∈ (0, 1). For all κ > 0,

Pn,pn
[
|Cmax| ≥ (1 + κ)I−1

λ log n
]

= o(1),

where Iλ is defined in (6.4.3).

We also give a matching logarithmic lower bound on the size of Cmax in Theo-
rem 6.4.11.

In the supercritical case, that is, when λ > 1, we prove the existence of a
unique connected component of size linear in n, which is referred to as the giant
component.

giant

componentTheorem 6.4.2 (Supercritical regime: giant component). Let Gn ∼ Gn,pn where
pn = λ

n with λ > 1. For any γ ∈ (1/2, 1) and δ < 2γ − 1,

Pn,pn [||Cmax| − ζλn| ≥ nγ ] = O(n−δ),

where ζλ be the unique solution in (0, 1) to the fixed point equation

1− e−λζ = ζ.

In fact, with probability 1 − O(n−δ), there is a unique largest component and the
second largest connected component has size O(log n).

See Figure 6.4 for an illustration.
At a high level, the proof goes as follows:

- (Subcritical regime) In the subcritical case, we use an exploration process
and a domination argument to approximate the size of the connected compo-
nents with the progeny of a branching process. The result then follows from
the hitting-time theorem and the Poisson tail.

- (Supercritical regime) In the supercritical case, a similar argument gives a
bound on the expected size of the giant component, which is related to the
survival of the branching process. Chebyshev’s inequality gives concentra-
tion. The hard part there is to bound the variance.



CHAPTER 6. BRANCHING PROCESSES 468

Figure 6.4: Illustration of the phase transition.

6.4.2 Bounding cluster size: domination by branching processes

For a vertex v ∈ [n], let Cv be the connected component containing v, which we
also refer to as the cluster of v. To analyze the size of Cv, we use the exploration

cluster
process introduced in Section 6.2.1 and show that it is dominated above and below
by branching processes.

Exploration process

Recall that the exploration process started at v has 3 types of vertices: the active
vertices At, the explored vertices Et, and the neutral vertices Nt. We start with
A0 := {v}, E0 := ∅, and N0 contains all other vertices in Gn. We imagine re-
vealing the edges of Gn as they are encountered in this process and we let (Ft) be
the corresponding filtration. In words, starting with v, the cluster of v is progres-
sively grown by adding to it at each time a vertex adjacent to one of the previously
explored vertices and uncovering its remaining neighbors in Gn.

Let as before At := |At|, Et := |Et|, and Nt := |Nt|, and

τ0 := inf{t ≥ 0 : At = 0} = |Cv|,
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where the rightmost equality is from Lemma 6.2.1. Recall that (Et) is non-decreasing
while (Nt) is non-increasing, and that the process is fixed for all t > τ0. Since
Et = t for all t ≤ τ0 (as exactly one vertex is explored at each time until the set of
active vertices is empty) and (At, Et,Nt) forms a partition of [n] for all t, we have

At + t+Nt = n, ∀t ≤ τ0. (6.4.4)

Hence, in tracking the size of the exploration process, we can work with At or Nt.
Moreover at t = τ0 we have

|Cv| = τ0 = n−Nτ0 . (6.4.5)

Similarly to the case of a Galton-Watson tree, the processes (At) and (Nt)
admit a simple recursive form. Conditioning on Ft−1:

- (Active vertices) If At−1 = 0, the exploration process has finished its course
and At = 0. Otherwise, (a) one active vertex becomes explored and (b) its
neutral neighbors become active vertices. That is,

At = At−1 + 1{At−1>0}
[
−1︸︷︷︸
(a)

+ Xt︸︷︷︸
(b)

]
, (6.4.6)

where Xt is binomial with parameters Nt−1 and pn. By (6.4.4), Nt−1 can be
written in terms of At−1 as Nt−1 = n − (t − 1) − At−1. For the coupling
arguments below, it will be useful to think of Xt as a sum of independent
Bernoulli variables. That is, let (It,j : t ≥ 1, j ≥ 1) be an array of inde-
pendent, identically distributed {0, 1}-variables with P[I1,1 = 1] = pn. We
write

Xt =

Nt−1∑
i=1

It,i. (6.4.7)

- (Neutral vertices) Similarly, if At−1 > 0, that is, Nt−1 < n − (t − 1), Xt

neutral vertices become active. That is,

Nt = Nt−1 − 1{Nt−1<n−(t−1)}Xt. (6.4.8)

Poisson branching process approximation

With these observations, we now relate the size of the cluster of v to the total
progeny of a Poisson branching process with an appropriately chosen offspring
mean. The intuition is simple: when pn = λ/n, the number of neighbors of a
vertex is well approximated by a Poisson distribution; therefore, exploration of the
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cluster of v is similar to that of the corresponding branching process. We will see
that this holds long enough to prove accurate results about the subcritical regime
(see Lemma 6.4.6). It will also be useful in the supercritical regime, but additional
arguments will be required there (see Lemmas 6.4.7 and 6.4.8).

Lemma 6.4.3 (Cluster size: Poisson branching process approximation). Let Gn ∼
Gn,pn where pn = λ

n with λ > 0 and let Cv be the connected component of v ∈ [n].
Let Wλ be the total progeny of a branching process with offspring distribution
Poi(λ). Then, for 1 ≤ kn = o(

√
n),

P[Wλ ≥ kn]−O
(
k2
n

n

)
≤ Pn,pn [|Cv| ≥ kn] ≤ P[Wλ ≥ kn].

From Example 6.2.7, we have an explicit formula for the distribution of Wλ.
Before proving the lemma, recall the following simple domination results from

Chapter 4:

- (Binomial domination) We have

n ≥ m =⇒ Bin(n, p) � Bin(m, p). (6.4.9)

The binomial distribution is also dominated by the Poisson distribution in
the following way:

λ ∈ (0, 1) =⇒ Poi(λ) � Bin

(
n− 1,

λ

n

)
. (6.4.10)

For the proofs, see Examples 4.2.4 and 4.2.8.

We use these domination results to relate the size of a connected component to the
progeny of a branching process.

Proof of Lemma 6.4.3. We start with the upper bound.

Upper bound: Because Nt−1 = n− (t−1)−At−1 ≤ n−1, conditioned on Ft−1,
the following stochastic domination relations hold

Bin

(
Nt−1,

λ

n

)
� Bin

(
n− 1,

λ

n

)
� Poi(λ),

by (6.4.9) and (6.4.10). Observe that the center and rightmost distributions do not
depend on Nt−1. Let (X�t ) be a sequence of independent Poi(λ).

Using the coupling in Example 4.2.8, we can couple the processes (It,j)j and
(X�t ) in such way that X�t ≥

∑n−1
j=1 It,j almost surely for all t. Then by induction

on t,
At ≤ A�t ,
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almost surely for all t, where we define (recalling (6.4.6))

A�t := A�t−1 + 1{A�t−1>0}
[
− 1 +X�t

]
, (6.4.11)

with A�0 := 1. In words, (A�t ) is the size of the active set of a Galton-Watson
branching process with offspring distribution Poi(λ), as defined in Section 6.2.1.

As a result, letting

Wλ = τ�0 := inf{t ≥ 0 : A�t = 0},

be the total progeny of this branching process, we immediately get

Pn,pn [|Cv| ≥ kn] = Pn,pn [τ0 ≥ kn] ≤ P[τ�0 ≥ kn] = P[Wλ ≥ kn].

Lower bound: In the other direction, we proceed in two steps. We first show that,
up to a certain time, the process is bounded from below by a branching process
with binomial offspring distribution. In a second step, we show that this binomial
branching process can be approximated by a Poisson branching process.

1. (Domination from below) Let A≺t be defined as (again recalling (6.4.6))

A≺t := A≺t−1 + 1{A≺t−1>0}
[
− 1 +X≺t

]
, (6.4.12)

with A≺0 := 1, where

X≺t :=

n−kn∑
i=1

It,j . (6.4.13)

Note that we use the same It,js as in the definition of Xt, that is, we cou-
ple the two processes. This time (A≺t ) is the size of the active set in the
exploration process of a Galton-Watson branching process with offspring
distribution Bin(n− kn, pn). Let

τ≺0 := inf{t ≥ 0 : A≺t = 0},

be the total progeny of this branching process. We prove the following rela-
tionship between τ0 and τ≺0 .

Lemma 6.4.4. We have

P[τ≺0 ≥ kn] ≤ Pn,pn [τ0 ≥ kn].
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Proof. We claim that At is bounded from below by A≺t up to the stopping
time

σn−kn := inf{t ≥ 0 : Nt ≤ n− kn},

which by convention is +∞ if the event is not reached (i.e., if the cluster is
“small”; see below). Indeed, N0 = n − 1 and for all t ≤ σn−kn , Nt−1 >
n− kn by definition. Hence, by the coupling (6.4.7) and (6.4.13), Xt ≥ X≺t
for all t ≤ σn−kn and as a result, by induction on t,

At ≥ A≺t , ∀t ≤ σn−kn ,

where we used the recursions (6.4.6) and (6.4.13).

Because the inequality between At and A≺t holds only up to time σn−kn ,
we cannot compare directly τ0 and τ≺0 . However, we will use the following
observation: the size of the cluster of v is at least the total number of active
and explored vertices at any time t. In particular, when σn−kn < +∞,

τ0 = |Cv| ≥ Aσn−kn + Eσn−kn = n−Nσn−kn ≥ kn.

On the other hand, when σn−kn = +∞, Nt > n−kn for all t—in particular
for t = τ0—and therefore |Cv| = τ0 = n −Nτ0 < kn by (6.4.5). Moreover
in that case, because At ≥ A≺t for all t ≤ σn−kn = +∞, it holds in addition
that τ≺0 ≤ τ0 < kn. To sum up, we have proved the implications

τ≺0 ≥ kn =⇒ σn−kn < +∞ =⇒ τ0 ≥ kn.

In particular, we have proved the lemma.

2. (Poisson approximation) Our next step is approximate the tail of τ≺0 by that
of τ�0 .

Lemma 6.4.5. We have

P[τ≺0 ≥ kn] = P[τ�0 ≥ kn] +O

(
k2
n

n

)
.

Proof. By Theorem 6.2.6,

P[τ≺0 = t] =
1

t
P

[
t∑
i=1

X≺i = t− 1

]
, (6.4.14)
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where the X≺i s are independent Bin(n− kn, pn). Note further that, because
the sum of independent binomials with the same success probability is bino-
mial,

t∑
i=1

X≺i ∼ Bin(t(n− kn), pn).

Recall on the other hand that (X�t ) is Poi(λ) and, because a sum of inde-
pendent Poisson is Poisson (see Exercise 6.7), we have

P[τ�0 = t] =
1

t
P

[
t∑
i=1

X�i = t− 1

]
, (6.4.15)

where
t∑
i=1

X�i ∼ Poi(tλ).

We use the Poisson approximation result in Theorem 4.1.18 to compare the
probabilities on the right-hand sides of (6.4.14) and (6.4.15). In fact, because
the Poisson approximation is in terms of the total variation distance—which
bounds any event—one might be tempted to apply it directly to the tails of τ≺0
and τ�0 by summing over t. However note that the factor of 1/t in (6.4.14)
and (6.4.15) prevents us from doing so.

Instead, we argue for each t separately and use that∣∣∣∣∣P
[

t∑
i=1

X≺i = t− 1

]
− P

[
t∑
i=1

X�i = t− 1

]∣∣∣∣∣
≤ ‖Bin(t(n− kn), pn)− Poi(tλ)‖TV ,

by the observations in the previous paragraph. Theorem 4.1.18 tells us that

‖Bin(t(n− kn), pn)− Poi (t(n− kn)[− log(1− pn)])‖TV

≤ 1

2
t(n− kn)[− log(1− pn)]2.

We must adjust the mean of the Poisson distribution. To do so, we argue as
in Example 4.1.12 to get

‖Poi (t(n− kn)[− log(1− pn)])− Poi (tλ)‖TV

≤ |tλ− t(n− kn)(− log(1− pn))| .
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Finally, recalling that pn = λ/n, combining the last three displays and using
the triangle inequality for the total variation distance,∣∣∣∣∣P

[
t∑
i=1

X≺i = t− 1

]
− P

[
t∑
i=1

X�i = t− 1

]∣∣∣∣∣
≤ 1

2
t(n− kn)[− log(1− pn)]2 + |tλ− t(n− kn)(− log(1− pn))|

≤ 1

2
tn

(
λ

n
+O

(
λ2

n2

))2

+

∣∣∣∣tλ− t(n− kn)

(
λ

n
+O

(
λ2

n2

))∣∣∣∣
= O

(
tkn
n

)
,

where we used that kn ≥ 1 and λ is fixed.

So, by (6.4.14) and (6.4.15), dividing by t and then summing over t < kn
gives

∣∣P[τ≺0 < kn]− P[τ�0 < kn]
∣∣ = O

(
k2
n

n

)
.

Rearranging proves the lemma.

Putting together Lemmas 6.4.4 and 6.4.5 gives

Pn,pn [|Cv| ≥ kn] = Pn,pn [τ0 ≥ kn]

≥ P[τ�0 ≥ kn]−O
(
k2
n

n

)
= P[Wλ ≥ kn]−O

(
k2
n

n

)
,

as claimed.

Subcritical regime: largest cluster

We are now ready to analyze the subcritical regime, that is, the case λ < 1.

Lemma 6.4.6 (Subcritical regime: upper bound on cluster size). Let Gn ∼ Gn,pn
where pn = λ

n with λ ∈ (0, 1) and let Cv be the connected component of v ∈ [n].
For all κ > 0,

Pn,pn
[
|Cv| ≥ (1 + κ)I−1

λ log n
]

= O(n−(1+κ)).
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Proof. We use the Poisson branching process approximation (Lemma 6.4.3). To
apply the lemma we need to bound the tail of the progeny Wλ of a Poisson branch-
ing process. Using the notation of Lemma 6.4.3, by Theorem 6.2.6,

P [Wλ ≥ kn] = P [Wλ = +∞] +
∑
t≥kn

1

t
P

[
t∑
i=1

X�i = t− 1

]
, (6.4.16)

where the X�i s are i.i.d. Poi(λ). Both terms on the right-hand side depend on
whether or not the mean λ is smaller or larger than 1. When λ < 1, the Poisson
branching process goes extinct with probability 1 by the extinction theory (Theo-
rem 6.1.6). Hence P[Wλ = +∞] = 0.

As to the second term, the sum of the X�i s is Poi(λt). Using the Poisson
tail (6.4.1) for λ < 1 and kn = ω(1),

∑
t≥kn

1

t
P

[
t∑
i=1

X�i = t− 1

]
≤

∑
t≥kn

P

[
t∑
i=1

X�i ≥ t− 1

]

≤
∑
t≥kn

exp

(
−tIPoi

λ

(
t− 1

t

))
≤

∑
t≥kn

exp
(
−t(Iλ −O(t−1))

)
≤

∑
t≥kn

C exp (−tIλ)

= O (exp (−Iλkn)) , (6.4.17)

for some constant C > 0.
Let c = (1 + κ)I−1

λ for κ > 0. By Lemma 6.4.3,

Pn,pn [|Cv| ≥ c log n] ≤ P [Wλ ≥ c log n] .

By (6.4.16) and (6.4.17),

P [Wλ ≥ c log n] = O (exp (−Iλc log n)) , (6.4.18)

which proves the claim.

As before, let Cmax be a largest connected component of Gn (choosing the
component containing the lowest label if there is more than one such component).
A union bound and the previous lemma immediately imply an upper bound on the
size of Cmax in the subcritical case.
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Proof of Theorem 6.4.1. Let again c = (1 + κ)I−1
λ for κ > 0. By a union bound

and symmetry,

Pn,pn [|Cmax| ≥ c log n] = Pn,pn [∃v, |Cv| > c log n]

≤ nPn,pn [|C1| ≥ c log n] . (6.4.19)

By Lemma 6.4.6,

Pn,pn [|Cmax| ≥ c log n] = O(n · n−(1+κ)) = O(n−κ)→ 0,

as n→ +∞.

In fact we prove below that the largest component is indeed of size roughly I−1
λ log n.

But first we turn to the supercritical regime.

Supercritical regime: two phases

Applying the Poisson branching process approximation in the supercritical regime
gives the following.

Lemma 6.4.7 (Supercritical regime: extinction). Let Gn ∼ Gn,pn where pn = λ
n

with λ > 1. and let Cv be the connected component of v ∈ [n]. Let ζλ be the unique
solution in (0, 1) to the fixed point equation

1− e−λζ = ζ.

For any κ > 0,

Pn,pn
[
|Cv| ≥ (1 + κ)I−1

λ log n
]

= ζλ +O

(
log2 n

n

)
.

Note the small—but critical difference—with Lemma 6.4.6: this time the branch-
ing process can survive. This happens with probability ζλ by extinction theory
(Theorem 6.1.6). In that case, we will need further arguments to nail down the
cluster size. Observe also that the result holds for a fixed vertex v—and therefore
does not yet tell us about the largest cluster. We come back to the latter in the next
subsection.

Proof of Lemma 6.4.7. We adapt the proof of Lemma 6.4.6, beginning with (6.4.16)
which recall states

P [Wλ ≥ kn] = P [Wλ = +∞] +
∑
t≥kn

1

t
P

[
t∑
i=1

X�i = t− 1

]
,
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where the X�i s are i.i.d. Poi(λ). When λ > 1, P[Wλ = +∞] = ζλ, where ζλ > 0
is the survival probability of the branching process by Example 6.1.10. As to the
second term, using (6.4.2) for λ > 1,

∑
t≥kn

1

t
P

[
t∑
i=1

X�i = t− 1

]
≤

∑
t≥kn

P

[
t∑
i=1

X�i ≤ t

]
≤

∑
t≥kn

exp (−tIλ)

≤ C exp (−Iλkn) , (6.4.20)

for a constant C > 0.
Now let c = (1 + κ)I−1

λ for κ > 0. By Lemma 6.4.3,

Pn,pn [|Cv| ≥ c log n] = P [Wλ ≥ c log n] +O

(
log2 n

n

)
. (6.4.21)

By (6.4.16) and (6.4.20),

P [Wλ ≥ c log n] = ζλ +O (exp (−cIλ log n))

= ζλ +O(n−(1+κ)). (6.4.22)

Combining (6.4.21) and (6.4.22), for any κ > 0,

Pn,pn [|Cv| ≥ c log n] = ζλ +O

(
log2 n

n

)
, (6.4.23)

as claimed.

Recall that the Poisson branching process approximation was based on the fact
that the degree of a vertex is well approximated by a Poisson distribution. When
the exploration process goes on for too long however (i.e., when kn is large), this
approximation is not as accurate because of a saturation effect: at each step of the
exploration, we uncover edges to the neutral vertices (which then become active);
and, because an Erdős-Rényi graph has a finite pool of vertices from which to
draw these edges, as the number of neutral vertices decreases so does the expected
number of uncovered edges. Instead we use the following lemma which explicitly
accounts for the dwindling size of Nt. Roughly speaking, we model the set of
neutral vertices as a process that discards a fraction pn of its current set at each
time step (i.e., those neutral vertices with an edge to the current explored vertex).
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Lemma 6.4.8. Let Gn ∼ Gn,pn where pn = λ
n with λ > 0 and let Cv be the

connected component of v ∈ [n]. Let Yt ∼ Bin(n − 1, 1 − (1 − pn)t). Then, for
any t,

Pn,pn [|Cv| = t] ≤ P[Yt = t− 1].

Proof. We work with neutral vertices. By (6.4.4) and Lemma 6.2.1, for any t,

Pn,pn [|Cv| = t] = Pn,pn [τ0 = t] ≤ Pn,pn [Nt = n− t]. (6.4.24)

Recall that N0 = n− 1 and

Nt = Nt−1 − 1{Nt−1<n−(t−1)}

Nt−1∑
i=1

It,i.

It is easier to consider the process without the indicator as it has a simple distribu-
tion. Define N0

0 := n− 1 and

N0
t := N0

t−1 −
N0
t−1∑
i=1

It,i,

and observe that Nt ≥ N0
t for all t, as the two processes agree up to time τ0 at

which point Nt stays fixed. The interpretation of N0
t is straightforward: starting

with n−1 vertices, at each time each remaining vertex is discarded with probability
pn. Hence, the number of surviving vertices at time t has distribution

N0
t ∼ Bin(n− 1, (1− pn)t),

by the independence of the steps. Arguing as in (6.4.24),

Pn,pn [|Cv| = t] ≤ Pn,pn [N0
t = n− t]

= Pn,pn [(n− 1)−N0
t = t− 1]

= P[Yt = t− 1],

which concludes the proof.

The previous lemma gives the following additional bound on the cluster size
in the supercritical regime. Together with Lemma 6.4.7 it shows that, when |Cv| >
c log n, the cluster size is in fact linear in n with high probability. We will have
more to say about the largest cluster in the next subsection.
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Lemma 6.4.9 (Supercritical regime: saturation). Let Gn ∼ Gn,pn where pn = λ
n

with λ > 1 and let Cv be the connected component of v ∈ [n]. Let ζλ be the unique
solution in (0, 1) to the fixed point equation

1− e−λζ = ζ.

For any α < ζλ and any δ > 0, there exists κδ,α > 0 large enough so that

Pn,pn
[
(1 + κδ,α)I−1

λ log n ≤ |Cv| ≤ αn
]

= O(n−(1+δ)). (6.4.25)

Proof. By Lemma 6.4.8,

Pn,pn [|Cv| = t] ≤ P[Yt = t− 1] ≤ P[Yt ≤ t],

where Yt ∼ Bin(n− 1, 1− (1− pn)t). Roughly, the right-hand side is negligible
until the mean µt := (n − 1)(1 − (1 − λ/n)t) is of the order of t. Let ζλ be as
above, and recall that it is a solution to

1− e−λζ − ζ = 0.

Note in particular that, when t = ζλn,

µt = (n− 1)(1− (1− λ/n)ζλn) ≈ n(1− e−λζλ) = ζλn = t.

Let α < ζλ.
For any t ∈ [c log n, αn], by the Chernoff bound for Poisson trials (Theo-

rem 2.4.7 (ii)(b)),

P[Yt ≤ t] ≤ exp

(
−µt

2

(
1− t

µt

)2
)
. (6.4.26)

For t/n ≤ α < ζλ, using 1 − x ≤ e−x for x ∈ (0, 1) (see Exercise 1.16), there is
γα > 1 such that

µt ≥ (n− 1)(1− e−λ(t/n))

= t

(
n− 1

n

)
1− e−λ(t/n)

t/n

≥ t
(
n− 1

n

)
1− e−λα

α

≥ γαt,

for n large enough, where we used that 1− e−λx is increasing in x on the third line
and that 1− e−λx−x > 0 for 0 < x < ζλ on the fourth line (as can be checked by
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computing the first and second derivatives). Plugging this back into (6.4.26), we
get

P[Yt ≤ t] ≤ exp

(
−t

{
γα
2

(
1− 1

γα

)2
})

.

Therefore

αn∑
t=c logn

Pn,pn [|Cv| = t] ≤
αn∑

t=c logn

P[Yt ≤ t]

≤
+∞∑

t=c logn

exp

(
−t

{
γα
2

(
1− 1

γα

)2
})

= O

(
exp

(
−c log n

{
γα
2

(
1− 1

γα

)2
}))

.

Taking κ > 0 large enough proves (6.4.25).

6.4.3 Concentration of cluster size: second moment bounds

To characterize the size of the largest cluster in the supercritical case, we use
Chebyshev’s inequality. We also use a related second moment argument to give
a lower bound on the largest cluster in the subcritical regime.

Supercritical regime: giant component

Assume λ > 1. Our goal is to characterize the size of the largest component. We do
this by bounding what is not in it (i.e., intuitively those vertices whose exploration
process goes extinct). For δ > 0 and α < ζλ, let κδ,α be as defined in Lemma 6.4.9.
Set

kn := (1 + κδ,α)I−1
λ log n and k̄n := αn.

We call a vertex v such that |Cv| ≤ kn a small vertex.
small vertex

Let
Sk :=

∑
v∈[n]

1{|Cv |≤k}.

It will also be useful to work with

Bk = n− Sk =
∑
v∈[n]

1{|Cv |>k}.
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The quantity Skn is the number of small vertices. By Lemma 6.4.7, its expectation
is

En,pn [Skn ] = n(1− Pn,pn [|Cv| > kn]) = (1− ζλ)n+O
(
log2 n

)
. (6.4.27)

Using Chebyshev’s inequality (Theorem 2.1.2), we prove that Skn is concentrated.

Lemma 6.4.10 (Concentration of Skn). For any γ ∈ (1/2, 1) and δ < 2γ − 1,

Pn,pn [|Skn − (1− ζλ)n| ≥ nγ ] = O(n−δ).

Lemma 6.4.10, which is proved below, leads to our main result in the supercritical
case: the existence of the giant component, a unique cluster Cmax of size linear in

giant

component
n.

Proof of Theorem 6.4.2. Take α ∈ (ζλ/2, ζλ) and let kn, k̄n, and γ be as above.
Let B1,n := {|Bkn − ζλn| ≥ n

γ}. Because γ < 1, the event Bc1,n implies that∑
v∈[n]

1{|Cv |>kn} = Bkn > ζλn− nγ ≥ 1,

for n large enough. That is, there is at least one “large” cluster of size > kn. In
turn, that implies

|Cmax| ≤ Bkn ,

since there are at most Bkn vertices in that large cluster.
Let B2,n := {∃v, |Cv| ∈ [kn, k̄n]}. If Bc2,n holds, in addition to Bc1,n, then

|Cmax| ≤ Bkn = Bk̄n ,

since there is no cluster whose size falls in [kn, k̄n]. Moreover there is equality
across the last display if there is a unique cluster of size greater than k̄n.

This is indeed the case under Bc1,n ∩Bc2,n: if there were two distinct clusters of
size k̄n, then since 2α > ζλ we would have for n large enough

Bkn = Bk̄n > 2k̄n = 2αn > ζλn+ nγ ,

a contradiction. Hence we have proved that under Bc1,n ∩ Bc2,n

|Cmax| = Bkn = Bk̄n .

Take δ < 2γ − 1. Applying Lemmas 6.4.9 and 6.4.10

P[B1,n ∪ B2,n] ≤ O(n−δ) + n ·O(n−(1+δ)) = O(n−δ),

which concludes the proof.
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It remains to prove Lemma 6.4.10.

Proof of Lemma 6.4.10. As mentioned above, we use Chebyshev’s inequality. Hence
our main task is to bound the variance of Skn .

Our starting point is the following expression for the second moment

En,pn [S2
k ] =

∑
u,v∈[n]

Pn,pn [|Cu| ≤ k, |Cv| ≤ k]

=
∑

u,v∈[n]

{
Pn,pn [|Cu| ≤ k, |Cv| ≤ k, u↔ v]

+Pn,pn [|Cu| ≤ k, |Cv| ≤ k, u= v]
}
, (6.4.28)

where u↔ v indicates that u and v are in the same connected component.
To bound the first term in (6.4.28), we note that u ↔ v implies that Cu = Cv.

Hence,∑
u,v∈[n]

Pn,pn [|Cu| ≤ k, |Cv| ≤ k, u↔ v] =
∑

u,v∈[n]

Pn,pn [|Cu| ≤ k, v ∈ Cu]

=
∑

u,v∈[n]

En,pn [1{|Cu|≤k}1{v∈Cu}]

=
∑
u∈[n]

En,pn

1{|Cu|≤k} ∑
v∈[n]

1{v∈Cu}


=

∑
u∈[n]

En,pn [|Cu|1{|Cu|≤k}]

= nEn,pn [|C1|1{|C1|≤k}]
≤ nk. (6.4.29)

To bound the second term in (6.4.28), we sum over the size of Cu and note that,
conditioned on {|Cu| = `, u = v}, the size of Cv has the same distribution as the
unconditional size of C1 in a Gn−`,pn random graph, that is,

Pn,pn [|Cv| ≤ k | |Cu| = `, u= v] = Pn−`,pn [|C1| ≤ k].

Observe that the probability on the right-hand side is increasing in ` (as can be
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seen, e.g., by coupling; see below for a related argument). Hence∑
u,v∈[n]

∑
`≤k

Pn,pn [|Cu| = `, |Cv| ≤ k, u= v]

=
∑

u,v∈[n]

∑
`≤k

Pn,pn [|Cu| = `, u= v]Pn,pn [|Cv| ≤ k | |Cu| = `, u= v]

=
∑

u,v∈[n]

∑
`≤k

Pn,pn [|Cu| = `, u= v]Pn−`,pn [|Cv| ≤ k]

≤
∑

u,v∈[n]

∑
`≤k

Pn,pn [|Cu| = `]Pn−k,pn [|Cv| ≤ k]

=
∑

u,v∈[n]

Pn,pn [|Cu| ≤ k]Pn−k,pn [|Cv| ≤ k].

To get a bound on the variance of Sk, we need to relate this last expression to
(En,pn [Sk])

2, where we will use that

En,pn [Sk] = En,pn

∑
v∈[n]

1{|Cv |≤k}

 =
∑
v∈[n]

Pn,pn [|Cv| ≤ k]. (6.4.30)

We define
∆k := Pn−k,pn [|C1| ≤ k]− Pn,pn [|C1| ≤ k].

Then, plugging this back above, we get∑
u,v∈[n]

∑
`≤k

Pn,pn [|Cu| = `, |Cv| ≤ k, u= v]

≤
∑

u,v∈[n]

Pn,pn [|Cu| ≤ k](Pn,pn [|Cv| ≤ k] + ∆k)

≤ (En,pn [Sk])
2 + n2|∆k|,

by (6.4.30). It remains to bound ∆k.
We use a coupling argument. Let H ∼ Gn−k,pn and construct H ′ ∼ Gn,pn

in the following manner: let H ′ coincide with H on the first n − k vertices then
pick the rest the edges independently. Then clearly ∆k ≥ 0 since the cluster of 1
in H ′ includes the cluster of 1 in H . In fact, ∆k is the probability that under this
coupling the cluster of 1 has at most k vertices in H but not in H ′. That implies
in particular that at least one of the vertices in the cluster of 1 in H is connected to
a vertex in {n − k + 1, . . . , n}. Hence by a union bound over those k2 potential
edges

∆k ≤ k2pn,



CHAPTER 6. BRANCHING PROCESSES 484

and ∑
u,v∈[n]

Pn,pn [|Cu| ≤ k, |Cv| ≤ k, u↔ v] ≤ (En,pn [Sk])
2 + λnk2. (6.4.31)

Combining (6.4.29) and (6.4.31), we get

Var[Sk] ≤ 2λnk2.

The result follows from (6.4.27) and Chebyshev’s inequality

P[|Skn − (1− ζλ)n| ≥ nγ ]

≤ P[|Skn − En,pn [Skn ]| ≥ nγ − C log2 n]

≤ 2λnk2
n

(nγ − C log2 n)2

≤
2λn(1 + κδ,α)2I−2

λ log2 n

C ′n2γ

≤ C ′′n−δ,

for constants C,C ′, C ′′ > 0 and n large enough, where we used that 2γ > 1 and
δ < 2γ − 1.

Subcritical regime: second moment argument

A second moment argument also gives a lower bound on the size of the largest
component in the subcritical case. We proved in Theorem 6.4.1 that, when λ < 1,
the probability of observing a connected component of size larger than I−1

λ log n
is vanishingly small. In the other direction, we get:

Theorem 6.4.11 (Subcritical regime: lower bound on the largest cluster). Let
Gn ∼ Gn,pn where pn = λ

n with λ ∈ (0, 1). For all κ ∈ (0, 1),

Pn,pn
[
|Cmax| ≤ (1− κ)I−1

λ log n
]

= o(1).

Proof. Recall that
Bk =

∑
v∈[n]

1{|Cv |>k}.

It suffices to prove that with probability 1 − o(1) we have Bk > 0 when k =
(1− κ)I−1

λ log n. To apply the second moment method (Theorem 2.3.2), we need
an upper bound on the second moment ofBk and a lower bound on its first moment.
The following lemma is closely related to Lemma 6.4.10. Exercise 6.12 asks for a
proof.
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Lemma 6.4.12 (Second moment ofXk). Assume λ < 1. There is a constantC > 0
such that

En,pn [B2
k] ≤ (En,pn [Bk])

2 + Cnke−kIλ , ∀k ≥ 0.

Lemma 6.4.13 (First moment of Xk). Let kn = (1 − κ)I−1
λ log n. Then, for any

β ∈ (0, κ) we have that

En,pn [Bkn ] = Ω(nβ),

for n large enough.

Proof. By Lemma 6.4.3,

En,pn [Bkn ] = nPn,pn [|C1| > kn]

≥ nP[Wλ > kn]−O
(
dkne2

)
. (6.4.32)

Once again, we use the random-walk representation of the total progeny of a
branching process (Theorem 6.2.6). In contrast to the proof of Lemma 6.4.6, we
need a lower bound this time. For this purpose, we use the explicit expression for
the law of the total progeny Wλ from Example 6.2.7

P[Wλ > kn] =
∑
t>kn

1

t
e−λt

(λt)t−1

(t− 1)!
.

Using Stirling’s formula (see Appendix A) and (6.4.3), we note that

1

t
e−λt

(λt)t−1

(t− 1)!
= e−λt

(λt)t−1

t!

= e−λt
(λt)t

λt(t/e)t
√

2πt(1 + o(1))

=
1− o(1)

λ
√

2πt3
exp (−tλ+ t log λ+ t)

=
1− o(1)

λ
√

2πt3
exp (−tIλ) .

Hence, for any ε > 0,

P[Wλ > kn] ≥ λ−1
∑
t>kn

exp (−t(Iλ + ε))

= Ω (exp (−kn(Iλ + ε))) ,
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for n large enough. For any β ∈ (0, κ), taking ε small enough we have

nP[Wλ > kn] = Ω (n exp (−kn(Iλ + ε)))

= Ω
(
exp

(
{1− (1− κ)I−1

λ (Iλ + ε)} log n
))

= Ω(nβ).

Plugging this back into (6.4.32) gives

En,pn [Bkn ] = Ω(nβ),

which proves the claim.

We return to the proof of Theorem 6.4.11. Let again kn = (1 − κ)I−1
λ log n.

By the second moment method and Lemmas 6.4.12 and 6.4.13,

Pn,pn [Bkn > 0] ≥ (EBkn)2

E[B2
kn

]

≥
(

1 +
O(nkne

−knIλ)

Ω(n2β)

)−1

=

(
1 +

O(nkne
(κ−1) logn)

Ω(n2β)

)−1

=

(
1 +

O(knn
κ)

Ω(n2β)

)−1

→ 1,

for β close enough to κ. That proves the claim.

6.4.4 Critical case via martingales

It remains to consider the critical case, that is, when λ = 1. As it turns out, the
model goes through a “double jump”: as λ crosses 1, the largest cluster size goes
from order log n to order n2/3 to order n. Here we use martingale methods to show
the following.

Theorem 6.4.14 (Critical case: upper bound on the largest cluster). Let Gn ∼
Gn,pn where pn = 1

n . For all κ > 1,

Pn,pn
[
|Cmax| > κn2/3

]
≤ C

κ3/2
,

for some constant C > 0.
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Remark 6.4.15. One can also derive a lower bound on the probability that |Cmax| >
κn2/3 for some κ > 0 [ER60]. Exercise 6.20 provides a sketch based on counting tree
components; the combinatorial approach has the advantage of giving insights into the
structure of the graph (see [Bol01] for more on this). See also [NP10] for a martingale
proof of the lower bound as well as a better upper bound.

The key technical bound is the following.

Lemma 6.4.16. Let Gn ∼ Gn,pn where pn = 1
n and let Cv be the connected

component of v ∈ [n]. There are constants c, c′ > 0 such that for all k ≥ c

Pn,pn [|Cv| > k] ≤ c′√
k
.

Before we establish the lemma, we prove the theorem assuming it.

Proof of Theorem 6.4.14. Recall that

Bk =
∑
v∈[n]

1{|Cv |>k}.

Take
kn := κn2/3.

By Markov’s inequality (Theorem 2.1.1) and Lemma 6.4.16,

Pn,pn [|Cmax| > kn] ≤ Pn,pn [Bkn > kn]

≤ En,pn [Bkn ]

kn

=
nPn,pn [|Cv| > kn]

kn

≤ nc′

k
3/2
n

≤ C

κ3/2
,

for some constant C > 0.

It remains to prove the lemma.

Proof of Lemma 6.4.16. Once again, we use the exploration process defined in
Section 6.4.2 started at v. Let (Ft) be the corresponding filtration and letAt = |At|
be the size of the active set.
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Domination by a martingale Recalling (6.4.6), we define

Mt := Mt−1 +
[
−1 + X̃t

]
, (6.4.33)

with M0 := 1 and (X̃t) are i.i.d. Bin(n, 1/n). We couple (At) and (Mt) through
the equation (6.4.7) by letting

X̃t =

n∑
i=1

It,i.

In particular Mt ≥ At for all t.
Furthermore, we have

E[Mt | Ft−1] = Mt−1 − 1 + n
1

n
= Mt−1.

So (Mt) is a martingale. We define the stopping time

τ̃0 := inf{t ≥ 0 : Mt = 0}.

Recalling that
τ0 = inf{t ≥ 0 : At = 0} = |Cv|,

by Lemma 6.2.1, we have τ̃0 ≥ τ0 = |Cv| almost surely. So

Pn,pn [|Cv| > k] ≤ P[τ̃0 > k].

The tail of τ̃0 To bound the tail of τ̃0, we introduce a modified stopping time. For
h > 0, let

τ ′h := inf{t ≥ 0 : Mt = 0 or Mt ≥ h}.

We will use the inequality

P[τ̃0 > k] = P[Mt > 0, ∀t ≤ k] ≤ P[τ ′h > k] + P[Mτ ′h
≥ h],

and we will choose h below to minimize the rightmost expression (or, more specif-
ically, an upper bound on it). The rest of the analysis is similar to the gambler’s
ruin problem in Example 3.1.41, with some slight complications arising from the
fact that the process is not nearest-neighbor.

We note that by the exponential tail of hitting times on finite state spaces
(Lemma 3.1.25), the stopping time τ ′h is almost surely finite and, in fact, has a
finite expectation. By two applications of Markov’s inequality,

P[Mτ ′h
≥ h] ≤

E[Mτ ′h
]

h
,
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and

P[τ ′h > k] ≤
Eτ ′h
k
.

We bound the expectations on the right-hand sides.

Bounding EMτ ′h
and Eτ ′h To compute EMτ ′h

, we use the optional stopping the-
orem in the uniformly bounded case (Theorem 3.1.38 (ii)) to the stopped process
(Mt∧τ ′h) (which is also a martingale by Lemma 3.1.37) to get that

E[Mτ ′h
] = E[M0] = 1.

We conclude that
P[Mτ ′h

≥ h] ≤ 1

h
. (6.4.34)

To compute Eτ ′h, we use a different martingale (adapted from Example 3.1.31),
specifically

Lt := M2
t − σ2t,

where we let σ2 := n 1
n

(
1− 1

n

)
=
(
1− 1

n

)
, which is ≥ 1

2 when n ≥ 2. To see
that (Lt) is a martingale, note that by taking out what is known (Lemma B.6.13)
and using the fact that (Mt) is itself a martingale

E[Lt | Ft−1] = E[(Mt−1 + (Mt −Mt−1))2 − σ2t | Ft−1]

= E[M2
t−1 + 2Mt−1(Mt −Mt−1) + (Mt −Mt−1)2 − σ2t | Ft−1]

= M2
t−1 + 2Mt−1 · 0 + σ2 − σ2t

= Lt−1.

By Lemma 3.1.37, the stopped process (Lt∧τ ′h) is also a martingale; and it has
bounded increments since

|L(t+1)∧τ ′h − Lt∧τ ′h | ≤ |M
2
(t+1)∧τ ′h

−M2
t∧τ ′h
|+ σ2

≤
∣∣∣(−1 + X̃t+1)2 + 2h| − 1 + X̃t+1|

∣∣∣+ σ2

≤ n2 + 2hn+ 1.

We use the optional stopping theorem in the bounded increments case (Theo-
rem 3.1.38 (iii)) on (Lt∧τ ′h) to get

E[M2
τ ′h
− σ2τ ′h] = E[M2

τ ′h
]− σ2Eτ ′h = 1.
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After rearranging (6.4.35)

Eτ ′h ≤
1

σ2
E[M2

τ ′h
] ≤ 2E[M2

τ ′h
], (6.4.35)

where we used the fact that σ2 ≥ 1/2.
To bound E[M2

τ ′h
], we need to control by how much the process “overshoots”

h. A stochastic domination argument gives the desired bound; Exercise 6.21 asks
for a proof.

Lemma 6.4.17 (Overshoot bound). Let f be an increasing function and W ∼
Bin(n, 1/n). Then

E[f(Mτ ′h
− h) |Mτ ′h

≥ h] ≤ E[f(W )].

The lemma implies that

E[M2
τ ′h
|Mτ ′h

≥ h] = E[(Mτ ′h
− h)2 + 2(Mτ ′h

− h)h+ h2 |Mτ ′h
≥ h]

≤ (σ2 + 1) + 2h+ h2

≤ 4h2.

Plugging back into (6.4.35) gives

Eτ ′h ≤ 2

{
1

h
E[M2

τ ′h
|Mτ ′h

≥ h]

}
≤ 8h,

where we used (6.4.34).

Putting everything together Finally take h :=
√

k
8 . Putting everything together

Pn,pn [|Cv| > k] ≤ P[τ̃0 > k] ≤ P[τ ′h > k] + P[Mτ ′h
≥ h] ≤ 8h

k
+

1

h
= 2

√
8

k
.

That concludes the proof.

6.4.5 . Encore: random walk on the Erdős-Rényi graph

So far in this section we have used techniques from all chapters of the book—with
the exception of Chapter 5. Not to be outdone, we discuss one last result that will
make use of spectral techniques. We venture a little further down the evolution of
the Erdős-Rényi graph model to the connected regime. Specifically, recall from
Section 2.3.2 that Gn = (Vn, En) ∼ Gn,pn is connected with probability 1− o(1)
when npn = ω(log n).
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We show in that regime that lazy simple random walk (Xt) onGn “mixes fast.”
Recall from Example 1.1.29 that, when the graph is connected, the corresponding
transition matrix P is reversible with respect to the stationary distribution

π(v) :=
δ(v)

2|En|
,

where δ(v) is the degree of v. For a fixed ε > 0, the mixing time (see Defini-
tion 1.1.35) is

tmix(ε) = inf{t ≥ 0 : d(t) ≤ ε},

where
d(t) = sup

x∈Vn
‖P t(x, ·)− π(·)‖TV.

By convention, we let tmix(ε) = +∞ if the graph is not connected. Our main
result is the following.

Theorem 6.4.18 (Mixing on a connected Erdős-Rényi graph). Let Gn ∼ Gn,pn
with npn = ω(log n). With probability 1− o(1), the mixing time is O(log n).

Edge expansion We use Cheeger’s inequality (Theorem 5.3.5) which, recall,
states that

γ ≥ Φ2
∗

2
,

where γ is the spectral gap of P (see Definition 5.2.11) and

Φ∗ = min

{
ΦE(S; c, π) : S ⊆ V, 0 < π(S) ≤ 1

2

}
,

is the edge expansion constant (see Definition 5.3.2), with

ΦE(S; c, π) =
c(S, Sc)

π(S)
,

for a subset of vertices S ⊆ Vn. Here, for a pair of vertices x, y connected by an
edge,

c(x, y) = π(x)P (x, y) =
δ(x)

2|En|
1

δ(x)
=

1

2|En|
.

Hence

c(S, Sc) =
|E(S, Sc)|

2|En|
,
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where E(S, Sc) is the set of edges between S and Sc. Similarly,

π(S) =

∑
x∈S δ(x)

2|En|
.

The numerator is referred to as the volume of S and we use the notation vol(S) =∑
x∈S δ(x). So

c(S, Sc)

π(S)
=
|E(S, Sc)|

vol(S)
. (6.4.36)

Because the random walk is lazy, the spectral gap is equal to the absolute spec-
tral gap (see Definition 5.2.11), and as a consequence the relaxation time (see Def-
inition 5.2.12) is

trel = γ−1.

Using Theorem 5.2.14, we get

tmix(ε) ≤ log

(
1

επmin

)
trel ≤ log

(
1

επmin

)
2

Φ2
∗
, (6.4.37)

where

πmin = min
x
π(x) = min

x

δ(x)

2|En|
=

minx δ(x)∑
y δ(y)

.

So our main task is to bound δ(x) and |E(S, Sc)| with high probability. We do this
next.

Bounding the degrees In fact, we have already done half the work. Indeed in
Example 2.4.18 we studied the maximum degree of Gn

Dn = max
v∈Vn

δ(v),

in the regime npn = ω(log n). We showed that for any ζ > 0, as n→ +∞,

P
[
|Dn − npn| ≤ 2

√
(1 + ζ)npn log n

]
→ 1.

The proof of that result actually shows something stronger: all degrees satisfy the
inequality simultaneously, that is,

P
[
∀v ∈ Vn, |δ(v)− npn| ≤ 2

√
(1 + ζ)npn log n

]
= 1− o(1). (6.4.38)

We will use the fact that 2
√

(1 + ζ)npn log n = o(npn) when npn = ω(log n). In
essence, all degrees are roughly npn. That implies the following claims.
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Lemma 6.4.19 (Bounds on stationary distribution and volume). The following hold
with probability 1− o(1).

(i) The smallest stationary probability satisfies

πmin ≥
1− o(1)

n
.

(ii) For any set of vertices S ⊆ Vn with |S| > 2n/3, we have

π(S) >
1

2
.

(iii) For any set of vertices S ⊆ Vn with s := |S|

vol(S) = snpn(1 + o(1)).

Proof. We assume that the event in (6.4.38) holds.
For (i), that means

πmin ≥
npn − 2

√
(1 + ζ)npn log n

n(npn + 2
√

(1 + ζ)npn log n)
=

1

n
(1− o(1)),

when npn = ω(log n).
For (ii), we get

π(S) =

∑
x∈S δ(x)∑
x∈Vn δ(x)

≥
|S|(npn − 2

√
(1 + ζ)npn log n)

n(npn + 2
√

(1 + ζ)npn log n)
>

2

3
(1− o(1)).

Finally (iii) follows similarly.

Bounding the cut size An application of Bernstein’s inequality (Theorem 2.4.17)
gives the following bound.

Lemma 6.4.20 (Bound on the edge expansion). With probability 1− o(1),

Φ∗ = Ω(1).

Proof. By the definition of Φ∗ and Lemma 6.4.19 (ii), we can restrict ourselves to
sets S of size at most 2n/3. Let S be such a set with s = |S|. Then |E(S, Sc)| is
Bin(s(n− s), pn). By Bernstein’s inequality with c = 1 and νi = pn(1− pn),

Pn,pn [|E(S, Sc)| ≤ s(n− s)pn − β] ≤ exp

(
− β2

4s(n− s)pn(1− pn)

)
,
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for β ≤ s(n− s)pn(1− pn). We take β = 1
2s(n− s)pn and get

Pn,pn
[
|E(S, Sc)| ≤ 1

2
s(n− s)pn

]
≤ exp

(
−s(n− s)pn

16(1− pn)

)
.

By a union bound over all sets of size s and using the fact that
(
n
s

)
≤ (nes )s

(see Appendix A), there is a constant C > 0 such that

Pn,pn
[
∃S, |S| = s, |E(S, Sc)| ≤ 1

2
s(n− s)pn

]
≤
(
n

s

)
exp

(
−s(n− s)pn

16(1− pn)

)
≤ exp

(
−snpn

48
+ s log(ne/s)

)
≤ exp (−Csnpn) ,

for n large enough, where we also used that n − s ≥ n/3 and npn = ω(log n).
Summing over s gives, for a constant C ′ > 0,

Pn,pn
[
∃S, 1 ≤ |S| ≤ 2n/3, |E(S, Sc)| ≤ 1

2
|S|(n− |S|)pn

]
≤ C ′ exp (−Cnpn) ,

which goes to 0 as n→ +∞.
Using (6.4.36) and Lemma 6.4.19 (iii), any set S such that |E(S, Sc)| >

1
2 |S|(n− |S|)pn has edge expansion

ΦE(S; c, π) ≥
1
2 |S|(n− |S|)pn
|S|npn(1 + o(1))

≥ 1

6
(1− o(1)).

That proves the claim.

Proof of the theorem Finally, we are ready to prove the main result.

Proof of Theorem 6.4.18. Plugging Lemma 6.4.19 (i) and Lemma 6.4.20 into (6.4.37)
gives

tmix(ε) ≤ log

(
1

επmin

)
2

Φ2
∗
≤ C ′′ log(ε−1n(1 + o(1))) = O(log n),

for some constant C ′′ > 0.

Remark 6.4.21. A mixing time of O(log n) in fact holds for lazy simple random walk on
Gn,pn when pn = λ logn

n with λ > 1 [CF07]. See also [Dur06, Section 6.5]. Mixing time
on the giant component has also been studied. See, e.g., [FR08, BKW14, DKLP11].
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Exercises

Exercise 6.1 (Galton-Watson process: subcritical case). We use Markov’s inequal-
ity to analyze the subcritical case.

(i) Let (Zt) be a Galton-Watson process with offspring distribution mean m <
1. Use Markov’s inequality (Theorem 2.1.1) to prove that extinction occurs
almost surely.

(ii) Prove the equivalent result in the multitype case, that is, prove (6.1.8).

Exercise 6.2 (Galton-Watson process: geometric offspring). Let (Zt) be a Galton-
Watson branching process with geometric offspring distribution (started at 0), that
is, pk = p(1− p)k for all k ≥ 0, for some p ∈ (0, 1). Let q := 1− p, let m be the
mean of the offspring distribution, and let Wt = m−tZt.

(i) Compute the probability generating function f of {pk}k≥0 and the extinction
probability η := ηp as a function of p.

(ii) If G is a 2× 2 matrix, define

G(s) :=
G11s+G12

G21s+G22
.

Show that G(H(s)) = (GH)(s).

(iii) Assume m 6= 1. Use (ii) to derive

ft(s) =
pmt(1− s) + qs− p
qmt(1− s) + qs− p

.

Deduce that when m > 1

E[exp(−λW∞)] = η + (1− η)
(1− η)

λ+ (1− η)
.

(iv) Assume m = 1. Show that

ft(s) =
t− (t− 1)s

t+ 1− ts
,

and deduce that
E[e−λZt/t |Zt > 0]→ 1

1 + λ
.
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Exercise 6.3 (Supercritical branching process: infinite line of descent). Let (Zt)
be a supercritical Galton-Watson branching process with offspring distribution
{pk}k≥0. Let η be the extinction probability and define ζ := 1 − η. Let Z∞t
be the number of individuals in the t-th generation with an infinite line of descent,
i.e., whose descendant subtree is infinite. Denote by S the event of nonextinction
of (Zt). Define p∞0 := 0 and

p∞k := ζ−1
∑
j≥k

(
j

k

)
ηj−kζkpj .

(i) Show that {p∞k }k≥0 is a probability distribution and compute its expectation.

(ii) Show that for any k ≥ 0

P[Z∞1 = k | S] = p∞k .

[Hint: Condition on Z1.]

(iii) Show by induction on t that, conditioned on nonextinction, the process (Z∞t )
has the same distribution as a Galton-Watson branching process with off-
spring distribution {p∞k }k≥0.

Exercise 6.4 (Multitype branching processes: a special case). Extend Lemma 6.1.20
to the case S(u) = 0. [Hint: Show that Ut = Z0u for all t almost surely.]

Exercise 6.5 (Galton-Watson: Inverting history). Let

H = (X1, . . . , Xτ0),

be the history (see Section 6.2) of the Galton-Watson process (Zi). Write Zi as a
function of H , for all i.

Exercise 6.6 (Spitzer’s lemma). Prove Theorem 6.2.5.

Exercise 6.7 (Sum of Poisson). Let Q1 and Q2 be independent Poisson random
variables with respective means λ1 and λ2. Show by direct computation of the
convolution that the sum Q1 + Q2 is Poisson with mean λ1 + λ2. [Hint: Recall
that P[Q1 = k] = e−λ1λk1/k! for all k ∈ Z+.]

Exercise 6.8 (Percolation on bounded-degree graphs). LetG = (V,E) be a count-
able graph such that all vertices have degree bounded by b+ 1 for b ≥ 2. Let 0 be
a distinguished vertex in G. For bond percolation on G, prove that

pc(G) ≥ pc(T̂b),

by bounding the expected size of the cluster of 0. [Hint: Consider self-avoiding
paths started at 0.]
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Exercise 6.9 (Percolation on T̂b: critical exponent of θ(p)). Consider bond per-
colation on the rooted infinite b-ary tree T̂b with b > 2. For ε ∈ [0, 1 − 1

b ] and
u ∈ [0, 1], define

h(ε, u) := u−
((

1− 1
b − ε

)
(1− u) + 1

b + ε
)b
.

(i) Show that there is a constant C > 0 not depending on ε, u such that∣∣∣∣h(ε, u)− bεu+
b− 1

2b
u2

∣∣∣∣ ≤ C(u3 ∨ εu2).

(ii) Use (i) to prove that

lim
p↓pc(T̂b)

θ(p)

(p− pc(T̂b))
=

2b2

b− 1
.

Exercise 6.10 (Percolation on T̂2: higher moments of |C0|). Consider bond per-
colation on the rooted infinite binary tree T̂2. For density p < 1

2 , let Zp be an
integer-valued random variable with distribution

Pp[Zp = `] =
`Pp[|C0| = `]

Ep|C0|
, ∀` ≥ 1.

(i) Using the explicit formula for Pp[|C0| = `] derived in Section 6.2.4, show
that for all 0 < a < b < +∞

Pp

[
Zp

(1/4)(1
2 − p)−2

∈ [a, b]

]
→ C

∫ b

a
x−1/2e−xdx,

as p ↑ 1
2 , for some constant C > 0.

(ii) Show that for all k ≥ 2 there is Ck > 0 such that

lim
p↑pc(T̂2)

Ep|C0|k

(pc(T̂2)− p)−1−2(k−1)
= Ck.

(iii) What happens when p ↓ pc(T̂2)?

Exercise 6.11 (Branching process approximation: improved bound). Let pn = λ
n

with λ > 0. Let Wn,pn , respectively Wλ, be the total progeny of a branching
process with offspring distribution Bin(n, pn), respectively Poi(λ).
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(i) Show that

|P[Wn,pn ≥ k]− P[Wλ ≥ k]|
≤ max{P[Wn,pn ≥ k,Wλ < k],P[Wn,pn < k,Wλ ≥ k]}.

(ii) Couple the two processes step-by-step and use (i) to show that

|P[Wn,pn ≥ k]− P[Wλ ≥ k]| ≤ λ2

n

k−1∑
i=1

P[Wλ ≥ i].

Exercise 6.12 (Subcritical Erdős-Rényi: second moment). Prove Lemma 6.4.12.

Exercise 6.13 (Random binary search tree: property (BST)). Show that the (BST)
property is preserved by the algorithm described at the beginning of Section 6.3.1.

Exercise 6.14 (Random binary search tree: limit). Consider the equation (6.3.1).

(i) Show that there exists a unique solution greater than 1.

(ii) Prove that the expression on the left-hand side is strictly decreasing at that
solution.

Exercise 6.15 (Random binary search tree: height is well-defined). Let T be an
infinite binary tree. Assign an independent U [0, 1] random variable Zv to each
vertex v in T , set Sρ = n and then recursively from the root down

Sv′ := bSvZvc and Sv′′ := bSv(1− Zv)c,

where v′ and v′′ are the left and right descendants of v in T .

(i) Show that, for any v, it holds that Sv′+Sv′′ = Sv−1 almost surely provided
Sv ≥ 1.

(ii) Show that, for any v, there is almost surely a descendant w of v (not neces-
sarily immediate) such that Sw = 1.

(iii) Let
Hn = max {h : ∃v ∈ Vh, Sv = 1} ,

where Vh is the set of vertices of T at topological distance h from the root.
Show that Hn ≤ n.
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Exercise 6.16 (Ising vs. CFN). Let Th be a rooted complete binary tree with h
levels. Fix 0 < p < 1/2. Assign to each vertex v a state σv ∈ {+1,−1} at
random according to the CFN model described in Section 6.3.2. Show that this
distribution is equivalent to a ferromagnetic Ising model on Th and determine the
inverse temperature β in terms of p. [Hint: Write the distribution of the states under
the CFN model as a product over the edges.]

Exercise 6.17 (Monotonicity of ‖µ+
h −µ

−
h ‖TV). Let µ+

h , µ−h be as in Section 6.3.2.
Show that

‖µ+
h+1 − µ

−
h+1‖TV ≤ ‖µ+

h − µ
−
h ‖TV.

[Hint: Use the Markovian nature of the process.]

Exercise 6.18 (Unsolvability: recursion). Prove Lemma 6.3.15.

Exercise 6.19 (Cayley’s formula). Let (Zt) be a Poisson branching process with
offspring mean 1 started at Z0 = 1 and let T be the corresponding Galton-Watson
tree. Let W be the total of size of the progeny, that is, the number of vertices in T .
Recall from Example 6.2.7 that

P[W = n] =
nn−1e−n

n!
.

(i) Given W = n, label the vertices of T uniformly at random with the integers
1, . . . , n. Show that every rooted labeled tree on n vertices arises with prob-
ability e−n/n!. [Hint: Label the vertices as you grow the tree and observe
that a lot of terms cancel out or simplify.]

(ii) Derive Cayley’s formula: the number of labeled trees on n vertices is nn−2.

Exercise 6.20 (Critical regime: tree components). LetGn ∼ Gn,pn where pn = 1
n .

(i) Let γn,k be the expected number of isolated tree components of size k inGn.
Justify the formula

γn,k =

(
n

k

)
kk−2

(
1

n

)k−1(
1− 1

n

)k(n−k)+(k2)−(k−1)

.

[Hint: We did a related calculation in Section 2.3.2.]

(ii) Show that, if k = ω(1) and k = o(n3/4),

γn,k ∼ n
k−5/2

√
2π

exp

(
− k3

6n2

)
.
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(iii) Conclude that for 0 < δ < 1 the expectation of U , the number of isolated
tree components of size in [(δn)2/3, n2/3], is Ω(δ−1) as δ → 0.

(iv) For 1 ≤ k1 ≤ k2 ≤ n − k1, let σn,k1,k2 be the expected number of pairs of
isolated tree components where the first one has size k1 and the second one
has size k2. Justify the formula

σn,k1,k2 =

(
n

k1

)
kk1−2

1

(
1

n

)k1−1(
1− 1

n

)k1(n−k1)+(k1
2 )−(k1−1)

×
(
n− k1

k2

)
kk2−2

2

(
1

n

)k2−1(
1− 1

n

)k2(n−(k1+k2))+(k2
2 )−(k2−1)

,

and show that
σn,k1,k2 ≤ γn,k1γn,k2 .

[Hint: You may need to prove that, for 0 < a ≤ 1 ≤ b, it holds that 1−ab ≤
(1− a)b.]

(v) Prove that Var[U ] = O(E[U ]). [Hint: Use (2.1.6), (iv), and (ii).]

Exercise 6.21 (Critical regime: overshoot bound). The goal of this exercise is to
prove Lemma 6.4.17. We use the notation of Section 6.4.4.

(i) Let W,Z ∼ Bin(n, 1/n) and 0 ≤ r ≤ n. Show that W − r conditioned on
W ≥ r is stochastically dominated by Z. [Hint: Use the representation of
W as a sum of indicators. Thinking of the partial sums as a Markov chain,
consider the first time it reaches r.]

(ii) Show that Mτ ′h
− h conditioned on Mτ ′h

≥ h is stochastically dominated by
Z from (i). [Hint: By the tower property, it suffices to show that

P[Mτ ′h
− h ≥ z | τ ′h = `,M`−1 = h− r,M` ≥ h] ≤ P[Z ≥ z],

for the relevant `, r, z.]

(iii) Use (ii) to prove Lemma 6.4.17.
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walk on random graphs (not just Erdős-Rényi), see [Dur06, Chapter 6]. For more
on the spectral properties of random graphs, see [CL06].


