
Chapter 5

Spectral methods

In this chapter , we develop spectral techniques. We highlight some applications
to Markov chain mixing and network analysis. The main tools are the spectral
theorem and the variational characterization of eigenvalues, which we review in
Section 5.1 together with some related results. We also give a brief introduction
to spectral graph theory and detail an application to community recovery. In Sec-
tion 5.2 we apply the spectral theorem to reversible Markov chains. In particular
we define the spectral gap and establish its close relationship to the mixing time.
Roughly speaking, we show through an eigendecomposition of the transition ma-
trix that the gap between the eigenvalue 1 (which is the largest in absolute value)
and the rest of the spectrum drives how fast P t converges to the stationary distribu-
tion. We give several examples. We then show in Section 5.3 that the spectral gap
can be bounded using certain isoperimetric properties of the underlying network.
We prove Cheeger’s inequality, which quantifies this relationship, and introduce
expander graphs, an important family of graphs with good “expansion.” Applica-
tions to mixing times are also discussed. One specific technique is the “canonical
paths method,” which bounds the spectral graph by formalizing a notion of con-
gestion in the network.

5.1 Background

We first review some important concepts from linear algebra. In particular, we re-
call the spectral theorem as well as the variational characterization of eigenvalues.
We also derive a few perturbation results. We end this section with an application
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327



CHAPTER 5. SPECTRAL METHODS 328

to community recovery in network analysis.

5.1.1 Eigenvalues and their variational characterization

When a matrix A ∈ Rd×d is symmetric, that is, aij = aji for all i, j, a remarkable
symmetric

matrix
result is that A is similar to a diagonal matrix by an orthogonal transformation.
Put differently, there exists an orthonormal basis of Rd made of eigenvectors of A.
Recall that a matrix Q ∈ Rd×d is orthogonal if QQT = Id×d and QTQ = Id×d,

orthogonal

matrix
where Id×d is the d×d identity matrix. In words, its columns form an orthonormal
basis of Rd. For a vector z = (z1, . . . , zd), we let diag(z) = diag(z1, . . . , zd) be
the diagonal matrix with diagonal entries z1, . . . , zd. Unless specified otherwise, a
vector is by default a “column vector” and its transpose is a “row vector.”

spectral

theorem
Theorem 5.1.1 (Spectral theorem). Let A ∈ Rd×d be a symmetric matrix, that is,
AT = A. Then A has d orthonormal eigenvectors q1, . . . ,qd with corresponding
(not necessarily distinct) real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd. In matrix form,
this is written as the matrix factorization

A = QΛQT =
d∑
i=1

λiqiq
T
i ,

where Q has columns q1, . . . ,qd and Λ = diag(λ1, . . . , λd). We refer to this
factorization as a spectral decomposition of A.

The proof uses a greedy sequence maximizing the quadratic form 〈v, Av〉. For
a hint as to why that might come about, note that for a unit eigenvector v with
eigenvalue λ we have 〈v, Av〉 = 〈v, λv〉 = λ.

We will need the following formula. Consider the block matrices(
y
z

)
and

(
A B
C D

)
where y ∈ Rd1 , z ∈ Rd2 , A ∈ Rd1×d1 , B ∈ Rd1×d2 , C ∈ Rd2×d1 , and D ∈
Rd2×d2 . Then it follows by direct calculation that(

y
z

)T (
A B
C D

)(
y
z

)
= yTAy + yTBz + zTCy + zTDz. (5.1.1)

We will also need the following linear algebra fact. Let v1, . . . ,vj be orthonor-
mal vectors in Rd, with j < d. Then they can be completed into an orthonormal
basis v1, . . . ,vd of Rd.

Proof of Theorem 5.1.1. We proceed by induction.
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A first eigenvector LetA1 = A. Maximizing over the objective function 〈v, A1v〉,
we let

v1 ∈ arg max{〈v, A1v〉 : ‖v‖2 = 1},

and
λ1 = max{〈v, A1v〉 : ‖v‖2 = 1}.

Complete v1 into an orthonormal basis of Rd, v1, v̂2, . . . , v̂d, and form the block
matrix

Ŵ1 :=
(
v1 V̂1

)
where the columns of V̂1 are v̂2, . . . , v̂d. Note that Ŵ1 is orthogonal by construc-
tion.

Getting one step closer to diagonalization We show next that Ŵ1 gets us one
step closer to a diagonal matrix by similarity transformation. Note first that

Ŵ T
1 A1Ŵ1 =

(
λ1 wT

1

w1 A2

)
where w1 := V̂ T

1 A1v1 and A2 := V̂ T
1 A1V̂1. The key claim is that w1 = 0. This

follows from an argument by contradiction.
Suppose w1 6= 0 and consider the unit vector

z := Ŵ1 ×
1√

1 + δ2‖w1‖22

(
1
δw1

)
which achieves objective value

zTA1z =
1

1 + δ2‖w1‖22

(
1
δw1

)T (
λ1 wT

1

w1 A2

)(
1
δw1

)
=

1

1 + δ2‖w1‖22

(
λ1 + 2δ‖w1‖22 + δ2wT

1 A2w1

)
,

where we used (5.1.1). By the Taylor expansion,

1

1 + ε2
= 1− ε2 +O(ε4),

for δ small enough,

zTA1z = (λ1 + 2δ‖w1‖22 + δ2wT
1 A2w1)(1− δ2‖w1‖22 +O(δ4))

= λ1 + 2δ‖w1‖22 +O(δ2)

> λ1.
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That gives the desired contradiction.
So, letting W1 := Ŵ1,

W T
1 A1W1 =

(
λ1 0
0 A2

)
.

Finally note that A2 = V̂ T
1 A1V̂1 is symmetric since

AT2 = (V̂ T
1 A1V̂1)T = V̂ T

1 A
T
1 V̂1 = V̂ T

1 A1V̂1 = A2,

by the symmetry of A1 itself.

Next step of the induction Apply the same argument to the symmetric subma-
trix A2 ∈ R(d−1)×(d−1), let Ŵ2 ∈ R(d−1)×(d−1) be the corresponding orthogonal
matrix, and define λ2 and A3 through the equation

Ŵ T
2 A2Ŵ2 =

(
λ2 0
0 A3

)
.

Define the block matrix

W2 =

(
1 0

0 Ŵ2

)
and observe that

W T
2 W

T
1 A1W1W2 = W T

2

(
λ1 0
0 A2

)
W2

=

(
λ1 0

0 Ŵ T
2 A2Ŵ2

)

=

λ1 0 0
0 λ2 0
0 0 A3

 .

Proceeding similarly by induction gives the claim, with the final Q being the
product of theWis (which is orthogonal as the product of orthogonal matrices).

We derive an important variational characterization inspired by the proof of the
spectral theorem. We will need the following quantity.

Definition 5.1.2 (Rayleigh quotient). Let A ∈ Rd×d be a symmetric matrix. The
Rayleigh quotient of A is defined as

Rayleigh

quotientRA(u) =
〈u, Au〉
〈u,u〉

which is defined for any u 6= 0 in Rd.



CHAPTER 5. SPECTRAL METHODS 331

We let the span of a collection of vectors be defined as span

span(u1, . . . ,un) :=

{
n∑
i=1

αiui : α1, . . . , αn ∈ R

}
.

Courant-FischerTheorem 5.1.3 (Courant-Fischer theorem). Let A ∈ Rd×d be a symmetric matrix
with spectral decomposition A =

∑d
i=1 λiviv

T
i where λ1 ≥ · · · ≥ λd. For each

k = 1, . . . , d, define the subspace

Vk = span(v1, . . . ,vk) and Wd−k+1 = span(vk, . . . ,vd).

Then, for all k = 1, . . . , d,

λk = min
u∈Vk

RA(u) = max
u∈Wd−k+1

RA(u).

Furthermore we have the following min-max formulas, which do not depend on the
choice of spectral decomposition, for all k = 1, . . . , d

λk = max
dim(V)=k

min
u∈V
RA(u) = min

dim(W)=d−k+1
max
u∈W

RA(u).

Note that, in all these formulas, the vector u = vk is optimal. To derive the “local”
formula, the first ones above, we expand a vector in Vk into the basis v1, . . . ,vk
and use the fact thatRA(vi) = λi and that eigenvalues are in nonincreasing order.
The “global” formulas then follow from a dimension argument.

We will need the following dimension-based fact. Let U ,V ⊆ Rd be linear
subspaces such that dim(U) + dim(V) > d, where dim(U) denotes the dimension
of U . Then there exists a nonzero vector in the intersection U ∩ V . That is,

dim(U) + dim(V) > d =⇒ (U ∩ V) \ {0} 6= ∅. (5.1.2)

Proof of Theorem 5.1.3. We first prove the local formulas, that is, the ones involv-
ing a specific decomposition.

Local formulas Since v1, . . . ,vk form an orthonormal basis of Vk, any nonzero
vector u ∈ Vk can be written as u =

∑k
i=1〈u,vi〉vi and it follows that

〈u,u〉 =
k∑
i=1

〈u,vi〉2

〈u, Au〉 =

〈
u,

k∑
i=1

〈u,vi〉λivi

〉
=

k∑
i=1

λi〈u,vi〉2.
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Thus,

RA(u) =
〈u, Au〉
〈u,u〉

=

∑k
i=1 λi〈u,vi〉2∑k
i=1〈u,vi〉2

≥ λk
∑k

i=1〈u,vi〉2∑k
i=1〈u,vi〉2

= λk

where we used λ1 ≥ · · · ≥ λk and the fact that 〈u,vi〉2 ≥ 0. MoreoverRA(vk) =
λk. So we have established

λk = min
u∈Vk

RA(u).

The expression in terms ofWd−k+1 is proved similarly.

Global formulas Since Vk has dimension k, it follows from the local formula
that

λk = min
u∈Vk

RA(u) ≤ max
dim(V)=k

min
u∈V
RA(u).

Let V be any subspace with dimension k. BecauseWd−k+1 has dimension d−k+1,
we have that dim(V) + dim(Wd−k+1) > d and there must be nonzero vector u0

in the intersection V ∩Wd−k+1 by the dimension-based fact above. We then have
by the other local formula that

λk = max
u∈Wd−k+1

RA(u) ≥ RA(u0) ≥ min
u∈V
RA(u).

Since this inequality holds for any subspace of dimension k, we have

λk ≥ max
dim(V)=k

min
u∈V
RA(u).

Combining with the inequality in the other direction above gives the claim. The
other global formula is proved similarly.

5.1.2 Elements of spectral graph theory

We apply the variational characterization of eigenvalues to matrices arising in
graph theory. In this section, graphs have no self-loop.

Unweighted graphs As we have previously seen, a convenient way of specifying
a graph is through a matrix representation. Assume the undirected graph G =
(V,E) has n = |V | vertices. Recall that the adjacency matrix A of G is the n× n
symmetric matrix defined as

Axy =

{
1 if {x, y} ∈ E,
0 otherwise.



CHAPTER 5. SPECTRAL METHODS 333

Another matrix of interest is the Laplacian matrix. It is related to the Laplace
operator we encountered previously. We will show in particular that it contains
useful information about the connectedness of the graph. Recall that, given a graph
G = (V,E), the quantity δ(v) denotes the degree of v ∈ V .

Definition 5.1.4 (Graph Laplacian). Let G = (V,E) be a graph with vertices
V = {1, . . . , n} and adjacency matrix A ∈ Rn×n. Let D = diag(δ(1), . . . , δ(n))
be the degree matrix. The graph Laplacian (or Laplacian matrix, or Laplacian for

graph

Laplacian
short) associated to G is defined as L = D −A. Its entries are

lij =


δ(i) if i = j,
−1 if {i, j} ∈ E,
0 otherwise.

Observe that the Laplacian L of a graph G is a symmetric matrix:

LT = (D −A)T = DT −AT = D −A,

where we used that both D and A are themselves symmetric. The associated
quadratic form is particularly simple and will play an important role.

Lemma 5.1.5 (Laplacian quadratic form). Let G = (V,E) be a graph with n =
|V | vertices. Its Laplacian L is a positive semi-definite matrix and furthermore we
have the following formula for the Laplacian quadratic form (or Dirichlet energy)

Laplacian

quadratic

form
xTLx =

∑
e={i,j}∈E

(xi − xj)2,

for any x = (x1, . . . , xn) ∈ Rn.

Proof of Lemma 5.1.5. Let B be an oriented incidence matrix of G (see Defini-
tion 1.1.16). We claim that BBT = L. Indeed, for i 6= j, entry (i, j) of BBT is a
sum over all edges containing i and j as endvertices, of which there is at most one.
When e = {i, j} ∈ E, that entry is −1, since one of i or j has a 1 in the column
of B corresponding to e and the other one has a −1. For i = j, letting bxy be entry
(x, y) of B,

(BBT )ii =
∑

e={x,y}∈E:i∈e

b2xy = δ(i).

That shows that BBT = L entry-by-entry.
For any x, we have (BTx)k = xv − xu if the edge ek = {u, v} is oriented as

(u, v) under B. That implies

xTLx = xTBBTx = ‖BTx‖22 =
∑

e={i,j}∈E

(xi − xj)2.
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Since the latter quantity is always nonnegative, it also implies that L is positive
semidefinite.

As a convention, we denote the eigenvalues of a Laplacian matrix L by

0 ≤ µ1 ≤ µ2 ≤ · · · ≤ µn,

and we will refer to them as Laplacian eigenvalues. Here is a simple observation.
Laplacian

eigenvalues
For any G = (V,E), the constant unit vector

y1 =
1√
n

(1, . . . , 1),

is an eigenvector of the Laplacian with eigenvalue 0. Indeed, let B be an oriented
incidence matrix of G and recall from the proof of Lemma 5.1.5 that L = BBT .
By construction BTy1 = 0 since each column of B has exactly one 1 and one −1.
So Ly1 = BBTy1 = 0 as claimed. In general, the constant vector may not be the
only eigenvector with eigenvalue one.

We are now ready to derive connectivity consequences. Recall that, for any
graph G, the Laplacian eigenvalue µ1 = 0.

Lemma 5.1.6 (Laplacian and connectivity). If G is connected, then the Laplacian
eigenvalue µ2 > 0.

Proof. Let G = (V,E) with n = |V | and let L =
∑n

i=1 µiyiy
T
i be a spectral

decomposition of its Laplacian L with 0 = µ1 ≤ · · · ≤ µn. Suppose by way of
contradiction that µ2 = 0. Any eigenvector y = (y1, . . . , yn) with 0 eigenvalue
satisfies Ly = 0 by definition. By Lemma 5.1.5 then

0 = yTLy =
∑

e={i,j}∈E

(yi − yj)2.

In order for this to hold, it must be that any two adjacent vertices i and j
have yi = yj . That is, {i, j} ∈ E implies yi = yj . Furthermore, because G is
connected, between any two of its vertices u and v (adjacent or not) there is a path
u = w0 ∼ · · · ∼ wk = v along which the yws must be the same. Thus y is a
constant vector.

But that is a contradiction since the eigenvectors y1, . . . ,yn are in fact linearly
independent, so that y1 and y2 cannot both be a constant vector.

The quantity µ2 is sometimes referred to as the algebraic connectivity of the graph.
The corresponding eigenvector, y2, is known as the Fiedler vector.

Fiedler vector
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We will be interested in more quantitative results of this type. Before proceed-
ing, we start with a simple observation. By our proof of Theorem 5.1.1, the largest
eigenvalue µn of the Laplacian L is the solution to the optimization problem

µn = max{〈x, Lx〉 : ‖x‖2 = 1}.

Such extremal characterization is useful in order to bound the eigenvalue µn, since
any choice of x with ‖x‖2 = 1 gives a lower bound through the quantity 〈x, Lx〉.
We give a simple consequence.

Lemma 5.1.7 (Laplacian and degree). Let G = (V,E) be a graph with maximum
degree δ̄. Let µn be the largest Laplacian eigenvalue. Then

µn ≥ δ̄ + 1.

Proof. Let u ∈ V be a vertex with degree δ̄. Let z be the vector with entries

zi =


δ̄ if i = u,
−1 if {i, u} ∈ E,
0 otherwise,

and let x be the unit vector z/‖z‖2. By definition of the degree of u, ‖z‖22 =
δ̄2 + δ̄(−1)2 = δ̄(δ̄ + 1).

Using the Lemma 5.1.5,

〈z, Lz〉 =
∑

e={i,j}∈E

(zi − zj)2

≥
∑

i:{i,u}∈E

(zi − zu)2

=
∑

i:{i,u}∈E

(−1− δ̄)2

= δ̄(δ̄ + 1)2,

where we restricted the sum to those edges incident with u and used the fact that
all terms in the sum are nonnegative. Finally

〈x, Lx〉 =

〈
z

‖z‖2
, L

z

‖z‖2

〉
=

1

‖z‖22
〈z, Lz〉 =

δ̄(δ̄ + 1)2

δ̄(δ̄ + 1)
= δ̄ + 1,

so that
µn = max{〈x′, Lx′〉 : ‖x′‖2 = 1} ≥ 〈x, Lx〉 = δ̄ + 1,

as claimed.
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A special case of Courant-Fischer (Theorem 5.1.3) for the Laplacian matrix is
the following.

Corollary 5.1.8 (Variational characterization of µ2). Let G = (V,E) be a graph
with n = |V | vertices. Assume the Laplacian L of G has spectral decomposition
L =

∑n
i=1 µiyiy

T
i with 0 = µ1 ≤ µ2 ≤ · · · ≤ µn and y1 = 1√

n
(1, . . . , 1). Then

µ2 = min

{∑
{u,v}∈E(xu − xv)2∑n

u=1 x
2
u

: x = (x1, . . . , xn) 6= 0,
n∑
u=1

xu = 0

}
.

Proof. By Theorem 5.1.3,

µ2 = min
x∈Wd−1

RL(x).

Since y1 is constant andWd−1 is the subspace orthogonal to it, this is equivalent
to restrictring the minimization to those nonzero xs such that

0 = 〈x,y1〉 =
1√
n

m∑
u=1

xu.

Moreover, by Lemma 5.1.5,

〈x, Lx〉 =
∑
{u,v}∈E

(xu − xv)2

so the Rayleigh quotient is

RL(x) =
〈x, Lx〉
〈x,x〉

=

∑
{u,v}∈E(xu − xv)2∑n

u=1 x
2
u

.

That proves the claim.

One application of this extremal characterization is a graph drawing heuristic.
Consider the entries of the second Laplacian eigenvector y2 normalized to have
unit norm. The entries are centered around 0 by the condition

∑n
u=1 xu = 0.

Because it minimizes the quantity∑
{u,v}∈E(xu − xv)2∑n

u=1 x
2
u

,

over all centered unit vectors, y2 tends to assign similar coordinates to adjacent
vertices. A similar reasoning applies to the third Laplacian eigenvector, which in
addition is orthogonal to the second one. See Figure 5.1 for an illustration.
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Figure 5.1: Top: A 3-by-3 grid graph with vertices located at independent uni-
formly random points in a square. Bottom: The same 3-by-3 grid graph with ver-
tices located at the coordinates corresponding to the second and third eigenvectors
of the Laplacian matrix. That is, vertex i is located at position (y2,i, y3,i).
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Example 5.1.9 (Two-component graph). Let G = (V,E) be a graph with two
connected components ∅ 6= V1, V2 ⊆ V . By the properties of connected compo-
nents, we have V1 ∩ V2 = ∅ and V1 ∪ V2 = V . Assume the Laplacian L of G has
spectral decomposition L =

∑n
i=1 µiyiy

T
i with 0 = µ1 ≤ µ2 ≤ · · · ≤ µn and

y1 = 1√
n

(1, . . . , 1). We claimed earlier that for such a graph µ2 = 0. We prove
this here using Corollary 5.1.8:

µ2 = min

{ ∑
{u,v}∈E

(xu − xv)2 :

x = (x1, . . . , xn) ∈ Rn,
n∑
u=1

xu = 0,
n∑
u=1

x2
u = 1

}
.

Based on this characterization, it suffices to find a vector x satisfying
∑n

u=1 xu = 0
and

∑n
u=1 x

2
u = 1 such that

∑
{u,v}∈E(xu − xv)2 = 0. Indeed, since µ2 ≥ 0 and

any such x gives an upper bound on µ2, we then necessarily have that µ2 = 0.
For

∑
{u,v}∈E(xu − xv)

2 to be 0, one might be tempted to take a constant
vector x. But then we could not satisfy

∑n
u=1 xu = 0 and

∑n
u=1 x

2
u = 1. Instead,

we modify this guess slightly. Because the graph has two connected components,
there is no edge between V1 and V2. Hence we can assign a different value to
each component and still get

∑
{u,v}∈E(xu − xv)2 = 0. So we look for a vector

x = (x1, . . . , xn) of the form

xu =

{
α if u ∈ V1,
β if u ∈ V2.

To satisfy the constraints on x, we require
n∑
u=1

xu =
∑
u∈V1

α+
∑
u∈V2

β = |V1|α+ |V2|β = 0,

and
n∑
u=1

x2
u =

∑
u∈V1

α2 +
∑
u∈V2

β2 = |V1|α2 + |V2|β2 = 1.

Replacing the first equation in the second one, we get

|V1|
(
−|V2|β
|V1|

)2

+ |V2|β2 =
|V2|2β2

|V1|
+ |V2|β2 = 1,

or

β2 =
|V1|

|V2|(|V2|+ |V1|)
=
|V1|
n|V2|

.
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Take

β = −

√
|V1|
n|V2|

, α =
−|V2|β
|V1|

=

√
|V2|
n|V1|

.

The vector x we constructed is in fact an eigenvector of L. Indeed, let B be an
oriented incidence matrix ofG. Then, for ek = {u, v}, (BTx)k is either xu−xv or
xv − xu. In both cases, that is 0. So Lx = BBTx = 0, that is, x is an eigenvector
of L with eigenvalue 0.

We have shown that µ2 = 0 when G has two connected components. A slight
modification of this argument shows that µ2 = 0 whenever G is not connected. J

Networks In the case of a network (i.e., edge-weighted graph) G = (V,E,w),
the Laplacian can be defined as follows. As usual, we assume that w : E → R+ is
a function that assigns positive real weights to the edges. We write we = wij for
the weight of edge e = {i, j}. Recall that the degree of a vertex i is,

δ(i) =
∑

j:{i,j}∈E

wij ,

the adjacency matrix A of G is the n× n symmetric matrix defined as

Aij =

{
wij if {i, j} ∈ E,
0 otherwise.

Definition 5.1.10 (Network Laplacian). Let G = (V,E,w) be a network with
n = |V | vertices and adjacency matrix A. Let D = diag(δ(1), . . . , δ(n)) be
the degree matrix. The network Laplacian (or Laplacian matrix, or Laplacian for
short) associated to G is defined as L = D −A.

It can be shown (see Exercise 5.2) that the Laplacian quadratic form satisfies in the
edge-weighted case

〈x, Lx〉 =
∑
{i,j}∈E

wij(xi − xj)2, (5.1.3)

for x = (x1, . . . , xn) ∈ Rn. (The keen observer will have noticed that we al-
ready encountered this quantity as the “Dirichlet energy” in Section 3.3.3; more
on this in Section 5.3.) As a positive semidefinite matrix (see again Exercise 5.2),
the network Laplacian has an orthonormal basis of eigenvectors with nonnegative
eigenvalues that satisfy the variational characterization we derived above. In par-
ticular, if we denote the eigenvalues 0 = µ1 ≤ µ2 ≤ · · · ≤ µn, it follows from
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Courant-Fischer (Theorem 5.1.3) that

µ2 = min

{ ∑
{u,v}∈E

wuv(xu − xv)2 :

x = (x1, . . . , xn)T ∈ Rn,
n∑
u=1

xu = 0,

n∑
u=1

x2
u = 1

}
.

Other variants of the Laplacian are useful. We introduce the normalized Lapla-
cian next.

Definition 5.1.11 (Normalized Laplacian). The normalized Laplacian ofG = (V,E,w)
normalized

Laplacian
with adjacency matrix A and degree matrix D is defined as

L = I −D−1/2AD−1/2.

The entries of L are

Li,j =

1 if i = j,
− wij√

δ(i)δ(j)
otherwise.

We also note the following relation to the (unnormalized) Laplacian:

L = D−1/2LD−1/2. (5.1.4)

We check that the normalized Laplacian is symmetric:

LT = IT − (D−1/2AD−1/2)T

= I − (D−1/2)TAT (D−1/2)T

= I −D−1/2AD−1/2

= L.

It is also positive semidefinite. Indeed,

xTLx = xTD−1/2LD−1/2x = (D−1/2x)TL(D−1/2x) ≥ 0,

by the properties of the Laplacian. Hence by the spectral theorem (Theorem 5.1.1),
we can write

L =
n∑
i=1

ηiziz
T
i ,
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where the zis are orthonormal eigenvectors of L and the eigenvalues satisfy

0 ≤ η1 ≤ η2 ≤ · · · ≤ ηn.

One more observation: because the constant vector is an eigenvector of L with
eigenvalue 0, we get from (5.1.4) thatD1/21 is an eigenvector of Lwith eigenvalue
0. So η1 = 0 and we set

(z1)i =

(
D1/21

‖D1/21‖2

)
i

=

√
δ(i)∑
i∈V δ(i)

, ∀i ∈ [n],

which makes z1 into a unit norm vector. The relationship to the Laplacian implies
(see Exercise 5.3) that

xTLx =
∑
{i,j}∈E

wij

(
xi√
δ(i)
− xj√

δ(j)

)2

,

for x = (x1, . . . , xn) ∈ Rn. Through the change of variables

yi =
xi√
δ(i)

,

Courant-Fischer (Theorem 5.1.3) gives this time

η2 = min

{ ∑
{u,v}∈E

wuv(yu − yv)2 :

y = (y1, . . . , yn) ∈ Rn,
n∑
u=1

δ(u)yu = 0,
n∑
u=1

δ(u)y2
u = 1

}
.

(5.1.5)

5.1.3 Perturbation results

We will need some perturbation results for eigenvalues and eigenvectors. Recall
the following definition. Define Sm−1 = {x ∈ Rm : ‖x‖2 = 1}. The spectral
norm (or induced 2-norm or 2-norm) of a matrix A ∈ Rn×m is

‖A‖2 := max
0 6=x∈Rm

‖Ax‖
‖x‖

= max
x∈Sm−1

‖Ax‖.

The induced 2-norm of a matrix has many other useful properties.
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Lemma 5.1.12 (Properties of the induced norm). Let A,B ∈ Rn×m and α ∈ R.
The following hold:

(i) ‖Ax‖2 ≤ ‖A‖2‖x‖2, ∀x ∈ Rm

(ii) ‖A‖2 ≥ 0

(iii) ‖A‖2 = 0 if and only if A = 0

(iv) ‖αA‖2 = |α|‖A‖2

(v) ‖A+B‖2 ≤ ‖A‖2 + ‖B‖2

(vi) ‖AB‖2 ≤ ‖A‖2‖B‖2.

Proof. These properties all follow from the definition of the induced norm and the
corresponding properties for the vector norm:

• Claims (i) and (ii) are immediate from the definition.

• For (ii) note that ‖A‖2 = 0 implies ‖Ax‖2 = 0,∀x ∈ Sm−1, so that Ax =
0,∀x ∈ Sm−1. In particular, Aij = eTi Aej = 0,∀i, j.

• For (iv), (v), (vi), observe that for all x ∈ Sm−1

‖αAx‖2 = |α|‖Ax‖2

‖(A+B)x‖2 = ‖Ax +Bx‖2 ≤ ‖Ax‖2 + ‖Bx‖2 ≤ ‖A‖2 + ‖B‖2
‖(AB)x‖2 = ‖A(Bx)‖2 ≤ ‖A‖2‖Bx‖2 ≤ ‖A‖2‖B‖2.

Perturbations of eigenvalues For a symmetric matrix C ∈ Rd×d, we let λj(C),
j = 1, . . . , d, be the eigenvalues of C in nonincreasing order with corresponding
orthonormal eigenvectors vj(C), j = 1, . . . , d. As in the Courant-Fischer theorem
(Theorem 5.1.3), define the subspaces

Vk(C) = span(v1(C), . . . ,vk(C))

and
Wd−k+1(C) = span(vk(C), . . . ,vd(C)).

The following lemma is one version of what is known as Weyl’s inequality.
Weyl’s

inequality
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Lemma 5.1.13 (Weyl’s inequality). Let A ∈ Rd×d and B ∈ Rd×d be symmetric
matrices. Then, for all j = 1, . . . , d,

max
j∈[d]
|λj(B)− λj(A)| ≤ ‖B −A‖2.

Proof. Let H = B − A. We prove only one upper bound. The other one follows
from interchanging the roles of A and B. Because

dim(Vj(B)) + dim(Wd−j+1(A)) = j + (d− j + 1) = d+ 1 > d,

it follows from (5.1.2) that Vj(B) ∩Wd−j+1(A) contains a nonzero vector. Let v
be a unit vector in that intersection.

By Theorem 5.1.3,

λj(B) ≤ 〈v, (A+H)v〉 = 〈v, Av〉+ 〈v, Hv〉 ≤ λj(A) + 〈v, Hv〉.

Moreover, by Cauchy-Schwarz (Theorem B.4.8), since ‖v‖2 = 1

〈v, Hv〉 ≤ ‖v‖2‖Hv‖2 ≤ ‖H‖2,

which proves the claim after rearranging.

Perturbations of eigenvectors While Weyl’s inequality (Lemma 5.1.13) indi-
cates that the eigenvalues of A and B are close when ‖A − B‖2 is small, it says
nothing about the eigenvectors. The following theorem remediates that. It is tradi-
tionally stated in terms of the angle between the eigenvectors (whereby the name).
Here we give a version that is more suited to the applications we will encounter.
We do not optimize the constants. We use the same notation as in the previous
paragraph. Recall Parseval’s identity: if u1, . . . ,ud is an orthonormal basis of Rd,
then ‖x‖2 =

∑d
i=1〈x,ui〉2.

Theorem 5.1.14 (Davis-Kahan sin θ theorem). Let A ∈ Rd×d and B ∈ Rd×d be
symmetric matrices. For an i ∈ {1, . . . , d}, assume that

δ := min
j 6=i
|λi(A)− λj(A)| > 0.

Then

min
s∈{+1,−1}

‖vi(A)− svi(B)‖22 ≤
8‖A−B‖22

δ2
.
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Proof. Expand vi(B) in the basis formed by the eigenvectors of A, that is,

vi(B) =
d∑
j=1

〈vi(B),vj(A)〉vj(A),

where we used the orthonormality of the vj(A)s. On the one hand,

‖(A− λi(A)Id×d)vi(B)‖22

=

∥∥∥∥∥∥
d∑
j=1

〈vi(B),vj(A)〉(A− λi(A)Id×d)vj(A)

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
d∑

j=1,j 6=i
〈vi(B),vj(A)〉(λj(A)− λi(A))vj(A)

∥∥∥∥∥∥
2

2

=

d∑
j=1,j 6=i

〈vi(B),vj(A)〉2(λj(A)− λi(A))2

≥ δ2(1− 〈vi(B),vi(A)〉2),

where, on the last two lines, we used the orthonormality of the vj(A)s and vj(B)s
through Parseval’s identity, as well as the definition of δ.

On the other hand, letting E = A−B, by the triangle inequality

‖(A− λi(A)I)vi(B)‖2 = ‖(B + E − λi(A)I)vi(B)‖2
≤ ‖(B − λi(A)I)vi(B)‖2 + ‖E vi(B)‖2
≤ |λi(B)− λi(A)|‖vi(B)‖2 + ‖E‖2‖vi(B)‖2
= 2‖E‖2,

where we used Lemma 5.1.12 and Weyl’s inequality.
Combining the last two inequalities gives

(1− 〈vi(B),vi(A)〉2) ≤ 4‖E‖22
δ2

.

The result follows by noting that, since |〈vi(B),vi(A)〉| ≤ 1 by Cauchy-Schwarz
(Theorem B.4.8), we have

min
s∈{+1,−1}

‖vi(A)− svi(B)‖2 = 2− 2|〈vi(B),vi(A)〉|

≤ 2(1− 〈vi(B),vi(A)〉2)

≤ 8‖E‖22
δ2

.
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5.1.4 . Data science: community recovery

A common task in network analysis is to recover hidden community structure.
Informally, we seek groups of vertices with more edges within the groups then to
the rest of the graph. More rigorously, providing statistical guarantees on the output
of a community recovery algorithm requires some underlying random graph model.
The standard model for this purpose is the stochastic blockmodel, a generalization
of the Erdös-Rényi graph model with a “planted partition.”

Stochastic blockmodel and recovery requirement We restrict ourselves to the
simple case of two strictly balanced communities. Consider a random graph on n
(even) nodes where there are two communities, labeled +1 and −1, consisting of
n/2 nodes. Each vertex i ∈ V is assigned a community label Xi ∈ {1,−1} as
follows: a subset of n/2 vertices is chosen uniformly at random among all such
subsets to form community +1, and the rest of the vertices form community −1.
For two nodes i, j, the edge {i, j} is present with probability p if they belong to
the same community, and with probability q otherwise. All edges are independent.
The following 2 × 2 matrix describes the edge density within and across the two
communities:

W =

+1 −1[ ]
+1 p q
−1 q p

.

We assume that p ≥ q, encoding the fact that vertices belonging to the same com-
munity are more likely to share an edge. To summarize, we say that (X,G) ∼
SBMn,p,q if:

stochastic

blockmodel1. (Communities) The assignment X = (X1, . . . , Xn) is uniformly random
over

Πn
2 := {x ∈ {+1,−1}n : xT1 = 0},

where 1 = (1, · · · , 1) is the all-one vector.

2. (Graph) Conditioned on X , the graph G = ([n], E) has independent edges
where {i, j} is present with probability WXi,Xj for ∀i < j .

We denote the corresponding measure by Pn,p,q. We allow p and q to depend on n
(although we do not make that dependence explicit).

Roughly speaking, the community recovery problem is the following: given G,
output X . There are different notions of recovery.
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Definition 5.1.15 (Agreement). The agreement between two community assign-
ment vectors x,y ∈ {+1,−1}n is the largest fraction of common assignments
between x and ±y, that is,

α(x,y) = max
s∈{+1,−1}

1

n

n∑
i=1

1{xi = syi}.

The role of s in this formula is to account for the fact that the community names
are not meaningful.

Now consider the following recovery requirements. These are asymptotic notions,
as n→ +∞.

recovery
Definition 5.1.16 (Recovery requirement). Let (X,G) ∼ SBMn,p,q. For any esti-
mator X̂ := X̂(G) ∈ Πn

2 , we say that it achieves:

- exact recovery if Pn,p,q[α(X, X̂) = 1] = 1− o(1); or

- almost exact recovery if Pn,p,q[α(X, X̂) = 1− o(1)] = 1− o(1).

Next we establish sufficient conditions for almost exact recovery. First we describe
a natural estimator X̂ .

MAP estimator and spectral clustering A natural starting point is the maxi-
mum a posteriori (MAP) estimator. Let Ω(X) be the balanced partition of [n]
corresponding to X and Ω̂(G) be the one corresponding to X̂(G). The probability
of error, that is, the probability of not recovering the true partition, is given by

P[Ω(X) 6= Ω̂(G)] =
∑
g

P[Ω̂(g) 6= Ω(X) |G = g]P[G = g], (5.1.6)

where the sum is over all graphs on n vertices (i.e., all possible subsets of edges
present) and we dropped the subscript n, p, q to simplify the notation. The MAP
estimator Ω̂MAP(G) is obtained by minimizing each term P[Ω̂(g) 6= Ω(X) |G =
g] individually (note that P[G = g] > 0 for all g by definition of the SBMn,p,q, a
probability which does not depend on the estimator). Equivalently we choose for
each g a partition γ that maximizes the posterior probability

P[Ω(X) = γ |G = g] =
P[G = g |Ω(X) = γ]P[Ω(X) = γ]

P[G = g]

= P[G = g |Ω(X) = γ] · 1

|Πn
2 |P[G = g]

, (5.1.7)
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where we applied Bayes’ rule on the first line and the uniformity of the partition X
on the second line.

Based on (5.1.7), we seek a partition that maximizes P[G = g |Ω(X) = γ]. We
compute this last probability explicitly. For fixed g, let M := M(g) be the number
of edges in g. For any γ, denote by Min := Min(g, γ) and Mout := Mout(g, γ)
the number of edges within and across communities respectively, and note that
Min = M−Mout. By definition of the SBMn,p,q model, the probability of a graph
g given a partition γ is expressed simply as

P[G = g |Ω(X) = γ]

= qMout(1− q)(n
2

)2−MoutpMin(1− p){(
n
2)−(n

2
)2}−Min

= qMout(1− q)(n
2

)2−MoutpM−Mout(1− p){(
n
2)−(n

2
)2}−{M−Mout}

=

[
q

1− q
· 1− p

p

]Mout {
(1− q)(n

2
)2
pM (1− p){(

n
2)−(n

2
)2}−M

}
.

The expression in curly brackets does not depend on the partition γ. Moreover,
since we assume that p ≥ q, we have that

[
q

1−q ·
1−p
p

]
≤ 1 (which can be checked

directly by rearranging and cancelling). Therefore, to maximize P[G = g |Ω(X) =
γ] over γ for a fixed g, we need to choose a partition that results in the smallest
possible value of Mout, the number of edges across the two communities. This
problem is well-known in combinatorial optimization, where it is referred to as
the minimum bisection problem. It is unfortunately NP-hard and we consider a

minimum

bisection

problem

relaxation that admits a polynomial-time algorithmic solution.
To see how this comes about, observe that the minimum bisection problem can

be reformulated as

max
x∈{+1,−1}n, xT 1=0

xTAx

where A is the n × n adjacency matrix. Replacing the combinatorial constraint
x ∈ {+1,−1}n by x ∈ Rn with ‖x‖2 = n leads to the relaxation

max
z∈Rn, zT 1=0, ‖z‖2=n

zTAz

= max
0 6=z∈Rn, zT 1=0

(
n

z

‖z‖2

)T
A

(
n

z

‖z‖2

)
= n2 max

0 6=z∈Rn, zT 1=0

zTAz

zT z
,

where we changed the notation from x to z to emphasize that the solution no longer
encodes a partition. We recognize the Rayleigh quotient ofA as the objective func-
tion in the final formulation. At this point, it is tempting to use Courant-Fischer



CHAPTER 5. SPECTRAL METHODS 348

(Theorem 5.1.3) and conclude that the maximum above is achieved at the second
eigenvalue of A. Note however that the vector 1 (appearing in the orthogonality
constraint zT1 = 0) is not in general an eigenvector of A (unless the graph hap-
pens to be regular). To leverage the variational characterization of eigenvalues in
a statistically justified way, we instead turn to the expected adjacency matrix and
then establish concentration.

Lemma 5.1.17 (Expected adjacency). Let (X,G) ∼ SBMn,p,q, let A be the adja-
cency matrix of G and let AX = En,p,q[A |X]. Then

AX = n
p+ q

2
u1u

T
1 + n

p− q
2

u2u
T
2 − p I,

where
u1 =

1√
n
1, u2 =

1√
n
X.

Proof. For any distinct pair i, j, the term(
n
p+ q

2
u1u

T
1

)
i,j

= n
p+ q

2

(
1√
n

)2

=
p+ q

2

while the term(
n
p− q

2
u2u

T
2

)
i,j

= n
p− q

2

(
1√
n

)2

XiXj =
p− q

2
XiXj .

The product XiXj is 1 when i and j belong to the same community and is −1
otherwise. In the former case, summing the two terms indeed gives p, while in the
latter case it gives q. Finally, the term −pI accounts for the fact that A has zeros
on the diagonal.

Now condition on X and observe that u1 and u2 in Lemma 5.1.17 are orthog-
onal by our assumption that X corresponds to a balanced partition (i.e., with two
communities of equal size). Hence we deduce that an eigenvector decomposition of
AX is formed of u1, u2 and any orthonormal basis of the orthogonal complement
of the span of u1 and u2, with respective eigenvalues

n
p+ q

2
− p, n

p− q
2
− p, −p.

So the second largest eigenvalue ofAX is λ2(AX) = n p−q
2 − p (independently of

X), and Courant-Fischer implies

max
06=z∈Rn,zT 1=0

zTAXz
zT z

= λ2(AX).
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The corresponding eigenvector, up to scaling and sign, is precisely what we are
trying to recover, namely, the community assignment X .

These observations motivate the following spectral clustering approach.
spectral

clustering1. Input: graph G with adjacency matrix A.

2. Compute an eigenvector decomposition of A.

3. Let û2 be the eigenvector corresponding to the second largest eigenvalue.

4. Output: X̂(G) = sgn (û2) .

Here we used the notation

(sgn(z))i =

{
+1 if zi ≥ 0,
−1 otherwise.

Because we used A rather than AX (which we do not know), it is not immediate
that this approach will work. Below, we use Davis-Kahan (Theorem 5.1.14) to
show that, under some conditions, the second eigenvector of A is concentrated
around that of AX—and therefore almost exact recovery holds.

Before getting to the analysis, we make a final algorithmic remark. The “clus-
tering” above, specifically taking the sign of the second eigenvector, works in this
toy model but is perhaps somewhat naive. More generally, in a spectral cluster-
ing method, one uses the top eigenvectors (deciding how many is a bit of an art)
of the adjacency matrix (or of another matrix associated to the graph such as the
Laplacian or normalized Laplacian) to obtain a low-dimensional representation of
the input. Then in a second step, one uses a clustering algorithm, for example,
k-means clustering, to extract communities in the low-dimensional space.

Almost exact recovery We prove the following. We restrict ourselves to the case
where p and q are constants not depending on n.

Theorem 5.1.18. Let (X,G) ∼ SBMn,p,q and let A be the adjacency matrix of
G. Let µ := min

{
q, p−q2

}
> 0. Clustering according to the sign of the second

eigenvector of A identifies the two communities of G with probability at least 1 −
e−n, except for C/µ2 misclassified nodes for some constant C > 0.

There are two key ingredients to the proof: concentration of the adjacency matrix
and perturbation arguments.

We start with the former.
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Lemma 5.1.19 (Norm of the centered adjacency matrix). Let (X,G) ∼ SBMn,p,q,
letA be the adjacency matrix ofG and letAX = En,p,q[A |X]. There is a constant
C ′ > 0 such that, conditioned on X ,

‖A−AX‖2 ≤ C ′
√
n,

with probability at least 1− e−n.

Proof. Condition on X . We use Theorem 2.4.28 on the random matrix R :=
A − AX . The entries of R are centered and independent (conditionally on X).
Moreover they are bounded. Indeed, for i 6= j, Aij ∈ {0, 1} while (AX)ij ∈
{q, p}. So Rij ≤ [−p, 1 − q]. On the diagonal, Rii = 0. Hence, by Hoeffding’s
lemma (Lemma 2.4.12), the entries are sub-Gaussian with variance factor

1

4
(1− q − (−p))2 ≤ 1.

Taking t =
√
n in Theorem 2.4.28, there is a constant C > 0 such that with

probability 1− e−n

‖A−AX‖2 ≤ C
√

1(
√
n+
√
n+
√
n).

Adjusting the constant gives the claim.

We are ready to prove the theorem.

Proof of Theorem 5.1.18. Condition on X . To apply the Davis-Kahan theorem
(Theorem 5.1.14), we need to bound the smallest gap δ between the second largest
eigenvalue of AX and its other eigenvalues. Recall that the eigenvalues are

n
p+ q

2
− p, n

p− q
2
− p, −p,

so

δ = min

{
n
p− q

2
, n q

}
= nµ > 0.

By Davis-Kahan and Lemma 5.1.19, with probability at least 1 − e−n, there is
θ ∈ {+1,−1} such that

‖u2 − θ û2‖22 ≤
8‖A−AX‖22

δ2
≤ 8(C ′

√
n)2

(nµ)2
=

C

nµ2
,

by adjusting the constant. Note that this bound holds for any X .
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Rearranging and expanding the norm, we get∑
i

∣∣√n (u2)i −
√
n θ (û2)i

∣∣2 ≤ C

µ2
.

If the signs of (u2)i and θ (û2)i disagree, then the i-th term in the sum above is
≥ 1. So there can be at most C/µ2 such disagreements. That establishes the
desired bound on the number of misclassified nodes.

Remark 5.1.20. It was shown in [YP14, MNS15a, AS15] that almost exact re-
covery in the balanced two-community model SBMn,pn,qn with pn = an/n and
qn = bn/n is achievable (and computationally efficiently so) if and only if

(an − bn)2

(an + bn)
= ω(1).

On the other hand, it was shown in [ABH16, MNS15a] that exact recovery in the
SBMn,pn,qn with pn = α log n/n and qn = β log n/n is achievable and computa-
tionally efficiently so if

√
α−
√
β > 2 and not achievable if

√
α−
√
β < 2.

5.2 Spectral techniques for reversible Markov chains

In this section, we apply the spectral theorem to reversible Markov chains. Through-
out (Xt) is an irreducible Markov chain on a state space V with transition matrix
P reversible with respect to a positive stationary measure π > 0. Recall that this
means that π(x)P (x, y) = π(y)P (y, x) for all x, y ∈ V . We also assume that P
is irreducible.

A Hilbert space It will be convenient to introduce a Hilbert space of func-
tions over V . Let `2(V, π) be the space of functions f : V → R such that∑

x∈V π(x)f(x)2 < +∞. Equipped with the following inner product, it forms
a Hilbert space (i.e., a real inner product space that is also a complete metric space
(see Theorem B.4.10) with respect to the induced metric; we will work mostly in
finite dimension where it is merely a slight generalization of Euclidean space). For
f, g ∈ `2(V, π), define

〈f, g〉π :=
∑
x∈V

π(x)f(x)g(x),

and

‖f‖2π := 〈f, f〉π.
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The inner product is well-defined since the series is summable by Hölder’s inequal-
ity (Theorem B.4.8), which implies the Cauchy-Schwarz inequality

〈f, g〉π ≤ ‖f‖π‖g‖π.

Minkowski’s inequality (Theorem B.4.9) implies the triangle inequality

‖f + g‖π ≤ ‖f‖π + ‖g‖π.

The integral with respect to π (see Appendix B) reduces in this case to a sum

π(f) :=
∑
x∈V

π(x)f(x),

provided π(|f |) < +∞ or f ≥ 0. Here |f | is defined as |f |(x) := |f(x)| for all
x ∈ V . We also write πf = π(f) to simplify the notation.

We recall some standard Hilbert space facts. The countable collection of func-
tions {fi}∞i=1 in `2(V, π) is an orthonormal basis if: (i) 〈fi, fj〉π = 0 if i 6= j and =
1 if i = j; and (ii) any f ∈ `2(V, π) can be written as limn→+∞

∑n
i=1〈fi, f〉πfi =

f where the limit is in the norm. We then have Parseval’s identity: for any
Parseval’s

identity
g ∈ `2(V, π)

‖g‖2π =

∞∑
j=1

〈g, fj〉2π. (5.2.1)

Think of P as an operator on `2(V, π). That is, let Pf : V → R be defined as

(Pf)(x) :=
∑
y∈V

P (x, y)f(y),

for x ∈ V . For any f ∈ `2(V, π), Pf is well-defined and further we have

‖Pf‖π ≤ ‖f‖π. (5.2.2)

Indeed by Cauchy-Schwarz, stochasticity, Fubini and stationarity

‖P |f |‖2π =
∑
x

π(x)

[∑
y

P (x, y)|f(y)|

]2

≤
∑
x

π(x)

[∑
y

P (x, y)|f(y)|2
∑
z

P (x, z)

]
=
∑
y

∑
x

π(x)P (x, y)f(y)2

=
∑
y

π(y)f(y)2

= ‖f‖2π < +∞. (5.2.3)
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This shows that Pf is well-defined since π > 0 and hence the series in square
brackets on the first line is finite for all x. Applying the same argument to ‖Pf‖2π
gives the inequality above.

Everything above holds whether or not P is reversible, so long as π is a sta-
tionary measure. Now we use reversibility. We claim that, when P reversible, then
it is self-adjoint, that is,

〈f, Pg〉π = 〈Pf, g〉π ∀f, g ∈ `2(V, π). (5.2.4)

This follows immediately by reversibility

〈f, Pg〉π =
∑
x∈V

π(x)f(x)
∑
y∈V

P (x, y)g(y)

=
∑
x∈V

∑
y∈V

π(y)P (y, x)f(x)g(y)

=
∑
y∈V

π(y)g(y)
∑
x∈V

P (y, x)f(x)

= 〈Pf, g〉π,

where we argue as in (5.2.3) to justify using Fubini.
Throughout this section, we denote by 0 and 1 the all-zero and all-one functions

respectively.

5.2.1 Spectral gap

In this subsection, we restrict ourselves to a finite state space V . Our goal is to
bound the mixing time of (Xt) in terms of the eigenvalues of the transition matrix
P . We assume that π is now the stationary distribution, that is,

∑
x∈V π(x) = 1

(which is unique by Theorem 1.1.24 and irreducibility). We also let n := |V | <
+∞.

Spectral decomposition Self-adjointness generalizes the notion of a symmetric
matrix, with one consequence being that a version of the spectral theorem applies
to P (at least in this finite-dimensional case; see Section 5.2.5 for more discussion
on this). For completeness, we derive it from Theorem 5.1.1. It will be convenient
to assume without loss of generality that V = [n] and identify functions in `2(V, π)
with vectors in Rn.

Theorem 5.2.1 (Reversibility: spectral theorem). There is an orthonormal basis of
`2(V, π) formed of real eigenfunctions {fj}nj=1 ofP with real eigenvalues {λj}nj=1.
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Proof. Let Dπ be the diagonal matrix with π on the diagonal. By reversibility,

M(x, y) := (D1/2
π PD−1/2

π )x,y

=

√
π(x)

π(y)
P (x, y)

=

√
π(y)

π(x)
P (y, x)

= (D1/2
π PD−1/2

π )y,x

= M(y, x).

So M = (M(x, y))x,y = D
1/2
π PD

−1/2
π is a symmetric matrix. By the spectral

theorem (Theorem 5.1.1), it has real eigenvectors {φj}nj=1 forming an orthonormal

basis of Rn with corresponding real eigenvalues {λj}nj=1. Define fj := D
−1/2
π φj .

Then

Pfj = PD−1/2
π φj

= D−1/2
π D1/2

π PD−1/2
π φj

= D−1/2
π Mφj

= λjD
−1/2
π φj

= λjfj ,

and

〈fi, fj〉π = 〈D−1/2
π φi, D

−1/2
π φj〉π

=
∑
x∈V

π(x)[π(x)−1/2φi(x)][π(x)−1/2φj(x)]

=
∑
x∈V

φi(x)φj(x).

Because {φj}nj=1 is an orthonormal basis of Rn, we have that {fj}nj=1 is an or-
thonormal basis of (Rn, 〈·, ·〉π).

We collect a few more facts about the eigenbasis. Recall that

‖f‖∞ = max
x∈V
|f(x)|.

Lemma 5.2.2. Any eigenvalue λ of P satisfies |λ| ≤ 1.
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Proof. It holds that

Pf = λf =⇒ |λ|‖f‖∞ = ‖Pf‖∞ = max
x

∣∣∣∣∣∑
y

P (x, y)f(y)

∣∣∣∣∣ ≤ ‖f‖∞.
Rearranging gives the claim.

We order the eigenvalues 1 ≥ λ1 ≥ · · · ≥ λn ≥ −1. The second eigenvalue will
play an important role below.

Lemma 5.2.3. We have λ1 = 1 and λ2 < 1. Also we can take f1 = 1.

Proof. Because P is stochastic, the all-one vector is a right eigenvector with eigen-
value 1. Any eigenfunction with eigenvalue 1 is harmonic with respect to P on V
(see (3.3.2)). By Corollary 3.3.3, for a finite, irreducible chain the only harmonic
functions are the constant functions. So the eigenspace corresponding to 1 is one-
dimensional. We must have λ2 < 1 by Lemma 5.2.2.

When the chain is aperiodic, it cannot have an eigenvalue −1. Exercise 5.9 asks
for a proof.

Lemma 5.2.4. If P has an eigenvalue equal to −1, then P is not aperiodic.

Lemma 5.2.5. For all j 6= 1, πfj = 0.

Proof. By orthonormality, 〈f1, fj〉π = 0. Now use the fact that f1 = 1.

Let δx(y) := 1{x=y}.

Lemma 5.2.6. For all x, y,

n∑
j=1

fj(x)fj(y) = π(x)−1δx(y).

Proof. Using the notation of Theorem 5.2.1, the matrix Φ whose columns are the
φjs is orthogonal so ΦΦT = I . That is,

n∑
j=1

φj(x)φj(y) = δx(y),

or
n∑
j=1

√
π(x)π(y)fj(x)fj(y) = δx(y).

Rearranging gives the result.
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Using the eigendecomposition of P , we get the following expression for its
t-th power P t.

Theorem 5.2.7 (Spectral decomposition of P t). Let {fj}nj=1 be the eigenfunctions
of a reversible and irreducible transition matrix P with corresponding eigenvalues
{λj}nj=1, as defined previously. Assume λ1 ≥ · · · ≥ λn. We have the decomposi-
tion

P t(x, y)

π(y)
= 1 +

n∑
j=2

fj(x)fj(y)λtj .

Proof. Let F be the matrix whose columns are the eigenvectors {fj}nj=1 and let
Dλ be the diagonal matrix with {λj}nj=1 on the diagonal. Using the notation in the
proof of Theorem 5.2.1,

D1/2
π P tD−1/2

π = M t = (D1/2
π F )Dt

λ(D1/2
π F )T ,

which after rearranging becomes

P tD−1
π = FDt

λF
T .

Expanding and using Lemma 5.2.3 gives the result.

Example 5.2.8 (Two-state chain). Let V := {0, 1} and

P :=

(
1− α α
β 1− β

)
,

for α, β ∈ (0, 1). Observe that P is reversible with respect to the stationary distri-
bution

π :=

(
β

α+ β
,

α

α+ β

)
.

We know that f1 = 1 is an eigenfunction with eigenvalue 1. As can be checked by
direct computation, the other eigenfunction (in vector form) is

f2 :=

(√
α

β
,−
√
β

α

)
,

with eigenvalue λ2 := 1− α− β. We normalized f2 so that ‖f2‖2π = 1.
By Theorem 5.2.7, the spectral decomposition at time t is therefore

P tD−1
π =

(
1 1
1 1

)
+ (1− α− β)t

(
α
β −1

−1 β
α

)
.
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Or, rearranging,

P t =

(
β

α+β
α

α+β
β

α+β
α

α+β

)
+ (1− α− β)t

(
α

α+β − α
α+β

− β
α+β

β
α+β

)
.

Note for instance that the case α + β = 1 corresponds to a rank-one P , which
immediately converges to stationarity.

Assume β ≥ α. Then, by (1.1.6) and Lemma 4.1.9,

d(t) = max
x

1

2

∑
y

|P t(x, y)− π(y)| = β

α+ β
|1− α− β|t.

As a result,

tmix(ε) =


log
(
εα+β

β

)
log |1− α− β|

 =


log ε−1 − log

(
α+β
β

)
log |1− α− β|−1

 .
J

Spectral gap and mixing Assume further that P is aperiodic. Recall that by the
convergence theorem (Theorem 1.1.33), for all x, y, P t(x, y)→ π(y) as t→ +∞,
and that the mixing time (Definition 1.1.35) is

tmix(ε) := min{t ≥ 0 : d(t) ≤ ε},
where d(t) := maxx∈V ‖P t(x, ·)− π(·)‖TV. It will be convenient to work with a
different notion of distance.

Definition 5.2.9 (Separation distance). The separation distance is defined as
separation

distancesx(t) := max
y∈V

[
1− P t(x, y)

π(y)

]
,

and we let s(t) := maxx∈V sx(t).

Lemma 5.2.10 (Separation distance and total variation distance).

d(t) ≤ s(t).
Proof. By Lemma 4.1.15,

‖P t(x, ·)− π(·)‖TV =
∑

y:P t(x,y)<π(y)

[
π(y)− P t(x, y)

]
=

∑
y:P t(x,y)<π(y)

π(y)

[
1− P t(x, y)

π(y)

]
≤ sx(t).

Since this holds for any x, the claim follows.
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It follows that, from the spectral decomposition (Theorem 5.2.7), the speed of
convergence of P t(x, y) to π(y) is dominated by the largest eigenvalue of P not
equal to 1.

Definition 5.2.11 (Spectral gap). The absolute spectral gap is γ∗ := 1− λ∗ where
absolute

spectral

gap

λ∗ := |λ2| ∨ |λn|. The spectral gap is γ := 1− λ2.

By Lemmas 5.2.3 and 5.2.4, we have γ∗ > 0 when P is irreducible and aperiodic.
Note that the eigenvalues of the lazy version 1

2P + 1
2I of P are {1

2(λj + 1)}nj=1

which are all nonnegative. So, there, γ∗ = γ.

Definition 5.2.12 (Relaxation time). The relaxation time is defined as
relaxation

timetrel := γ−1
∗ .

Example 5.2.13 (Two-state chain (continued)). Returning to Example 5.2.8, there
are two cases:

• α + β ≤ 1: In that case the (absolute) spectral gap is γ∗ = γ = α + β and
the relaxation time is trel = 1/(α+ β).

• α+ β > 1: In that case the absolute spectral gap is γ∗ = 2− α− β and the
relaxation time is trel = 1/(2− α− β).

J

The following result clarifies the relationship between the mixing and relax-
ation times. Let πmin = minx π(x).

Theorem 5.2.14 (Mixing time and relaxation time). Let P be reversible, irre-
ducible, and aperiodic with positive stationary distribution π. For all ε > 0,

(trel − 1) log

(
1

2ε

)
≤ tmix(ε) ≤ log

(
1

επmin

)
trel.

Proof. We start with the upper bound. By Lemma 5.2.10, it suffices to find t such
that s(t) ≤ ε. By the spectral decomposition and Cauchy-Schwarz,∣∣∣∣P t(x, y)

π(y)
− 1

∣∣∣∣ ≤ λt∗ n∑
j=2

|fj(x)fj(y)| ≤ λt∗

√√√√ n∑
j=2

fj(x)2

n∑
j=2

fj(y)2.

By Lemma 5.2.6,
∑n

j=2 fj(x)2 ≤ π(x)−1. Plugging this back above, we get∣∣∣∣P t(x, y)

π(y)
− 1

∣∣∣∣ ≤ λt∗√π(x)−1π(y)−1 ≤ λt∗
πmin

=
(1− γ∗)t

πmin
≤ e−γ∗t

πmin
, (5.2.5)
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where we used that 1 − z ≤ e−z for all z ∈ R (see Exercise 1.16). Observe that
the right-hand side is less than ε when t ≥ log

(
1

επmin

)
trel.

For the lower bound, let f∗ be an eigenfunction associated with an eigenvalue
achieving λ∗ := |λ2|∨|λn|. Let z be such that |f∗(z)| = ‖f∗‖∞. By Lemma 5.2.5,
πf∗ = 0. Hence

λt∗|f∗(z)| = |P tf∗(z)|

=

∣∣∣∣∣∑
y

[P t(z, y)f∗(y)− π(y)f∗(y)]

∣∣∣∣∣
≤ ‖f∗‖∞

∑
y

|P t(z, y)− π(y)| ≤ ‖f∗‖∞2d(t),

so d(t) ≥ 1
2λ

t
∗. When t = tmix(ε), ε ≥ d(tmix(ε)) ≥ 1

2λ
tmix(ε)
∗ . Therefore,

rearranging and taking a logarithm, we get

tmix(ε)

(
1

λ∗
− 1

)
≥ tmix(ε) log

(
1

λ∗

)
≥ log

(
1

2ε

)
,

where we used z = 1 − λ−1
∗ in 1 − z ≤ e−z to get the first inequality. The result

follows from
(

1
λ∗
− 1
)−1

=
(

1−λ∗
λ∗

)−1
=
(

γ∗
1−γ∗

)−1
= trel − 1.

5.2.2 . Random walks: a spectral look at cycles and hypercubes

We illustrate the results in the previous subsection to random walk on cycles and
hypercubes.

Random walk on a cycle

Consider simple random walk on the n-cycle (see Example 1.1.17). That is, V :=
{0, 1, . . . , n−1} and P (x, y) = 1/2 if and only if |x−y| = 1 mod n. We assume
that n is odd to avoid periodicity issues. Let π ≡ n−1 be the stationary distribution
(by symmetry and |V | = n). We showed in Section 4.3.2 that (for the lazy version
of the chain) the mixing time is tmix(ε) = Θ(n2).

Here we use spectral techniques. We first compute the eigendecomposition,
which in this case can be determined explicitly.

Lemma 5.2.15 (Cycle: eigenbasis). For j = 1, . . . , n− 1, the function

gj(x) :=
√

2 cos

(
2πjx

n

)
, x = 0, 1, . . . , n− 1,
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is an eigenfunction of P with eigenvalue

µj := cos

(
2πj

n

)
,

and g0 = 1 is an eigenfunction with eigenvalue 1. Moreover the gjs are orthonor-
mal in `2(V, π).

Proof. We know from Lemma 5.2.3 that 1 is an eigenfunction with eigenvalue 1.
Let j ∈ {1, . . . , n−1}. Note that, for all x, switching momentarily to the complex
representation (where we use i for the imaginary unit)∑

y

P (x, y)gj(y) =
1

2

[√
2 cos

(
2πj(x− 1)

n

)
+
√

2 cos

(
2πj(x+ 1)

n

)]

=

√
2

2

[
ei

2πj(x−1)
n + e−i

2πj(x−1)
n

2
+
ei

2πj(x+1)
n + e−i

2πj(x+1)
n

2

]

=
√

2

[
ei

2πjx
n + e−i

2πjx
n

2

][
ei

2πj
n + e−i

2πj
n

2

]

=

[√
2 cos

(
2πjx

n

)][
cos

(
2πj

n

)]
= cos

(
2πj

n

)
gj(x).

The orthonormality follows from standard trigonometric identities. We prove
only that the gjs have unit norm. We use the Dirichtlet kernel (see Exercise 5.8)

1 + 2
n∑
k=1

cos kθ =
sin((n+ 1/2)θ)

sin(θ/2)
,

for θ 6= 0, and the identity cos2(θ) = 1
2(1 + cos(2θ)). For j = 0, gj = 1 and the

norm squared is
∑

x π(x) = 1. For j 6= 0, we have ‖gj‖2π is∑
x∈V

π(x)gj(x)2 =
1

n

n−1∑
x=0

2 cos2

(
2πjx

n

)

=
1

n

n−1∑
x=0

(
1 + cos

(
4πjx

n

))

= 1 +
1

n

n∑
k=1

cos

(
k

4πj

n

)
= 1 +

1

2

[
sin((n+ 1/2)(4πj/n))

sin((4πj/n)/2)
− 1

]
,
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which is indeed 1.

From the eigenvalues, we derive the relaxation time (Definition 5.2.12) analyt-
ically.

Theorem 5.2.16 (Cycle: relaxation time). The relaxation time for lazy simple ran-
dom walk on the n-cycle is

trel =
1

1− cos
(

2π
n

) = Θ(n2).

Proof. By Lemma 5.2.15, the absolute spectral gap (Definition 5.2.11) is 1 −
cos
(

2π
n

)
, using that n is odd. By a Taylor expansion,

1− cos

(
2π

n

)
=

4π2

n2
+O(n−4).

Since πmin = 1/n, we get tmix(ε) = O(n2 log n) and tmix(ε) = Ω(n2) by Theo-
rem 5.2.14.

It turns out our upper bound is off by a logarithmic factor. A sharper bound on
the mixing time can be obtained by working directly with the spectral decomposi-
tion. By Lemma 4.1.9 and Cauchy-Schwarz (Theorem B.4.8), for any x ∈ V ,

4‖P t(x, ·)− π(·)‖2TV =

{∑
y

π(y)

∣∣∣∣P t(x, y)

π(y)
− 1

∣∣∣∣
}2

≤
∑
y

π(y)

(
P t(x, y)

π(y)
− 1

)2

=

∥∥∥∥∥∥
n−1∑
j=1

µtjgj(x)gj

∥∥∥∥∥∥
2

π

=
n−1∑
j=1

µ2t
j gj(x)2,

where we used the spectral decomposition of P t (Theorem 5.2.7) on the third line
and Parseval’s identity (i.e., (5.2.1)) on the fourth line.

Here comes the trick: the total variation distance does not depend on the start-
ing point x by symmetry. Multiplying by π(x) and summing over x—on the right-
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hand side only—gives

4‖P t(x, ·)− π(·)‖2TV ≤
∑
x

π(x)
n−1∑
j=1

µ2t
j gj(x)2

=
n−1∑
j=1

µ2t
j

∑
x

π(x)gj(x)2

=

n−1∑
j=1

µ2t
j ,

where we used that ‖gj‖2π = 1.
We get

4d(t)2 ≤
n−1∑
j=1

cos2t

(
2πj

n

)
= 2

(n−1)/2∑
j=1

cos2t

(
2πj

n

)
.

For x ∈ [0, π/2), cosx ≤ e−x2/2 (see Exercise 1.16). Then

4d(t)2 ≤ 2

(n−1)/2∑
j=1

exp

(
−4π2j2

n2
t

)

≤ 2 exp

(
−4π2

n2
t

) ∞∑
j=1

exp

(
−4π2(j2 − 1)

n2
t

)

≤ 2 exp

(
−4π2

n2
t

) ∞∑
`=0

exp

(
−4π2t

n2
`

)

=
2 exp

(
−4π2

n2 t
)

1− exp
(
−4π2

n2 t
) .

So tmix(ε) = O(n2).

Random walk on the hypercube

Consider simple random walk on the hypercube V := {−1,+1}n where x ∼ y
if they differ at exactly one coordinate. We consider the lazy version to avoid
issues of periodicity (see Example 1.1.31). Let P be the transition matrix and let
π ≡ 2−n be the stationary distribution (by symmetry and |V | = 2n). We showed
in Section 4.3.2 that tmix(ε) = Θ(n log n). Here we use spectral techniques.
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For J ⊆ [n], we let

χJ(x) =
∏
j∈J

xj , x ∈ V.

These are called parity functions. We show that the parity functions form an eigen-
parity

function
basis of the transition matrix.

Lemma 5.2.17 (Hypercube: eigenbasis). For all J ⊆ [n], the function χJ is an
eigenfunction of P with eigenvalue

µJ :=
n− |J |
n

.

Moreover the χJs are orthonormal in `2(V, π).

Proof. For x ∈ V and i ∈ [n], let x[i] be x where coordinate i is flipped. Note that,
for all J, x,∑

y

P (x, y)χJ(y) =
1

2
χJ(x) +

1

2

n∑
i=1

1

n
χJ(x[i])

=

{
1

2
+

1

2

n− |J |
n

}
χJ(x)− 1

2

|J |
n
χJ(x)

=
n− |J |
n

χJ(x).

For the orthonormality, note that∑
x∈V

π(x)χJ(x)2 =
∑
x∈V

1

2n

∏
j∈J

x2
j = 1.

For J 6= J ′ ⊆ [n],∑
x∈V

π(x)χJ(x)χJ ′(x)

=
∑
x∈V

1

2n

∏
j∈J∩J ′

x2
j

∏
j∈J\J ′

xj
∏

j∈J ′\J

xj

=
2|J∩J

′|

2n

∏
j∈J\J ′

 ∑
xj∈{−1,+1}

xj

 ∏
j∈J ′\J

 ∑
xj∈{−1,+1}

xj


= 0,

since at least one of J \ J ′ or J ′ \ J is nonempty.
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From the eigenvalues, we obtain the relaxation time.

Theorem 5.2.18 (Hypercube: relaxation time). The relaxation time for lazy simple
random walk on the n-dimensional hypercube is

trel = n.

Proof. From Lemma 5.2.17, the absolute spectral gap is

γ∗ = γ = 1− n− 1

n
=

1

n
.

Note that πmin = 1/2n. Hence, by Theorem 5.2.14, we have tmix(ε) = O(n2) and
tmix(ε) = Ω(n). Those bounds, it turns out, are both off.

As we did for the cycle, we obtain a sharper upper bound by working directly
with the spectral decomposition. By the same argument we used there,

4d(t)2 ≤
∑
J 6=∅

µ2t
J .

Then

4d(t)2 ≤
∑
J 6=∅

(
n− |J |
n

)2t

=

n∑
`=1

(
n

`

)(
1− `

n

)2t

≤
n∑
`=1

(
n

`

)
exp

(
−2t`

n

)
=

(
1 + exp

(
−2t

n

))n
− 1,

where we used that 1 − x ≤ e−x for all x (see Exercise 1.16). So, by definition,
tmix(ε) ≤ 1

2n log n+O(n).

Remark 5.2.19. In fact, lazy simple random walk on the n-dimensional hypercube has
a “cutoff” at (1/2)n log n. Roughly speaking, within a time window of size O(n), the
total variation distance to the stationary distribution goes from near 1 to near 0. See,
e.g., [LPW06, Section 18.2.2].
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5.2.3 . Markov chains: Varopoulos-Carne and diameter-based bounds
on the mixing time

If (St) is simple random walk on Z, then Lemma 2.4.3 guarantees that for any
x, y ∈ Z

P t(x, y) ≤ e−|x−y|2/2t, (5.2.6)

where P is the transition matrix of (St). Interestingly a similar bound holds for any
reversible Markov chain—and Lemma 2.4.3 plays an unexpected role in its proof.
An application to mixing times is discussed below.

Varopoulos-Carne bound

Our main bound is the following. Recall that a reversible Markov chain is equiva-
lent to a random walk on the network corresponding to its positive transition prob-
abilities (see Definition 1.2.7 and the discussion following it).

Theorem 5.2.20 (Varopoulos-Carne bound). Let P be the transition matrix of an
irreducible Markov chain (Xt) on the countable state space V . Assume further that
P is reversible with respect to the stationary measure π and that the corresponding
network N is locally finite. Then the following hold

∀x, y ∈ V,∀t ∈ N, P t(x, y) ≤ 2

√
π(y)

π(x)
e−ρ(x,y)2/2t,

where ρ(x, y) is the graph distance between x and y on N .

As a sanity check before proving the theorem, note that if the chain is aperiodic and
π is the stationary distribution then by the convergence theorem (Theorem 1.1.33)

P t(x, y)→ π(y) ≤ 2

√
π(y)

π(x)
, as t→ +∞,

since π(x), π(y) ≤ 1.

Proof of Theorem 5.2.20. The idea of the proof is to show that

P t(x, y) ≤ 2

√
π(y)

π(x)
P[St ≥ ρ(x, y)],

where again (St) is simple random walk onZ started at 0, and then use the Chernoff
bound (Lemma 2.4.3).
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By the local finiteness assumption, only a finite number of states can be reached
by time t. Hence we can reduce the problem to a finite state space. More precisely,
let Ṽ = {z ∈ V : ρ(x, z) ≤ t} and for z, w ∈ Ṽ

P̃ (z, w) =

{
P (z, w) if z 6= w,
P (z, z) + P (z, V \ Ṽ ) otherwise.

By construction P̃ is reversible with respect to π̃ = π/π(Ṽ ) on Ṽ . Because
within time t one never reaches a state z where P (z, V \ Ṽ ) > 0, by Chapman-
Kolmogorov (Theorem 1.1.20) and using the fact that π̃(y)/π̃(x) = π(y)/π(x), it
suffices to prove the result for P̃ . Hence we assume without loss of generality that
V is finite with |V | = n.

To relate (Xt) to simple random walk on Z, we use a special representation of
P t based on Chebyshev polynomials. For ξ = cos θ ∈ [−1, 1],

Tk(ξ) = cos kθ,

is a Chebyshev polynomial of the first kind. Note that |Tk(ξ)| ≤ 1 on [−1, 1] by
Chebyshev

polynomials
definition. The classical trigonometric identity (to see this, write it in complex
form)

cos((k + 1)θ) + cos((k − 1)θ) = 2 cos θ cos(kθ),

implies the recursion

Tk+1(ξ) + Tk−1(ξ) = 2ξ Tk(ξ),

which in turn implies that Tk is indeed a polynomial. It has degree k from induction
and the fact that T0(ξ) = 1 and T1(ξ) = ξ. The connection to simple random walk
on Z comes from the following somewhat miraculous representation (which does
not rely on reversibility). Let Tk(P ) denote the polynomial Tk evaluated at P as a
matrix polynomial.

Lemma 5.2.21.

P t =

t∑
k=−t

P[St = k]T|k|(P ).

Proof. It suffices to prove

ξt =
t∑

k=−t
P[St = k]T|k|(ξ),
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as an identity of polynomials. By the binomial theorem (Appendix A),

ξt =

(
eiθ + e−iθ

2

)t
=

t∑
`=0

2−t
(
t

`

)
(eiθ)`(e−iθ)t−` =

t∑
k=−t

P[St = k]eikθ,

where we used that the probability that

St = −t+ 2` = (+1)`+ (−1)(t− `),

is the event of making ` steps to the right and t − ` steps to the left. Now take
real parts on both sides and use that cos(kθ) = cos(−kθ) to get the claim. (Put
differently, (cos θ)t is the characteristic function E[eiθSt ] of St.)

We bound Tk(P )(x, y) as follows.

Lemma 5.2.22. It holds that

Tk(P )(x, y) = 0, ∀k < ρ(x, y),

and

Tk(P )(x, y) ≤

√
π(y)

π(x)
, ∀k ≥ ρ(x, y).

Proof. Note that Tk(P )(x, y) = 0 when k < ρ(x, y) because Tk(P )(x, y) is a
function of the entries P `(x, y) for ` ≤ k, all of which are 0.

We work on `2(V, π). Let f1, . . . , fn be an eigendecomposition of P orthonor-
mal with respect to the inner product 〈·, ·〉π with eigenvalues λ1, . . . , λn ∈ [−1, 1].
Such a decomposition exists by Theorem 5.2.1. Then f1, . . . , fn is also an eigen-
decomposition of the polynomial Tk(P ) with eigenvalues

Tk(λ1), . . . , Tk(λn) ∈ [−1, 1],

by the definition of the Chebyshev polynomials. By decomposing any function
f =

∑n
i=1 αifi over this eigenbasis, that implies that

‖Tk(P )f‖2π =

∥∥∥∥∥
n∑
i=1

αiTk(λi)fi

∥∥∥∥∥
2

π

=
n∑
i=1

α2
i Tk(λi)

2

≤
n∑
i=1

α2
i

= ‖f‖2π, (5.2.7)
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where we used Parseval’s identity (5.2.1) twice and the fact that Tk(λi)2 ∈ [0, 1].
Let δz denote the point mass at z. By Cauchy-Schwarz (Theorem B.4.8)

and (5.2.7),

Tk(P )(x, y) =
〈δx, Tk(P )δy〉π

π(x)
≤ ‖δx‖π‖δy‖π

π(x)
=

√
π(x)

√
π(y)

π(x)
=

√
π(y)

π(x)
,

for any k (in particular for k ≥ ρ(x, y)) and we have proved the claim.

Combining the two lemmas gives the result.

Remark 5.2.23. The local finiteness assumption is made for simplicity only. The result
holds for any countable-space, reversible chain. See [LP16, Section 13.2].

Lower bound on mixing Let (Xt) be an irreducible aperiodic (for now not nec-
essarily reversible) Markov chain with finite state space V and stationary distribu-
tion π. Recall that, for a fixed 0 < ε < 1/2, the mixing time is

tmix(ε) = min{t : d(t) ≤ ε},

where
d(t) = max

x∈V
‖P t(x, · )− π‖TV.

It is intuitively clear that tmix(ε) is at least of the order of the “diameter” of the
transition graph of P . For x, y ∈ V , let ρ(x, y) be the graph distance between x and
y on the undirected version of the transition graph, that is, ignoring the orientation
of the edges. With this definition, a shortest directed path from x to y contains at
least ρ(x, y) edges. Here we define the diameter of the transition graph as ∆ :=

diameter
maxx,y∈V ρ(x, y). Let x0, y0 be a pair of vertices achieving the diameter. Then we
claim that P b(∆−1)/2c(x0, · ) and P b(∆−1)/2c(y0, · ) are supported on disjoint sets.
To see this let

A = {z ∈ V : ρ(x0, z) < ρ(y0, z)},
be the set of states closer to x0 than y0. See Figure 5.2. By the triangle inequality
for ρ, any z such that ρ(x0, z) ≤ b(∆ − 1)/2c is in A, otherwise we would have
ρ(y0, z) ≤ ρ(x0, z) ≤ b(∆ − 1)/2c and hence ρ(x0, y0) ≤ ρ(x0, z) + ρ(y0, z) ≤
2b(∆ − 1)/2c < ∆, a contradiction. Similarly, if ρ(y0, z) ≤ b(∆ − 1)/2c, then
z ∈ Ac. By the triangle inequality for the total variation distance,

d(b(∆− 1)/2c) ≥ 1

2

∥∥∥P b(∆−1)/2c(x0, · )− P b(∆−1)/2c(y0, · )
∥∥∥

TV

≥ 1

2

{
P b(∆−1)/2c(x0, A)− P b(∆−1)/2c(y0, A)

}
=

1

2
{1− 0} =

1

2
, (5.2.8)
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Figure 5.2: The supports of P b(∆−1)/2c(x0, · ) and P b(∆−1)/2c(y0, · ) are contained
in A and Ac respectively.

where we used (1.1.4) on the second line, so that:

Claim 5.2.24.
tmix(ε) ≥ ∆

2
.

This bound is often far from the truth. Consider for instance simple random walk
on a cycle of size n. The diameter is ∆ = n/2. But Lemma 2.4.3 suggests that
it takes time of order ∆2 to even reach the antipode of the starting point, let alone
achieve stationarity. More generally, when P is reversible, the “diffusive behavior”
captured by the Varopoulos-Carne bound (Theorem 5.2.20) implies that the mixing
time does indeed scale at least as the square of the diameter.

Assume that P is reversible with respect to π and has diameter ∆. Letting
n = |V | and πmin = minx∈V π(x), we then have the following.

Claim 5.2.25. The following lower bound holds

tmix(ε) ≥ ∆2

12 log n+ 4| log πmin|
,

provided n ≥ 16
(1−2ε)2 .
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Proof. The proof is based on the same argument we used to derive our first diame-
ter-based bound, except that the Varopoulos-Carne bound gives a better depen-
dence on the diameter. Namely, let x0, y0, and A be as above. By the Varopoulos-
Carne bound,

P t(x0, A
c) =

∑
z∈Ac

P t(x0, z) ≤
∑
z∈Ac

2

√
π(z)

π(x0)
e−

ρ2(x0,z)
2t ≤ 2nπ

−1/2
min e−

∆2

8t ,

where we used that |Ac| ≤ n and ρ(x0, z) ≥ ∆
2 for z ∈ Ac. For any

t <
∆2

12 log n+ 4| log πmin|
, (5.2.9)

we get that

P t(x0, A
c) ≤ 2nπ

−1/2
min exp

(
−3 log n+ | log πmin|

2

)
=

2√
n
,

or P t(x0, A) ≥ 1− 2√
n

. Similarly, P t(y0, A) ≤ 2√
n

so that arguing as in (5.2.8)

d(t) ≥ 1

2

{
1− 2√

n
− 2√

n

}
=

1

2
− 2√

n
≥ ε,

for t as in (5.2.9) and n as in the statement.

Remark 5.2.26. The dependence on ∆ and πmin in Claim 5.2.25 cannot be improved.
See [LP16, Section 13.3].

5.2.4 . Randomized algorithms: Markov chain Monte Carlo and a quan-
titative ergodic theorem

In Markov chain Monte Carlo methods, one generates samples from a probability
distribution of interest π over some state space V in order to estimate some of its
properties, for example, its mean, by designing and then running a Markov chain
with stationary distribution π. The Metropolis algorithm from Example 1.1.30 is
a standard way of constructing such a chain. These techniques play a central role
in Bayesian statistics in particular where π is the so-called posterior distribution
given the data.

We restrict ourselves here to finite V and, without loss of generality, we assume
that V = [n]. Let P be an irreducible chain reversible with respect to a stationary
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distribution π = (πx)x∈V . As previously, we work on `2(V, π). Let f : V → R be
a function in `2(V, π). Recall that

πf =
∑
x∈V

πxf(x).

Our goal is to estimate πf from the sample path of the Markov chain (Xt)t≥0 with
transition matrix P . Indeed the ergodic theorem guarantees that

1

T

T∑
t=1

f(Xt)→ πf,

almost surely as T → +∞ for any starting point. We derive a simple, quantitative
version of this statement that provides insights into how long the chain needs to be
run to get an accurate estimate in terms of the spectral gap.

Theorem 5.2.27 (Ergodic theorem: reversible case). Let P = (Px,y)x,y∈V be an
irreducible aperiodic transition matrix over a finite state space V reversible with
respect to the stationary distribution π = (πx)x∈V . Let f : V → R be a function
in `2(V, π). Then for any initial distribution µ = (µx)x∈V

1

T

T∑
t=1

f(Xt)→ πf,

in probability as T → +∞. Moreover, for any ε > 0,

P

[∣∣∣∣∣ 1

T

T∑
t=1

f(Xt)− πf

∣∣∣∣∣ ≥ ε
]
≤

9π−1
min‖f‖2∞γ−1

∗
1
T

(ε− π−1
min‖f‖∞γ

−1
∗

1
T )2

,

as T → +∞, where γ∗ > 0 is the absolute spectral gap of P .

Recall that, by Lemmas 5.2.3 and 5.2.4, we have γ∗ > 0 since P is irreducible
and aperiodic. We will first need the following lemma.

Lemma 5.2.28 (Convergence of the expectation). For any initial distribution µ =
(µx)x∈V and any t

|E[f(Xt)]− πf | ≤ (1− γ∗)tπ−1
min‖f‖∞.

Proof. We have

|E[f(Xt)]− πf | =

∣∣∣∣∣∑
x

∑
y

µxP
t
x,yf(y)−

∑
y

πyf(y)

∣∣∣∣∣ .
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Because
∑

x µx = 1, the right-hand side is

=

∣∣∣∣∣∑
x

∑
y

µxP
t
x,yf(y)−

∑
x

∑
y

µxπyf(y)

∣∣∣∣∣
≤
∑
x

µx
∑
y

∣∣P tx,y − πy∣∣ |f(y)|,

by the triangle inequality.
Now by (5.2.5) this is

≤
∑
x

µx
∑
y

(1− γ∗)t
πy
πmin

|f(y)|

= (1− γ∗)t
1

πmin

∑
x

µx
∑
y

πy|f(y)|

≤ (1− γ∗)tπ−1
min‖f‖∞.

That proves the claim.

Proof of Theorem 5.2.27. We use Chebyshev’s inequality (Theorem 2.1.2), simi-
larly to the proof of the L2 weak law of large numbers (Theorem 2.1.6). In partic-
ular, we note that the Xts are not independent.

By Lemma 5.2.28, the expectation of the time average can be bounded as fol-
lows ∣∣∣∣∣E

[
1

T

T∑
t=1

f(Xt)

]
− πf

∣∣∣∣∣ ≤ 1

T

T∑
t=1

|E[f(Xt)]− πf |

≤ 1

T

T∑
t=1

(1− γ∗)tπ−1
min‖f‖∞

≤ π−1
min‖f‖∞

1

T

+∞∑
t=0

(1− γ∗)t

= π−1
min‖f‖∞γ

−1
∗

1

T
→ 0,

as T → +∞, since γ∗ > 0.
Next we bound the variance of the sum. We have

Var

[
1

T

T∑
t=1

f(Xt)

]
=

1

T 2

T∑
t=1

Var[f(Xt)] +
2

T 2

∑
1≤s<t≤T

Cov[f(Xs), f(Xt)].
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We bound the variance and covariance terms separately.
To obtain convergence, a trivial bound on the variance suffices

0 ≤ Var[f(Xt)] ≤ E[f(Xt)
2] ≤ ‖f‖2∞.

Hence,

0 ≤ 1

T 2

T∑
t=1

Var[f(Xt)] ≤
T‖f‖2∞
T 2

→ 0,

as T → +∞.
Bounding the covariance requires a more delicate argument. Fix 1 ≤ s < t ≤

T . The trick is to condition on Xs and use the Markov Property (Theorem 1.1.18).
By definition of the covariance, the tower property (Lemma B.6.16) and taking out
what is known (Lemma B.6.13),

Cov[f(Xs), f(Xt)]

= E [(f(Xs)− E[f(Xs)])(f(Xt)− E[f(Xt)])]

=
∑
x

E [(f(Xs)− E[f(Xs)])(f(Xt)− E[f(Xt)]) |Xs = x] P[Xs = x]

=
∑
x

E [f(Xt)− E[f(Xt)] |Xs = x] (f(x)− E[f(Xs)])P[Xs = x].

We now use the time homogeneity of the chain to note that

E [f(Xt)− E[f(Xt)] |Xs = x]

= E [f(Xt) |Xs = x]− E[f(Xt)]

= E [f(Xt−s) |X0 = x]− E[f(Xt)].

By Lemma 5.2.28,

|E [f(Xt)− E[f(Xt)] |Xs = x]|
= |E [f(Xt−s) |X0 = x]− E[f(Xt)]|
= |(E [f(Xt−s) |X0 = x]− πf)− (E[f(Xt)]− πf)|
≤ |E [f(Xt−s) |X0 = x]− πf |+ |E[f(Xt)]− πf |
≤ (1− γ∗)t−sπ−1

min‖f‖∞ + (1− γ∗)tπ−1
min‖f‖∞

≤ 2(1− γ∗)t−sπ−1
min‖f‖∞,
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which does not depend on x. Plugging back above,

|Cov[f(Xs), f(Xt)]|

≤
∑
x

|E [f(Xt)− E[f(Xt)] |Xs = x]| |f(x)− E[f(Xs)]| P[Xs = x]

≤ 2(1− γ∗)t−sπ−1
min‖f‖∞

∑
x

|f(x)− E[f(Xs)]| P[Xs = x]

≤ 2(1− γ∗)t−sπ−1
min‖f‖∞

∑
x

2‖f‖∞P[Xs = x]

≤ 4(1− γ∗)t−sπ−1
min‖f‖

2
∞.

Returning to the sum over the covariances, the previous bound gives∣∣∣∣∣∣ 2

T 2

∑
1≤s<t≤T

Cov[f(Xs), f(Xt)]

∣∣∣∣∣∣
≤ 2

T 2

∑
1≤s<t≤T

|Cov[f(Xs), f(Xt)]|

≤ 2

T 2

∑
1≤s<t≤T

4(1− γ?)t−sπ−1
min‖f‖

2
∞.

To evaluate the sum we make the change of variable h = t − s to get that the
previous expression is

≤ 4π−1
min‖f‖

2
∞

2

T 2

∑
1≤s≤T

T−s∑
h=1

(1− γ∗)h

≤ 4π−1
min‖f‖

2
∞

2

T 2

∑
1≤s≤T

+∞∑
h=0

(1− γ∗)h

= 4π−1
min‖f‖

2
∞

2

T 2

∑
1≤s≤T

1

γ∗

= 8π−1
min‖f‖

2
∞γ
−1
∗

1

T
→ 0,

as T → +∞.
Combining the variance and covariance bounds, we have shown that

Var

[
1

T

T∑
t=1

f(Xt)

]
≤ ‖f‖2∞

1

T
+ 8π−1

min‖f‖
2
∞γ
−1
∗

1

T
≤ 9π−1

min‖f‖
2
∞γ
−1
∗

1

T
.
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For any ε > 0

P

[∣∣∣∣∣ 1

T

T∑
t=1

f(Xt)− πf

∣∣∣∣∣ ≥ ε
]

= P

[∣∣∣∣∣ 1

T

T∑
t=1

f(Xt)− E

[
1

T

T∑
t=1

f(Xt)

]
+

(
E

[
1

T

T∑
t=1

f(Xt)

]
− πf

)∣∣∣∣∣ ≥ ε
]

≤ P

[∣∣∣∣∣ 1

T

T∑
t=1

f(Xt)− E

[
1

T

T∑
t=1

f(Xt)

] ∣∣∣∣∣+

∣∣∣∣∣E
[

1

T

T∑
t=1

f(Xt)

]
− πf

∣∣∣∣∣ ≥ ε
]

≤ P

[∣∣∣∣∣ 1

T

T∑
t=1

f(Xt)− E

[
1

T

T∑
t=1

f(Xt)

] ∣∣∣∣∣ ≥ ε− π−1
min‖f‖∞γ

−1
∗

1

T

]
.

We can now apply Chebyshev’s inequality to get

P

[∣∣∣∣∣ 1

T

T∑
t=1

f(Xt)− πf

∣∣∣∣∣ ≥ ε
]
≤

9π−1
min‖f‖2∞γ−1

∗
1
T

(ε− π−1
min‖f‖∞γ

−1
∗

1
T )2
→ 0,

as T → +∞.

5.2.5 Spectral radius

The results in this section have so far concerned finite state spaces. The countably
infinite case presents a number of complications. We start with a few observations:

- Suppose P is irreducible, aperiodic and positive recurrent. Then we know
from the convergence theorem (Theorem 1.1.33) that, if π is the stationary
distribution, then for all x

‖P t(x, ·)− π(·)‖TV → 0,

as t → +∞. The convergence rate depends on the starting point x. In the
infinite state space case, one typically needs to make that dependence explicit
to get meaningful results. In particular the mixing time—as we have defined
it—may not be a useful concept.

- In the transient and null recurrent cases, there is no stationary distribution
to converge to by Theorem 3.1.20. Instead, we have the following by The-
orem 3.1.21: if P is an irreducible chain which is either transient or null
recurrent, then we have that

lim
t
P t(x, y) = 0,

for all x, y ∈ V .
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- Conditions stronger than reversibility are needed for the spectral theorem—
in a form similar to what we used—to apply. Specifically, one needs that P is
a compact operator: whenever (fn)n ∈ `2(V, π) is a bounded sequence, then compact

operatorthere exists a subsequence (fnk)k such that (Pfnk) converges in the norm.
Unfortunately that is often not the case, as the next example illustrates, even
in the reversible, positive recurrent setting.

Example 5.2.29 (A positive recurrent chain whose P is not compact). For p <
1/2, let (Xt) be the birth-death chain with V := {0, 1, 2, . . .}, P (0, 0) := 1 − p,
P (0, 1) = p, P (x, x + 1) := p and P (x, x − 1) := 1 − p for all x ≥ 1, and
P (x, y) := 0 if |x − y| > 1. As can be checked by direct computation, P is
reversible with respect to the stationary distribution π(x) = (1 − γ)γx for x ≥ 0
where γ := p

1−p . For j ≥ 1, define gj(x) := π(j)−1/21{x=j}. Then ‖gj‖2π = 1 for
all j so {gj}j is bounded in `2(V, π). On the other hand,

Pgj(x) = pπ(j)−1/21{x=j−1} + (1− p)π(j)−1/21{x=j+1}.

So

‖Pgj‖2π = p2π(j)−1π(j − 1) + (1− p)2π(j)−1π(j + 1)

= p2 1− p
p

+ (1− p)2 p

1− p
= 2p(1− p).

Hence {Pgj}j is also bounded. However, for j > `

‖Pgj − Pg`‖2π ≥ (1− p)2π(j)−1π(j + 1) + p2π(`)−1π(`− 1)

= 2p(1− p).

So {Pgj}j does not have a converging subsequence. J

We will not say much about the spectral theory of infinite networks. In this
subsection, we establish a relationship between the operator norm of P—which is
related to its spectrum—and the decay of P t(x, y).

Let `0(V ) be the set of real-valued functions on V with finite support. It is
dense in `2(V, π). Indeed let v1, v2, . . . be an enumeration of V and, for f ∈
`2(V, π), define f |n(vi) := f(vi)1i≤n to be f restricted to v1, . . . , vn. Then

‖f − f |n‖2π =
∞∑

i=n+1

π(vi)f(vi)
2 → 0, (5.2.10)
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as n→∞, since ‖f‖2π =
∑

x π(x)f(x)2 < +∞. We will also need the following

‖Pf − P (f |n)‖2π = ‖P (f − f |n)‖2π ≤ ‖f − f |n‖2π → 0, (5.2.11)

where we used (5.2.2).

Definition 5.2.30 (Operator norm). The operator norm of P is operator

norm
‖P‖π = sup

{
‖Pf‖π
‖f‖π

: f ∈ `0(V ), f 6= 0

}
.

By definition, for any f ∈ `0(V ),

‖Pf‖π ≤ ‖P‖π‖f‖π. (5.2.12)

The same can be seen to hold for any f ∈ `2(V, π) by considering the sequence
(f |n)n and noting that ‖f |n‖π → ‖f‖π and ‖P (f |n)‖π → ‖Pf‖π as n → ∞
by (5.2.10), (5.2.11) and the triangle inequality. This latter observation explains
why it suffices to restrict the supremum to `0 in the definition of the norm.

Note that, by (5.2.2), ‖P‖π ≤ 1. Note further that, if V is finite or more
generally if π is summable, then we have in fact ‖P‖π = 1 by taking f ≡ 1
above. When P is self-adjoint, the norm ‖P‖π is also equal to what is known
as the spectral radius, that is, the radius of the smallest disk centered at 0 in the

spectral

radius
complex plane that contains the spectrum of P . We will not need to define what that
means formally here. (But Exercise 5.5 asks for a proof in the setting of symmetric
matrices.)

Our main result is the following.

Theorem 5.2.31 (Spectral radius). Let P be irreducible and reversible with respect
to π > 0. Then

ρ(P ) := lim sup
t

P t(x, y)1/t = ‖P‖π.

In particular, the limit does not depend on x, y. Moreover, for all t,

P t(x, y) ≤

√
π(y)

π(x)
‖P‖tπ.

In the positive recurrent case (for instance if the chain is finite), we haveP t(x, y)→
π(y) > 0 and so ρ(P ) = 1 = ‖P‖π. The theorem says that the equality between
ρ(P ) and ‖P‖π holds in general for reversible chains.
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Proof of Theorem 5.2.31. To see that the limit does not depend on x, y, let u, v, x, y ∈
V and k,m ≥ 0 such that Pm(u, x) > 0 and P k(y, v) > 0. Then

P t+m+k(u, v)1/(t+m+k)

≥ (Pm(u, x)P t(x, y)P k(y, v))1/(t+m+k)

≥ Pm(u, x)1/(t+m+k)P t(x, y)1/tP k(y, v)1/(t+m+k),

which shows that lim supt P
t(u, v)1/t ≥ lim supt P

t(x, y)1/t for all u, v, x, y.
We first show that ρ(P ) ≤ ‖P‖π. Observe that applying (5.2.4) and (5.2.12)

repeatedly gives that P t is self-adjoint and satisfies the inequality ‖P t‖π ≤ ‖P‖tπ.
Because ‖δz‖2π = π(z) ≤ 1, by Cauchy-Schwarz

π(x)P t(x, y) = 〈δx, P tδy〉π ≤ ‖P‖tπ‖δx‖π‖δy‖π = ‖P‖tπ
√
π(x)π(y).

Hence P t(x, y) ≤
√

π(y)
π(x)‖P‖

t
π and

ρ(P ) = lim sup
t

P t(x, y)1/t

≤ lim sup
t

(√
π(y)

π(x)
‖P‖tπ

)1/t

= ‖P‖π.

To establish the inequality in the other direction, we make a series of observa-
tions. Fix a nonzero f ∈ `0(V ).

- By self-adjointness and Cauchy-Schwarz,

‖P t+1f‖2π = 〈P t+1f, P t+1f〉π = 〈P t+2f, P tf〉π ≤ ‖P t+2f‖π‖P tf‖π,

or

‖P t+1f‖π
‖P tf‖π

≤ ‖P
t+2f‖π

‖P t+1f‖π
.

So ‖P
t+1f‖π
‖P tf‖π is non-decreasing and therefore has a limit L ≤ +∞. More-

over, for t = 0, we get
‖Pf‖π
‖f‖π

≤ L, (5.2.13)

so it suffices to prove L ≤ ρ(P ).
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- Observe that(
‖P tf‖π
‖f‖π

)1/t

=

(
‖Pf‖π
‖f‖π

× · · · × ‖P tf‖π
‖P t−1f‖π

)1/t

→ L,

so in fact
L = lim

t
‖P tf‖1/tπ .

- By self-adjointness again

‖P tf‖2π = 〈f, P 2tf〉π =
∑
x

π(x)f(x)
∑
y

f(y)P 2t(x, y).

By definition of ρ(P ), for any ε > 0, there is a t large enough that

P 2t(x, y) ≤ (ρ(P ) + ε)2t,

for all x, y in the support of f . For such a t, plugging back into the previous
display

‖P tf‖1/tπ ≤ (ρ(P ) + ε)

(∑
x

π(x)|f(x)|
∑
y

|f(y)|

)1/2t

.

The expression in parentheses on the right-hand side is finite because f has
finite support. Since ε is arbitrary, we get

L = lim
t
‖P tf‖1/tπ ≤ ρ(P ). (5.2.14)

So, combining (5.2.13) and (5.2.14), we have shown that ‖P‖π ≤ ρ(P ) and that
concludes the proof.

Corollary 5.2.32. Let P be irreducible and reversible with respect to π. If ‖P‖π <
1, then P is transient.

Proof. By Theorem 5.2.31, P t(x, x) ≤ ‖P‖tπ so∑
t

P t(x, x) ≤
∑
t

‖P‖tπ < +∞.

Let (Xt) be a chain with transition matrix P . Because

∑
t

P t(x, x) = Ex

[∑
t

1{Xt=x}

]
,

we have that
∑

t 1{Xt=x} < +∞, Px-a.s., and (Xt) is transient.
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This is not an if and only if. Random walk on Z3 is transient, yet P 2t(0, 0) =
Θ(t−3/2) so there ‖P‖π = ρ(P ) = 1.

In the non-reversible case, our definition of ‖P‖π still makes sense with respect
to any stationary measure π (although P is not self-adjoint). But the equality in
Theorem 5.2.31 no longer holds in general.

Example 5.2.33 (Counter-example). Let (Xt) be asymmetric random walk on Z
with probability p ∈ (1/2, 1) of going to the right. Then both π0(x) :=

(
p

1−p

)x
and π1(x) := 1 define stationary measures, but the transition matrix P is only
reversible with respect to π0.

Under π1, we have ‖P‖π1 = 1. Indeed, let gn(x) := 1{|x|≤n} and note that

(Pgn)(x) = 1{|x|≤n−1} + p1{x = −n− 1 or −n} + (1− p)1{x = n or n+ 1},

so ‖gn‖2π1
= 2n+ 1 and ‖Pgn‖2π1

≥ 2(n− 1) + 1. Hence

lim sup
n

‖Pgn‖π1

‖gn‖π1

≥ 1,

and ‖P‖π1 ≥ 1. But we already showed that ‖P‖π1 ≤ 1 in (5.2.2), so the claim
follows.

On the other hand, E0[Xt] = (2p−1)t. So the martingale Zt := Xt−(2p−1)t
(see Example 3.1.29), as a sum of t independent centered random variables in
{−1− (2p− 1), 1− (2p− 1)}, satisfies the assumptions of the Azuma-Hoeffding
inequality (Theorem 3.2.1) with increment bound ct := 2. So

P t(0, 0)1/t ≤ P0[Xt ≤ 0]1/t

= P0[Xt − (2p− 1)t ≤ −(2p− 1)t]1/t

≤ e−
2(2p−1)2t2

22t
1
t .

Therefore
lim sup

t
P t(0, 0)1/t ≤ e−(2p−1)2/2 < 1.

J

5.3 Geometric bounds

The goal of this section is to relate the spectral gap to certain geometric proper-
ties of the underlying network, more specifically isoperimetric properties, that is,
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relationships between the “volume” of sets and their “circumference.” The classi-
cal isoperimetric inequality states that the area enclosed by any rectifiable simple

isoperimetric

inequality
closed curve in the plane is at most the length of the curve squared divided by 4π.
Moreover equality is achieved if and only if the curve is a circle.

Remark 5.3.1. Here is an easy proof in the smooth case. Suppose r(s) = (x(s), y(s)),
s ∈ [0, 2π], is the parametrization of a positively oriented, smooth, simple closed curve
in the plane centered at the origin with arc-length 2π, where ‖r′(s)‖2 = 1 for all s,∫ 2π

0
r(s) ds = 0 and x(0) = x(2π) = 0. By Green’s theorem, the area enclosed by the

curve is

A =

∫ 2π

0

x(s)y′(s) ds =
1

2

∫ 2π

0

[x(s)2 + y′(s)2 − (x(s)− y′(s))2] ds,

where we used that 2ab = a2 + b2− (a− b)2. By the one-dimensional Poincaré inequality
(Remark 3.2.7),

A ≤ 1

2

∫ 2π

0

[x(s)2 + y′(s)2] ds ≤ 1

2

∫ 2π

0

[x′(s)2 + y′(s)2] ds = π,

which is indeed the area of a circle of circumference 2π.

Edge expansion We define our isoperimetric quantity of interest. Let (Xt) be a
finite, irreducible Markov chain on V reversible with respect to a stationary mea-
sure π > 0. (In this section, we do not necessarily assume that π is a probabil-
ity distribution.) Let P be its transition matrix. We think of (Xt) as a random
walk on the network N = (G, c) where G is the transition graph and c(x, y) :=
π(x)P (x, y) = π(y)P (y, x).

For a subset S ⊆ V , we let the edge boundary of S be
edge boundary

∂ES := {e = {x, y} ∈ E : x ∈ S, y ∈ Sc}.

Let g : E → R+ be an edge weight function. For F ⊆ E and W ⊆ V , we define

|F |g :=
∑
e∈F

g(e).

and
|W |h :=

∑
v∈W

h(v).

Finally, for S ⊆ V , we let

ΦE(S; g, h) :=
|∂ES|g
|S|h

.
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Roughly speaking, this is the ratio of the “size of the boundary” of a set to its
“volume.”

Our main definition, the edge expansion constant, quantifies the worst such
ratio. First, one last piece of notation: for disjoint subsets S0, S1 ⊆ V , we let

c(S0, S1) :=
∑
x0∈S0

∑
x1∈S1

c(x0, x1).

Definition 5.3.2 (Edge expansion). For a subset of states S ⊆ V , the edge expan-
sion constant (or bottleneck ratio) of S is

edge

expansion

constant
ΦE(S; c, π) =

|∂ES|c
|S|π

=
c(S, Sc)

π(S)
.

We refer to (S, Sc) as a cut. The edge expansion constant (or bottleneck ratio or
Cheeger number or isoperimetric constant*) of N is

Φ∗ := min

{
ΦE(S; c, π) : S ⊆ V, 0 < π(S) ≤ 1

2

}
.

Intuitively, a small value of Φ∗ suggests the existence of a “bottleneck” in N .
Conversely, a large value of Φ∗ indicates that all sets “expand out.” See Fig-
ure 5.3. Note that the quantity ΦE(S; c, π) has a natural probabilistic interpretation:
pick a stationary state and make one step according to the transition matrix; then
ΦE(S; c, π) is the conditional probability that, given that the first state is in S, the
next one is in Sc.

Equivalently, the edge expansion constant can be expressed as

Φ∗ := min

{
c(S, Sc)

π(S) ∧ π(Sc)
: S ⊆ V, 0 < π(S) < 1

}
.

Example 5.3.3 (Edge expansion: complete graph). Let G = Kn be the complete
graph on n vertices. Let c(x, y) = 1/n2 for all x, y (corresponding to picking
any vertex uniformly at random at the next step) and π(x) = 1/n for all x. For
simplicity, take n even. Then for a subset S of size |S| = k,

ΦE(S; c, π) =
|∂ES|c
|S|π

=
k(n− k)/n2

k/n
=
n− k
n

.

Thus, the minimum is achieved for k = n/2 and

Φ∗ =
n− n/2

n
=

1

2
.

J
*It is also called “conductance,” but that terminology clashes with our use of the term.
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Figure 5.3: A bottleneck.

Dirichlet form, Rayleigh quotient, and normalized Laplacian We relate the
edge expansion constant of N to the spectral gap of P . Recall that we denote by
λ1, . . . , λn the eigenvalues of P in decreasing order. First, we adapt the variational
characterization of Theorem 5.1.3 to the network setting.

The Dirichlet form is defined over `2(V, π) as the bilinear form
Dirichlet

formD(f, g) := 〈f, (I − P )g〉π.

The associated quadratic form, also known as Dirichlet energy, is D(f) := D(f, f).
Dirichlet

energy
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Note that, using stochasticity and reversibility,

〈f, (I − P )f〉π = 〈f, f〉π − 〈f, Pf〉π

=
1

2

∑
x

π(x)f(x)2 +
1

2

∑
y

π(y)f(y)2 −
∑
x,y

π(x)f(x)f(y)P (x, y)

=
1

2

∑
x

f(x)2π(x)
∑
y

P (x, y)

+
1

2

∑
y

f(y)2π(y)
∑
x

P (y, x)−
∑
x,y

π(x)f(x)f(y)P (x, y)

=
1

2

∑
x,y

π(x)P (x, y)f(x)2

+
1

2

∑
x,y

π(x)P (x, y)f(y)2 −
∑
x,y

π(x)P (x, y)f(x)f(y)

=
1

2

∑
x,y

c(x, y)[f(x)− f(y)]2,

which is indeed consistent with the expression we encountered previously in The-
orem 3.3.25.

The Rayleigh quotient for I − P over `2(V, π) is then
Rayleigh

quotient〈f, (I − P )f〉π
〈f, f〉π

=
1
2

∑
x,y c(x, y)[f(x)− f(y)]2∑

x π(x)f(x)2

=
zTLz
zT z

,

where L is the normalized Laplacian of the network N and we defined the vector
z = (zx)x∈V with zx :=

√
π(x)f(x). Consequently, the Courant-Fischer theorem

(Theorem 5.1.3) in the form (5.1.5) gives the following. Here η2 = 1− λ2 = γ is
the spectral gap of P , which can also be seen as the second smallest eigenvalue of
I − P (which has the same eigenfunctions as P itself). We have

γ = inf

{
〈f, (I − P )f〉π
〈f, f〉π

: πf = 0, f 6= 0

}
.

The infimum is achieved by the eigenfunction f2 of P corresponding to its second
largest eigenvalue λ2. (Recall from Lemma 5.2.5 that πf2 = 0.)

We note further that if πf = 0 then

〈f, f〉π = 〈f − πf, f − πf〉π = Varπ[f ],
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where the last expression denotes the variance under π. So the variational charac-
terization of γ implies that

Varπ[f ] ≤ γ−1D(f),

for all f such that πf = 0. In fact, it holds for any f by considering f − πf and
noticing that both sides are unaffected by subtracting a constant to f .

We have shown:

Theorem 5.3.4 (Poincaré inequality for N ). Let P be finite, irreducible and re-
versible with respect to π. Then

Varπ[f ] ≤ γ−1D(f), (5.3.1)

for all f ∈ `2(V π). Equality is achieved by the eigenfunction f2 of P correspond-
ing to the second largest eigenvalue λ2.

An inequality of the type

Varπ[f ] ≤ CD(f), ∀f, (5.3.2)

is known as a Poincaré inequality, a simple version of which we encountered pre-
Poincaré

inequality
viously in Remark 3.2.7. To see the connection with that one-dimensional version,
it will be convenient to work with directed edges. Let ~E be an orientation ofE, that
is, for each e ∈ {x, y}, ~E includes either (x, y) or (y, x) with associated weight
c(~e) := c(e) > 0 For a function f : V → R and an edge ~e = (x, y) ∈ ~E, we
define the “discrete gradient”

∇f(~e) = f(y)− f(x).

With this notation, we can rewrite the Dirichlet energy as

D(f) =
1

2

∑
x,y

c(x, y)[f(x)− f(y)]2 =
∑
~e

c(~e)[∇f(~e)]2, (5.3.3)

hence (5.3.1) is a network analogue of (3.2.7).

5.3.1 Cheeger’s inequality

The edge expansion constant and the spectral gap are related through the following
isoperimetric inequalities. The lower bound is known as Cheeger’s inequality.

Cheeger’s

inequality
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Theorem 5.3.5. Let P be a finite, irreducible, reversible Markov transition matrix
and let γ = 1− λ2 be the spectral gap of P . Then

Φ2
∗

2
≤ γ ≤ 2Φ∗.

In terms of the relaxation time trel = γ−1, these inequalities have an intuitive
meaning: the presence or absence of a bottleneck in the state space leads to slow or
fast mixing respectively. We detail some applications to mixing times in the next
subsections.

Before giving a proof of the theorem, we start with a trivial—yet insightful—
example.

Example 5.3.6 (Two-state chain). Let V := {0, 1} and, for α, β ∈ (0, 1),

P :=

(
1− α α
β 1− β

)
which has stationary distribution

π :=

(
β

α+ β
,

α

α+ β

)
.

Recall from Example 5.2.8 that the second right eigenvector is

f2 :=

(√
α

β
,−
√
β

α

)
=

(√
π1

π0
,−
√
π0

π1

)
,

with eigenvalue λ2 := 1−α−β, so the spectral gap is α+β. Assume that β ≤ α.
Then the bottleneck ratio is

Φ∗ =
c(0, 1)

π(0)
= P (0, 1) = α.

Then Theorem 5.3.5 reads

α2

2
≤ α+ β ≤ 2α,

which is indeed satisfied for all 0 < β ≤ α < 1. Note that the upper bound is tight
when α = β. J

Proof of Theorem 5.3.5. We start with the upper bound. In view of the Poincaré
inequality for N (Theorem 5.3.4), to get an upper bound on the spectral gap, it
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suffices to plug in a well-chosen function f in (5.3.1). Taking a hint from Exam-
ple 5.3.6, for S ⊆ V with π(S) ∈ (0, 1/2], we let

fS(x) :=

−
√

π(Sc)
π(S) x ∈ S,√

π(S)
π(Sc) x ∈ Sc.

Then

∑
x

π(x)fS(x) = π(S)

[
−

√
π(Sc)

π(S)

]
+ π(Sc)

[√
π(S)

π(Sc)

]
= 0,

and

∑
x

π(x)fS(x)2 = π(S)

[
−

√
π(Sc)

π(S)

]2

+ π(Sc)

[√
π(S)

π(Sc)

]2

= 1.

So Varπ[fS ] = 1. Hence, from Theorem 5.3.4,

γ ≤ D(fS)

Varπ[fS ]

=
1

2

∑
x,y

c(x, y)[fS(x)− fS(y)]2

=
∑

x∈S,y∈Sc
c(x, y)

[
−

√
π(Sc)

π(S)
−

√
π(S)

π(Sc)

]2

=
∑

x∈S,y∈Sc
c(x, y)

[
−π(Sc) + π(S)√

π(S)π(Sc)

]2

=
c(S, Sc)

π(S)π(Sc)

≤ 2
c(S, Sc)

π(S)
,

as claimed.
The other direction is trickier. Because we seek an upper bound on the edge

expansion constant Φ∗, our goal is to find a cut (S, Sc) such that

c(S, Sc)

π(S) ∧ π(Sc)
≤
√

2γ. (5.3.4)
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Because the eigenfunction f2 achieves γ in Theorem 5.3.4, it is natural to look to
it for “good cuts.” Thinking of f2 as a one-dimensional embedding of the network,
it turns out to be enough to consider only “sweep cuts” of the form S := {v :
f2(v) ≤ θ} for a threshold θ. How to pick the right threshold is less obvious.

Here we use a probabilistic argument, that is, we construct a random cut (Z,Zc).
Observe that it suffices that

E [c(Z,Zc)] ≤
√

2γE [π(Z) ∧ π(Zc)] , (5.3.5)

since then E
[√

2γπ(Z) ∧ π(Zc)− c(Z,Zc)
]
≥ 0, which in turn implies that we

have P
[√

2γπ(Z) ∧ π(Zc)− c(Z,Zc) ≥ 0
]
> 0 by the first moment principle

(Theorem 2.2.1); in other words, there exists a cut satisfying (5.3.4).
We now describe the random cut (Z,Zc):

1. (Cuts from f2) Let again f2 be an eigenfunction corresponding to the eigen-
value λ2 of P with ‖f2‖2π = 1. Order the vertices V := {v1, . . . , vn} in such
a way that

f2(vi) ≤ f2(vi+1), ∀i = 1, . . . , n− 1.

As we described above, the function f2 naturally produces a series of cuts
(Si, S

c
i ) where Si := {v1, . . . , vi}. By definition of the bottleneck ratio,

Φ∗ ≤
c(Si, S

c
i )

π(Si) ∧ π(Sci )
. (5.3.6)

2. (Normalization) Let

m := min{i : π(Si) > 1/2},

and define the translated function

f := f2 − f2(vm).

We further set g := αf where α > 0 is chosen so that

g(v1)2 + g(vn)2 = 1.

Note that, by construction, g(vm) = 0 and g(v1) ≤ · · · ≤ g(vm) = 0 ≤
g(vm+1) ≤ · · · ≤ g(vn). The function g is related to γ as follows:

Lemma 5.3.7.

1

2

∑
x,y

c(x, y)(g(x)− g(y))2 ≤ γ
∑
x

π(x)g(x)2.
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Proof. By Theorem 5.3.4,

γ =
D(f2)

Varπ[f2]
.

Because neither the numerator nor the denominator is affected by adding a
constant, we have also

γ =
D(f)

Varπ[f ]
.

Furthermore, notice that a constant multiplying f cancels out in the ratio so

γ =
D(g)

Varπ[g]
.

Now use the fact that Varπ[g] ≤
∑

x π(x)g(x)2.

3. (Random cut) Pick Θ in [g(v1), g(vn)] with density 2|θ|. Note that∫ g(vn)

g(v1)
2|θ|dθ = g(v1)2 + g(vn)2 = 1.

Finally define
Z := {vi : g(vi) < Θ}.

The rest of the proof is calculations. We bound the expectations on both sides
of (5.3.5).

Lemma 5.3.8. The following hold:

(i)
E[π(Z) ∧ π(Zc)] =

∑
x

π(x)g(x)2.

(ii)

E[c(Z,Zc)] ≤

(
1

2

∑
x,y

c(x, y)(g(x)− g(y))2

)1/2(
2
∑
x

π(x)g(x)2

)1/2

.

Lemmas 5.3.7 and 5.3.8 immediately imply (5.3.5) and that concludes the proof of
Theorem 5.3.5. So it remains to prove this last lemma.
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Proof of Lemma 5.3.8. We start with (i). By definition of g, Θ ≤ 0 implies that
π(Z) ∧ π(Zc) = π(Z) and vice versa. Thus

E[π(Z) ∧ π(Zc)] = E

∑
`<m

π(v`)1{v`∈Z}1{Θ≤0} +
∑
`≥m

π(v`)1{v`∈Zc}1{Θ>0}


= E

∑
`<m

π(v`)1{g(v`)<Θ≤0} +
∑
`≥m

π(v`)1{0<Θ≤g(v`)}


=
∑
`<m

π(v`)P [g(v`) < Θ ≤ 0] +
∑
`≥m

π(v`)P [0 < Θ ≤ g(v`)]

=
∑
`<m

π(v`)g(v`)
2 +

∑
`≥m

π(v`)g(v`)
2

=
∑
x

π(x)g(x)2, (5.3.7)

where we integrated over the density of Θ to obtain the fourth line.
We move on to (ii). To compute E[c(Z,Zc)], we note that xk ∈ Z and x` ∈ Zc

if and only if g(vk) < Θ ≤ g(v`). The probability of that event depends on the
signs of g(vk) and g(v`). If g(vk)g(v`) ≥ 0,

P[g(vk) < Θ ≤ g(v`)] = |g(vk)
2 − g(v`)

2|
= |g(vk)− g(v`)||g(vk) + g(v`)|
= |g(vk)− g(v`)|(|g(vk)|+ |g(v`)|).

If g(vk)g(v`) < 0,

P[g(vk) < Θ ≤ g(v`)] = g(vk)
2 + g(v`)

2

≤ g(vk)
2 + g(v`)

2 − 2g(vk)g(v`)

= (g(vk)− g(v`))
2

= |g(vk)− g(v`)|(|g(vk)|+ |g(v`)|).
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We apply Cauchy-Schwarz to get

E[c(Z,Zc)] =
∑
k<`

c(vk, v`)P[g(vk) < Θ ≤ g(v`)]

≤
∑
k<`

c(vk, v`)|g(vk)− g(v`)|(|g(vk)|+ |g(v`)|)

≤

(∑
k<`

c(vk, v`)(g(vk)− g(v`))
2

)1/2

×

(∑
k<`

c(vk, v`)(|g(vk)|+ |g(v`)|)2

)1/2

.

The expression in the first parentheses is equal to 1
2

∑
x,y c(x, y)(g(x) − g(y))2.

So it remain to bound the expression in the second parentheses.
Note that

(|g(x)|+ |g(y)|)2 = 2g(x)2 + 2g(y)2 − (|g(x)| − |g(y)|)2 ≤ 2g(x)2 + 2g(y)2.

Therefore, since
∑

y c(x, y) =
∑

y c(y, x) = π(x),

∑
k<`

c(vk, v`)(|g(vk)|+ |g(v`)|)2 ≤ 1

2

∑
x,y

c(x, y)(|g(x)|+ |g(y)|)2

≤
∑
x

π(x)g(x)2 +
∑
y

π(y)g(y)2

= 2
∑
x

π(x)g(x)2.

That concludes the proof.

5.3.2 . Random walks: trees, cycles, and hypercubes revisited

We use the techniques of the previous subsection to bound the mixing time of
random walk on some simple graphs. In particular we revisit the examples of
Section 4.3.2.

b-ary tree Let (Zt) be lazy simple random walk on the `-level rooted b-ary tree,
T̂`b. The root, 0, is on level 0 and the leaves, L, are on level `. All vertices have



CHAPTER 5. SPECTRAL METHODS 392

degree b + 1, except for the root which has degree b and the leaves which have
degree 1. Recall that the stationary distribution is

π(x) :=
δ(x)

2(n− 1)
, (5.3.8)

where n is the number of vertices and δ(x) is the degree of x. We take b = 2 to
simplify.

It is intuitively clear that each edge of this graph constitutes a bottleneck, with
the root being the most “balanced” one. Let x0 be a leaf of T̂`b and let A be the set
of vertices “on the other side of the root (inclusively),” that is, vertices whose graph
distance from x0 is at least `. See Figure 4.7. Let S be the remaining vertices. Then
by symmetry π(S) ≤ 1/2. Note that there is a single edge connecting S and Sc =
A, namely, the edge linking 0 and the root of the subtree TS formed by the vertices
in S. More precisely, let vS be the root of TS . From (5.3.8), P (vS , 0) = 1

2 ·
1
3 = 1

6
(where the 1/2 accounts for the laziness), π(vS) = 3

2n−2 , and, by symmetry,

π(S) =
(2n− 2− 2)/2

2n− 2
=

n− 2

2n− 2
,

where in the numerator we subtracted the degree of the root before dividing the
sum of the remaining degrees by 2. Hence

Φ∗ ≤
1
6

(
3

2n−2

)
n−2
2n−2

=
1

2(n− 2)
,

By Theorem 5.3.5,

γ ≤ 2Φ∗ ≤
1

n− 2
and trel = γ−1 ≥ n− 2.

Thus by Theorem 5.2.14 and the fact that the chain is lazy

tmix(ε) ≥ (trel − 1) log

(
1

2ε

)
= Ω(n).

We showed in Section 4.3.2, using other techniques, that tmix(ε) = Θ(n).

Cycle Let (Zt) be lazy simple random walk on the cycle of size n, Zn :=
{0, 1 . . . , n− 1}, where i ∼ j if |j − i| = 1 (mod n). Assume n is even.
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Consider a subset of vertices S. Note that by symmetry π(S) = |S|
n . Moreover,

for all i ∼ j, c(i, j) = π(i)P (i, j) = 1
n ·

1
2 ·

1
2 = 1

4n . Among all sets of size |S|,
consecutive vertices minimize the size of the boundary. So

Φ∗ ≤
2 1

4n
`
n

=
1

2`
,

for all ` ≤ n/2. This expression is minimized for ` = n/2 so

Φ∗ =
1

n
.

By Theorem 5.3.5,
1

2n2
=

Φ2
∗

2
≤ γ ≤ 2Φ∗ =

2

n

and
n

2
≤ trel = γ−1 ≤ 2n2.

Thus by Theorem 5.2.14

tmix(ε) ≥ (trel − 1) log

(
1

2ε

)
= Ω(n),

and

tmix(ε) ≤ log

(
1

επmin

)
trel = O(n2 log n).

We know from exact eigenvalue computations (see Section 5.2.2 where technically
we considered the non-lazy chain; laziness only affects the relaxation time by a
factor of 2) that in fact γ = 2π2

n2 + O(n−4). We also showed in that section that
tmix(ε) = O(n2). (Exercise 4.15 shows this is tight up to a constant factor.)

Hypercube Let (Zt) be lazy simple random walk on the n-dimensional hyper-
cube Zn2 := {0, 1}n where i ∼ j if ‖i− j‖1 = 1.

To get a bound on the edge expansion constant, consider the set S = {x ∈ Zn2 :
x1 = 0}. By symmetry π(S) = 1

2 . For each i ∼ j, c(i, j) = 1
2n ·

1
2 ·

1
n = 1

n2n+1 .
Hence

Φ∗ ≤
2n−1 1

n2n+1

1
2

=
1

2n
,

where in the numerator we used that |S| = 2n−1. By Theorem 5.3.5,

γ ≤ 2Φ∗ ≤
1

n
.
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Thus by Theorem 5.2.14

tmix(ε) ≥ (trel − 1) log

(
1

2ε

)
= Ω(n).

We know from exact eigenvalue computations (Section 5.2.2) that in fact γ = 1
n .

We also showed in Section 4.3.2 that tmix(ε) = Θ(n log n).

5.3.3 . Random graphs: existence of an expander family and applica-
tion to mixing

In many applications, it is useful to construct “bottleneck-free” graphs. In particu-
lar, random walks mix rapidly on such graphs. Formally:

Definition 5.3.9 (Expander family). Let {Gn}n be a collection of finite d-regular
graphs with limn |V (Gn)| = +∞, where V (Gn) is the vertex set of Gn. Let

Φ∗(Gn) := min

{
|∂ES|
d|S|

: S ⊆ V (Gn), 0 < |S| ≤ |V (Gn)|
2

}
denote the edge expansion constant of Gn with unit conductances.† Let α > 0. We
say that {Gn}n is a (d, α)-expander family if for all n

Φ∗(Gn) ≥ α.

The key point of the definition is that the edge expansion constant of all graphs in
an expander family is bounded away from 0 uniformly in n. Note that it is trivial
to construct such a family if we drop the bounded degree assumption: the edge ex-
pansion constant of the complete graph Kn is 1/2 by Example 5.3.3. On the other
hand, it is far from obvious that one can construct a family of sparse graphs (i.e.,
such that |E(Gn)| = O(|V (Gn)|)) with an edge expansion constant uniformly
bounded away from 0. It turns out that a simple probabilistic construction does the
trick.

We will need the following definition. For a subset S ⊆ V , we let the vertex
boundary of S be

vertex boundary

∂VS := {y ∈ Sc : ∃x ∈ S s.t. x ∼ y}.
†In terms of random walk, this corresponds to choosing a neighbor uniformly at random and

taking the stationary measure equal to the degree. Note that scaling the stationary measure does not
affect the edge expansion constant.
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Figure 5.4: A draw from Pinsker’s model.

Existence of expander graphs For simplicity, we allow multigraphs (i.e., E is
a multiset; or, put differently, there can be multiple edges between the same two
vertices) and consider the case d = 3. We construct a random bipartite multigraph
Gn = (Ln, Rn, En) on 2n vertices known as Pinsker’s model. Denote the vertices
by Ln = {`1, . . . , `n} and Rn = {r1, . . . , rn}. Let σ1

n and σ2
n be independent

uniform random permutations of [n]. The edge set of Gn is given by

En := {(`i, ri) : i ∈ [n]} ∪
{

(`i, rσ1
n(i)) : i ∈ [n]

}
∪
{

(`i, rσ2
n(i)) : i ∈ [n]

}
.

In words, Gn is a union of three independent uniform perfect matchings (and its
vertices are labeled so that one of the matchings is {(`i, ri)}i). See Figure 5.4.
Observe that, as a multigraph, all vertices of Gn have degree 3. We show that
there exists α > 0 such that, for all n large enough, with positive (in fact, high)
probability Gn has an edge expansion constant bounded below by α. In particular,
such a Gn exists for all n large enough and, thus, there exists a (3, α)-expander
family.
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Claim 5.3.10 (Pinsker’s model: edge expansion constant). There exists α > 0 such
that

lim
n
P[Φ∗(Gn) ≥ α] = 1.

Proof. For convenience, assume n is even. We need to show that with probability
going to 1, for any S with |S| ≤ |V (Gn)|/2 = n, we have |∂ES| ≥ αd|S| for
some α > 0. We first reduce the proof to a statement about sets of vertices lying
on one side of Gn.

Lemma 5.3.11. There is β > 0 such that

lim
n
P [|∂VK| ≥ (1 + β)|K|, ∀K ⊆ L, |K| ≤ n/2] = 1.

The same holds for R.

Before proving Lemma 5.3.11, we argue that it implies Claim 5.3.10. Note that
the lemma concerns the vertex boundary of K. To relate the latter to the edge
boundary, let S with |S| ≤ n, and let SL := S ∩ L and SR := S ∩ R. For any
subset K ⊆ SL, the size of the edge boundary of S can be bounded below as
follows

|∂ES| ≥ |∂VK| − |SR|, (5.3.9)

where we took into account that the vertices of ∂VK in SR do not contribute to the
edge boundary, but the others do as they are incident with at least one edge in ∂ES.
It remains to find a good K.

Assume without loss of generality that |SL| ≥ |SR| (in the other case, just
interchange the roles of L and R), and suppose that the event in the lemma holds.
In particular, |SR| ≤ |S|/2. We claim that there is a subset K of SL such that

|SR| ≤ |S|/2 ≤ |K| ≤ n/2. (5.3.10)

There are two cases:

- If |SL| < n/2, then take K = SL. It follows that |K| = |SL| ≥ |S|/2.

- If |SL| ≥ n/2, then let K be any subset of SL of size n/2. Since |S| ≤ n, it
follows that |K| = n/2 ≥ |S|/2.

Under the event in the lemma, |∂VK| ≥ (1 + β)|K|.
Going back to (5.3.9), using the lower bound on |∂VK| and (5.3.10), we get

|∂ES| ≥ (1 + β)|K| − |K| = β|K| ≥ β

2
|S| = α|S|,

where we set α = β/2. Since this holds for any set S with |S| ≤ n, we have
proved Claim 5.3.10.

It remains to prove the lemma.
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Figure 5.5: Illustration of the main step in proof of the lemma.

Proof of Lemma 5.3.11. Let K ⊆ L with k := |K| ≤ n/2. Without loss of
generality assume K = {`1, . . . , `k}. Observe that, by construction, ∂VK ⊇ K ′

where K ′ = {r1, . . . , rk}. We analyze the “bad event”

BK := {|∂VK| ≤ k + bβkc} ,

by considering all subsets of {rk+1, . . . , rn} of size bβkc and bounding the prob-
ability that all edges out of K fall into one of them and K ′. Note that there are(
n−k
bβkc

)
such subsets. See Figure 5.5.

Since σ1
n and σ2

n are uniform and independent, they each match K to a uni-
formly chosen subset of the same size in R and we have by a union bound

P[BK ] ≤
(
n− k
bβkc

)[(k+bβkc
k

)(
n
k

) ]2

≤
(

n

bβkc

)(k+bβkc
bβkc

)2(
n
k

)2 ,

where we used that
(
n
s

)
=
(
n
n−s
)
.
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Taking a union bound again, this time over Ks, we have

P[∃K ⊆ L, |K| ≤ n/2, |∂VK| ≤(1 + β)|K|]

≤
∑

K⊆L, |K|≤n/2

P[BK ]

≤
n/2∑
k=1

(
n

k

)(
n

bβkc

)(k+bβkc
bβkc

)2(
n
k

)2 . (5.3.11)

We use the bound ns

ss ≤
(
n
s

)
≤ esns

ss ≤
etnt

tt for s ≤ t < n (see Appendix A; to see
the last inequality, note that d

dt log( e
tnt

tt ) = log(nt ) > 0 for 0 < t < n). We obtain
that the sum in the last display is bounded as

n/2∑
k=1

(
n

k

)(
n

bβkc

)(k+bβkc
bβkc

)2(
n
k

)2 =

n/2∑
k=1

(
n

bβkc

)(k+bβkc
bβkc

)2(
n
k

)
≤

n/2∑
k=1

eβknβk

(βk)βk

(
eβk(k+βk)βk

(βk)βk

)2

nk

kk

≤
n/2∑
k=1

(
k

n

)k(1−β)(e3(1 + β)2

β3

)βk
=
∞∑
k=1

fn(k), (5.3.12)

where we defined

fn(k) := 1{k≤n/2}

(
k

n

)k(1−β)(e3(1 + β)2

β3

)βk
.

Let also

g(k) :=

[(
1

2

)1−β (e3(1 + β)2

β3

)β]k
,

and notice that for β small enough

|fn(k)| ≤ g(k), ∀k

since k
n ≤

1
2 for k ≤ n

2 and

γβ :=

(
1

2

)1−β (e3(1 + β)2

β3

)β
< 1,
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using that ββ → 1 as β → 0. Moreover, for each k,

fn(k)→ 0,

as n→ +∞, and
∞∑
k=1

g(k) ≤ 1

1− γβ
< +∞.

Hence, by the dominated convergence theorem (Theorem B.4.7), combining (5.3.11)
and (5.3.12) we get

P[∃K ⊆ L, |K| ≤ n/2, |∂VK| ≤ (1 + β)|K|] =
∞∑
k=1

fn(k)→ 0.

That concludes the proof.

That concludes the proof of Claim 5.3.10.

Claim 5.3.10 implies:

Theorem 5.3.12 (Existence of expander family). For α > 0 small enough, there
exists a (3, α)-expander (multigraph) family.

Proof. By Claim 5.3.10, for all n large enough, there exists Gn with Φ∗(Gn) ≥ α
for some fixed α > 0.

Fast mixing on expander graphs As we mentioned above, an important prop-
erty of an expander graph is that random walk on such a graph mixes rapidly. We
make this precise.

Claim 5.3.13 (Mixing on expanders). Let {Gn} be a (d, α)-expander family. Then
tmix(ε) = Θ(log |V (Gn)|), where the constant depends on ε and α.

Proof. Because of the degree assumption, random walk on Gn is reversible with
respect to the uniform distribution (see Example 1.1.29). So, by Theorems 5.2.14
and 5.3.5, the mixing time is upper bounded by

tmix(ε) ≤ log

(
1

επmin

)
trel ≤ log

(
|V (Gn)|

ε

)
2α−2 = O(log |V (Gn)|).

By the diameter-based lower bound on the mixing time for reversible chains
(Claim 5.2.25), for n large enough

tmix(ε) ≥ ∆2

12 log |V (Gn)|+ 4| log πmin|
,
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where ∆ is the diameter of Gn. For a d-regular graph Gn, the diameter is at least
log |V (Gn)|. Indeed, by induction, the number of vertices within graph distance
k of any vertex is at most dk. For dk to be greater than |V (Gn)|, we need k ≥
logd |V (Gn)|. Finally,

tmix(ε) ≥ (logd |V (Gn)|)2

16 log |V (Gn)|
= Ω(log |V (Gn)|).

That concludes the proof.

5.3.4 . Ising model: Glauber dynamics on complete graphs and ex-
panders

Let G = (V,E) be a finite, connected graph with maximal degree δ̄. Define X :=
{−1,+1}V . Recall from Example 1.2.5 that the (ferromagnetic) Ising model on V
with inverse temperature β is the probability distribution over spin configurations
σ ∈ X given by

µβ(σ) :=
1

Z(β)
e−βH(σ),

where
H(σ) := −

∑
i∼j

σiσj ,

is the Hamiltonian and
Z(β) :=

∑
σ∈X

e−βH(σ),

is the partition function. In this context, recall that vertices are often referred to as
sites. The single-site Glauber dynamics of the Ising model (Definition 1.2.8) is the
Markov chain on X which, at each time, selects a site i ∈ V uniformly at random
and updates the spin σi according to µβ(σ) conditioned on agreeing with σ at all
sites in V \{i}. Specifically, for γ ∈ {−1,+1}, i ∈ V , and σ ∈ X , let σi,γ be
the configuration σ with the state at i being set to γ. Then, letting n = |V |, the
transition matrix of the Glauber dynamics is

Qβ(σ, σi,γ) :=
1

n
· eγβSi(σ)

e−βSi(σ) + eβSi(σ)
=

1

n

{
1

2
+

1

2
tanh(γβSi(σ))

}
,

where
Si(σ) :=

∑
j∼i

σj .

All other transitions have probability 0. Recall that this chain is irreducible and
reversible with respect to µβ . In particular µβ is the stationary distribution of Qβ .
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We showed in Claim 4.3.15 that the Glauber dynamics is fast mixing at high tem-
perature. More precisely we proved that tmix(ε) = O(n log n) when β < δ̄−1.
Here we prove a converse: at low temperature, graphs with good enough expan-
sion properties produce exponentially slow mixing of the Glauber dynamics.

Curie-Weiss model

Let G = Kn be the complete graph on n vertices. In this case, the Ising model
is often referred to as the Curie-Weiss model. It is natural to scale β with n. We

Curie-Weiss

model
define α := β(n−1). Since δ̄ = n−1, we have that, when α < 1, β = α

n−1 < δ̄−1

so tmix(ε) = O(n log n). In the other direction, we prove:

Claim 5.3.14 (Curie-Weiss model: slow mixing at low temperature). For α > 1,
tmix(ε) = Ω(exp(r(α)n)) for some function r(α) > 0 not depending on n.

Proof. We first prove exponential mixing when α is large enough, an argument
which will be useful in the generalization to expander graphs below.

The idea of the proof is to bound the edge expansion constant and use Theo-
rem 5.3.5. To simplify the proof, assume n is odd. We denote the edge expansion
constant of the chain by ΦX∗ to avoid confusion with that of the base graph G.
Intuitively, because the spins tend to align strongly at low temperature, it takes
a considerable amount of time to travel from a configuration with a majority of
−1s to a configuration with a majority of +1s. Because the model tends to prefer
agreeing spins but does not favor any particular spin, a natural place to look for a
bottleneck is the set

M :=

{
σ ∈ X :

∑
i

σi < 0

}
,

where the quantity m(σ) :=
∑

i σi is called the magnetization. Note that the
magnetization

magnetization is positive if and only if a majority of spins are +1 and that it forms
a Markov chain by itself. So the boundary of the setM must be crossed to travel
from configurations with mostly −1 spins to configurations with mostly −1 spins.

Observe further that µβ(M) = 1/2. The edge expansion constant is hence
bounded by

ΦX∗ ≤
∑

σ∈M,σ′ /∈M µβ(σ)Qβ(σ, σ′)

µβ(M)
= 2

∑
σ∈M,σ′ /∈M

µβ(σ)Qβ(σ, σ′). (5.3.13)

Because the Glauber dynamics changes a single spin at a time, in order for σ ∈M
to be adjacent to a configuration σ′ /∈M, it must be that

σ ∈M−1 := {σ ∈ X : m(σ) = −1} ,
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and that σ′ = σj,+ for some site j such that

j ∈ Jσ := {j ∈ V : σj = −1}.

Because the number of such sites is (n+ 1)/2 onM−1, that is, |Jσ| = (n+ 1)/2
for all σ ∈ M−1, and the Glauber dynamics picks a site uniformly at random, it
follows that for σ ∈M−1∑

σ∈M,σ′ /∈M

µβ(σ)Qβ(σ, σ′) =
∑

σ∈M−1

µβ(σ)
∑
j∈Jσ

Qβ(σ, σj,+)

≤
∑

σ∈M−1

µβ(σ)
(n+ 1)/2

n
(5.3.14)

=
1

2

(
1 +

1

n

)
µβ(M−1). (5.3.15)

Thus plugging this back in (5.3.13) gives

ΦX∗ ≤
(

1 +
1

n

)
µβ(M−1)

= (1 + o(1))
∑

σ∈M−1

e−βH(σ)

Z(β)
(5.3.16)

= (1 + o(1))
∑

σ∈M−1

exp
(

α
n−1

[(|Jσ |
2

)
+
(|J cσ |

2

)
− |Jσ||J cσ |

])
Z(β)

.

We bound the partition function Z(β) =
∑

σ∈X e
−βH(σ) with the term for the

all-(−1) configuration, leading to

ΦX∗ ≤ (1 + o(1))
∑

σ∈M−1

exp
(

α
n−1

[(|Jσ |
2

)
+
(|J cσ |

2

)
− |Jσ||J cσ |

])
exp

(
α
n−1

[(|Jσ |
2

)
+
(|J cσ |

2

)
+ |Jσ||J cσ |

]) (5.3.17)

= (1 + o(1))
∑

σ∈M−1

exp

(
− 2α

n− 1
|Jσ||J cσ |

)

= (1 + o(1))

(
n

(n+ 1)/2

)
exp

(
− 2α

n− 1

[
n+ 1

2

] [
n− 1

2

])
= (1 + o(1))

√
2

πn
2n(1 + o(1)) exp

(
−α(n+ 1)

2

)
≤ Cα

√
2

πn
exp

(
−n
[α

2
− log 2

])
,
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for some constant Cα > 0 depending on α, where we used Stirling’s formula
(see Appendix A). Hence, by Theorems 5.2.14 and 5.3.5, for α > 2 log 2 there is
r(α) > 0

tmix(ε) ≥ (trel − 1) log

(
1

2ε

)
≥ exp(r(α)n) log

(
1

2ε

)
.

That proves the weaker result.
We now show that α > 1 in fact suffices. For this, we need to improve our

bound on the partition function in (5.3.17). Writing

Z(β) =
∑
σ∈X

e−βH(σ)

=

n∑
k=0

(
n

k

)
exp

(
α

n− 1

[(
k

2

)
+

(
n− k

2

)
− k(n− k)

])

= 2

(n−1)/2∑
k=0

(
n

k

)
exp

(
α

n− 1

[(
k

2

)
+

(
n− k

2

)
− k(n− k)

])

=: 2

(n−1)/2∑
k=0

Yα,k,

we see that the partition function is a sum of O(n) exponentially large terms and
is therefore dominated by the term corresponding to the largest exponent. Using
Stirling’s formula,

log

(
n

k

)
= (1 + o(1))nH(k/n),

where H(p) = −p log p− (1− p) log(1− p) is the entropy, and therefore

logYα,k = (1+o(1))n

[
H(k/n) + α

(k/n)2 + (1− k/n)2 − 2(k/n)(1− k/n)

2

]
︸ ︷︷ ︸

Kα(k/n)

.

where, for p ∈ [0, 1], we let

Kα(p) := H(p) + α
(1− 2p)2

2
.

Note that the first term in Kα(p) is increasing on [0, 1/2] while the second term
is decreasing on [0, 1/2]. In a sense, we are looking at the tradeoff between the
contribution from the entropy (i.e., how many ways are there to have k spins with
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value −1) and that from the Hamiltonian (i.e., how much such a configuration is
favored). We seek to maximizeKα(p) to determine the leading term in the partition
function.

By a straightforward computation,

K′α(p) = log

(
1− p
p

)
− 2α(1− 2p),

and
K′′α(p) = − 1

p(1− p)
+ 4α.

Observe first that, when α < 1 (i.e., at high temperature), K′α(1/2) = 0 and
K′′α(p) < 0 for all p ∈ [0, 1] since p(1 − p) ≤ 1/4. Hence, in that case, Kα is
maximized at p = 1/2.

In our case of interest, on the other hand, that is, when α > 1, K′′α(p) > 0
in an interval around 1/2 so there is p∗ < 1/2 with Kα(p∗) > Kα(1/2) = 1.
So the distribution significantly favors “unbalanced” configurations and crossing
M−1 becomes a bottleneck for the Glauber dynamics. Going back to (5.3.17) and
bounding Z(β) ≥ 2Yα,bp∗nc, we get

ΦX∗ = O (exp(−n[Kα(p∗)−Kα(1/2)])) .

Applying Theorems 5.2.14 and 5.3.5 concludes the proof.

Expander graphs

In the proof of Claim 5.3.14, the bottleneck slowing down the chain arises as a
result of the fact that, when m(σ) = −1, there is a large number of edges in
the base graph Kn connecting Jσ and J cσ . That produces a low probability for
such configurations under the ferromagnetic Ising model, where agreeing spins are
favored. The same argument easily extends to expander graphs. In words, we
prove something that—at first—may seem a bit counter-intuitive: good expansion
properties in the base graph produces a bottleneck in the Glauber dynamics at low
temperature.

Claim 5.3.15 (Ising model on expander graphs: slow mixing of the Glauber dy-
namics). Let {Gn}n be a (d, γ)-expander family. For large enough inverse tem-
perature β > 0, the Glauber dynamics of the Ising model onGn satisfies tmix(ε) =
Ω(exp(r(β)|V (Gn)|)) for some function r(β) > 0 not depending on n.

Proof. Let µβ be the probability distribution over spin configurations under the
Ising model overGn = (V,E) with inverse temperature β. LetQβ be the transition
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matrix of the Glauber dynamics. For not necessarily disjoint subsets of vertices
W0,W1 ⊆ V in the base graph Gn, let

E(W0,W1) := {{u, v} : u ∈W0, v ∈W1, {u, v} ∈ E},

be the set of edges with one endpoint in W0 and one endpoint in W1. Let N =
|V (Gn)| and assume it is odd for simplicity. We use the notation in the proof
of Claim 5.3.14. Following the argument in that proof, we observe that (5.3.15)
and (5.3.16) still hold. Thus

ΦX∗ ≤ (1 + o(1))
∑

σ∈M−1

exp (β [|E(Jσ,Jσ)|+ |E(J cσ ,J cσ )| − |E(Jσ,J cσ )|])
Z(β)

.

As we did in (5.3.17), we bound the partition function Z(β) =
∑

σ∈X e
−βH(σ)

with the term for the all-(−1) configuration, leading to

ΦX∗ ≤ (1 + o(1))
∑

σ∈M−1

exp (β [|E(Jσ,Jσ)|+ |E(J cσ ,J cσ )| − |E(Jσ,J cσ )|])
exp (β [|E(Jσ,Jσ)|+ |E(J cσ ,J cσ )|+ |E(Jσ,J cσ )|])

= (1 + o(1))
∑

σ∈M−1

exp (−2β|E(Jσ,J cσ )|)

= (1 + o(1))
∑

σ∈M−1

exp (−2β|∂EJ cσ |)

≤ (1 + o(1))

(
N

(N + 1)/2

)
exp (−2βγd|J cσ |)

= (1 + o(1))

√
2

πN
2N (1 + o(1)) exp (−βγd(N − 1))

≤ Cβ,γ,d

√
2

πN
exp (−N [βγd− log 2]) ,

for some constant Cβ,γ,d > 0. We used the definition of an expander family (Def-
inition 5.3.9) on the fourth line above. Taking β > 0 large enough gives the re-
sult.

5.3.5 Congestion ratio

Recall from (5.3.2) that an inequality of the type

Varπ[f ] ≤ CD(f), (5.3.18)



CHAPTER 5. SPECTRAL METHODS 406

holding for all f is known as a Poincaré inequality. By Theorem 5.3.4, it implies
the lower bound γ ≥ C−1 on the spectral gap γ = 1 − λ2. In this section, we
derive such an inequality using a formal measure of “congestion” in the network.

Let N = (G, c) be a finite, connected network with G = (V,E). We assume
that c(x, y) = π(x)P (x, y) and therefore c(x) =

∑
y∼x c(x, y) = π(x), where

π is the stationary distribution of random walk on N . To state the bound, it will
be convenient to work with directed edges—this time in both directions. Let Ẽ
contain all edges from E with both orientations, that is, for each e ∈ {x, y}, Ẽ
includes (x, y) and (y, x) with associated weight c(x, y) = c(y, x) = c(e) > 0.
For a function f ∈ `2(V, π) and an edge ~e = (x, y) ∈ Ẽ, we define as before

∇f(~e) = f(y)− f(x).

With this notation, we can rewrite the Dirichlet energy as

D(f) =
1

2

∑
x,y

c(x, y)[f(x)− f(y)]2 =
1

2

∑
~e∈Ẽ

c(~e)[∇f(~e)]2. (5.3.19)

For each pair of vertices x, y, let νx,y be a directed path between x and y in the
digraph G̃ = (V, Ẽ), as a collection of directed edges. Let |νx,y| be the number of
edges in the path. The congestion ratio associated with the paths ν = {νx,y}x,y∈V congestion

ratio
is

Cν = max
~e∈Ẽ

1

c(~e)

∑
x,y:~e∈νx,y

|νx,y|π(x)π(y).

Note that Cν tends to be large when many selected paths, called canonical paths,
canonical

paths
go through the same “congested” edge. To get a good bound in the theorem below,
one must choose canonical paths that are well “spread out.”

Theorem 5.3.16 (Canonical paths method). For any choice of paths ν as above,
we have the following bound on the spectral gap

γ ≥ 1

Cν
.

Proof. We establish a Poincaré inequality (5.3.18) with C := Cν . The proof strat-
egy is to start with the variance and manipulate it to bring out canonical paths.

For any f ∈ `2(V, π), it can be checked by expanding that

Varπ[f ] =
1

2

∑
x,y

π(x)π(y)(f(x)− f(y))2. (5.3.20)
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To bring out terms similar to those in (5.3.19), we write f(x)−f(y) as a telescoping
sum over the canonical path between x and y. That is, letting ~e1, . . . , ~e|νx,y | be the
edges in νx,y, observe that

f(y)− f(x) =

|νx,y |∑
i=1

∇f(~ei).

By Cauchy-Schwarz (Theorem B.4.8),

(f(y)− f(x))2 =

|νx,y |∑
i=1

∇f(~ei)

2

≤

|νx,y |∑
i=1

12

|νx,y |∑
i=1

∇f(~ei)
2


= |νx,y|

∑
~e∈νx,y

∇f(~e)2.

Combining the last display with (5.3.20) and rearranging, we arrive at

Varπ[f ] ≤ 1

2

∑
x,y

π(x)π(y)|νx,y|
∑
~e∈νx,y

∇f(~e)2

=
1

2

∑
~e∈Ẽ

∇f(~e)2
∑

x,y:~e∈νx,y

|νx,y|π(x)π(y)

=
1

2

∑
~e∈Ẽ

c(~e)∇f(~e)2

 1

c(~e)

∑
x,y:~e∈νx,y

|νx,y|π(x)π(y)


≤ Cν D(f).

That concludes the proof.

We give an example next.

Example 5.3.17 (Random walk inside a box). Consider random walk on the fol-
lowing d-dimensional box with sides of length n:

V = [n]d = {1, . . . , n}d,

E = {x, y ∈ [n]d : ‖x− y‖1 = 1},
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P (x, y) =
1

|{z : z ∼ x}|
, ∀x, y ∈ [n]d, x ∼ y,

π(x) =
|{z : z ∼ x}|

2|E|
,

and
c(e) =

1

2|E|
, ∀e ∈ E.

We define Ẽ as before.
We use Theorem 5.3.16 to bound the spectral gap. For x = (x1, . . . , xd), y =

(y1, . . . , yd) ∈ [n]d, we construct νx,y by matching each coordinate in turn. That
is, for two vertices w, z ∈ [n]d with a single distinct coordinate, let [w, z] be the
directed path from w to z in G̃ = (V, Ẽ) corresponding to a straight line (or the
empty path if w = z). Then

νx,y =

d⋃
i=1

[(y1, . . . , yi−1, xi, xi+1, . . . , xd), (y1, . . . , yi−1, yi, xi+1, . . . , xd)] .

(5.3.21)
It remains to bound

Cν = max
~e∈Ẽ

1

c(~e)

∑
x,y:~e∈νx,y

|νx,y|π(x)π(y),

from above.
Each term in the union defining νx,y contains at most n edges, and therefore

|νx,y| ≤ dn, ∀x, y.

Not attempting to get the best constant factors, the edge weights (i.e., conduc-
tances) satisfy

c(~e) =
1

2|E|
≥ 1

2 · 2dnd
=

1

4dnd
,

for all ~e, since there are nd vertices and each has at most 2d incident edges. Like-
wise, for any x,

π(x) =
|{z : z ∼ x}|

2|E|
≤ 2d

2 · (dnd)/2
=

2

nd
,
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where we divided by two in the denominator to account for the double-counting of
edges. Hence we get

Cν ≤ max
~e∈Ẽ

1

1/(4dnd)

∑
x,y:~e∈νx,y

(dn)(2/nd)(2/nd)

=
16d2

nd−1
max
~e∈Ẽ
|{x, y : ~e ∈ νx,y}| .

To bound the cardinality of the set on the last line, we note that any edge ~e ∈ Ẽ
is of the form

~e = ((z1, . . . , zi−1, zi, zi+1, . . . , zd), (z1, . . . , zi−1, zi ± 1, zi+1, . . . , zd))

that is, the endvertices differ by exactly one unit along a single coordinate. By the
construction of the path νx,y in (5.3.21), if ~e ∈ νx,y then it must lie in the subpath

((z1, . . . , zi−1, zi, zi+1, . . . , zd), (z1, . . . , zi−1, zi ± 1, zi+1, . . . , zd))

∈ [(y1, . . . , yi−1, xi, xi+1, . . . , xd), (y1, . . . , yi−1, yi, xi+1, . . . , xd)] .

But that imposes constraints on x and y. Namely, we must have

y1 = z1, . . . , yi−1 = zi−1, xi+1 = zi+1, . . . , xd = zd.

The remaining components of x and y (of which there are i of the former and
d − (i − 1) of the latter) each has at most n possible values (although not all of
them are allowed), so that

|{x, y : ~e ∈ νx,y}| ≤ nind−(i−1) = nd+1.

This upper bound is valid for any ~e.
Putting everything together, we get the bound

Cν ≤
16d2

nd−1
nd+1 = 16d2n2,

so that
γ ≥ 1

16d2n2
.

Observe that this lower bound on the spectral gap depends only mildly (i.e., poly-
nomially) in the dimension. J

One advantage of the canonical paths method is that it is somewhat robust
to modifying the underlying network through comparison arguments. See Exer-
cise 5.17 for a simple illustration.
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Exercises

Exercise 5.1. Let A be an n × n symmetric random matrix. We assume that
the entries on and above the diagonal, Ai,j , i ≤ j, are independent uniform in
{+1,−1} (and each entry below the diagonal is equal to the corresponding entry
above). Use Talagrand’s inequality (Theorem 3.2.32) to prove concentration of the
largest eigenvalue of A around its mean (which you do not need to compute).

Exercise 5.2. Let G = (V,E,w) be a network.

(i) Prove formula (5.1.3) for the Laplacian quadratic form. (Hint: For an orien-
tation Gσ = (V,Eσ) of G (that is, give an arbitrary direction to each edge
to turn it into a digraph), consider the matrix Bσ ∈ Rn×m where the column
corresponding to arc (i, j) has−√wij in row i and√wij in row j, and every
other entry is 0.)

(i) Show that the network Laplacian is positive semidefinite.

Exercise 5.3. Let G = (V,E,w) be a weighted graph with normalized Laplacian
L. Show that

xTLx =
∑
{i,j}∈E

wij

(
xi√
δ(i)
− xj√

δ(j)

)2

,

for x = (x1, . . . , xn) ∈ Rn.

Exercise 5.4 (2-norm). Prove that

sup
x∈Sn−1

‖Ax‖2 = sup
x∈Sn−1

y∈Sm−1

〈Ax,y〉.

[Hint: Use Cauchy-Schwarz (Theorem B.4.8) for one direction, and set y =
Ax/‖Ax‖2 for the other one.]

Exercise 5.5 (Spectral radius of a symmetric matrix). Let A ∈ Rn×n be a sym-
metric matrix. The set σ(A) of eigenvalues of A is called the spectrum of A and spectrum

ρ(A) = max{|λ| : λ ∈ σ(A)},

is its spectral radius. Prove that
spectral

radiusρ(A) = ‖A‖2,

where recall that

‖A‖2 = max
06=x∈Rm

‖Ax‖
‖x‖

.
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Exercise 5.6 (Community recovery in sparse networks). Assume without proof the
following theorem.

Theorem 5.3.18 (Remark 3.13 of [BH16]). Consider a symmetric matrix Z =
[Zi,j ] ∈ Rn×n whose entries are independent and obey, EZi,j = 0 and Zi,j ≤ B,
∀1 ≤ i, j ≤ n, EZ2

i,j ≤ σ2 then with high probability we have ||Z|| . σ
√
n +

B
√

log n.

Let (X,G) ∼ SBMn,pn,qn . Show that, under the conditions pn & logn
n and

√
pn
n =

o(pn − qn), spectral clustering achieves almost exact recovery.

Exercise 5.7 (Parseval’s identity). Prove Parseval’s identity (i.e., (5.2.1)) in the
finite-dimensional case.

Exercise 5.8 (Dirichlet kernel). Prove that for θ 6= 0

1 + 2
n∑
k=1

cos kθ =
sin((n+ 1/2)θ)

sin(θ/2)
.

[Hint: Switch to the complex representation and use the formula for a geometric
series.]

Exercise 5.9 (Eigenvalues and periodicity). Let P be a finite irreducible transition
matrix reversible with respect to π over V . Show that if P has a nonzero eigen-
function f with eigenvalue−1, then P is not aperiodic. [Hint: Look at x achieving
‖f‖∞.]

Exercise 5.10 (Mixing time: necessary condition for cutoff). Consider a sequence
of Markov chains indexed by n = 1, 2, . . .. Assume that each chain has a finite
state space and is irreducible, aperiodic, and reversible. Let t

(n)
mix(ε) and t

(n)
rel be

respectively the mixing time and relaxation time of the n-th chain. The sequence
is said to have pre-cutoff if

sup
0<ε<1/2

lim sup
n→+∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

< +∞.

Show that if for some ε > 0

sup
n≥1

t
(n)
mix(ε)

t
(n)
rel

< +∞,

then there is no pre-cutoff. In particular, there is no cutoff, as defined in Re-
mark 4.3.8.
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Exercise 5.11 (Relaxation time and variance). Let P be a finite irreducible transi-
tion matrix reversible with respect to π over V . Define

Varπ[g] =
∑
x∈V

π(x)[g(x)− πg]2.

Let γ∗ be the absolute spectral gap of P . Show that

Varπ[P tf ] ≤ (1− γ∗)2tVarπ[f ].

Exercise 5.12 (Lumping). Let (Xt) be a Markov chain on a finite state space V
with transition P . Suppose there is an equivalence relation ∼ on V with equiv-
alence classes V ], denoting by [x] the equivalence class of x, such that [Xt] is a
Markov chain with transition matrix P ]([x], [y]) = P (x, [y]).

(i) Let f : V → R be an eigenfunction of P with eigenvalue λ and assume that
f is constant on each equivalence class. Prove that f ]([x]) := f(x) defines
an eigenfunction of P ]. What is its eigenvalue?

(ii) Suppose g : V ] → R is eigenfunction of P ] with eigenvalue λ. Prove that
g[ : V → R defined by g[(x) := g([x]) is eigenfunction of P . What is its
eigenvalue?

Exercise 5.13 (Random walk on path with reflecting boundaries). Let n be an
even positive integer. Let (Xt) be simple random walk on the path {1, . . . , n} with
reflecting boundaries, that is, the transition matrix P is defined by P (x, x − 1) =
P (x, x + 1) = 1/2 for x ∈ {2, . . . , n − 1}, and P (1, 2) = P (n, n − 1) = 1.
Use Exercise 5.12 to compute the eigenfunctions of P . [Hint: Use the results of
Section 5.2.2.]

Exercise 5.14 (Product chain). For j = 1, . . . , d, let Pj be a transition matrix on
the finite state space Vj reversible with respect to the stationary distribution πj .
Let w = (wj)j∈[d] be a probability distribution over [d]. Consider the following
Markov chain (Xt) on V := V1 × · · · × Vd: at each step, pick j according to w,
then take one step along the j-th coordinate according to Pj .

(i) Compute the transition matrix P and stationary distribution π of the chain
(Xt). Show that P is reversible with respect to π.

(ii) Construct an orthonormal basis of `2(V, π) made of eigenfunctions of P in
terms of eigenfunctions of the Pjs. What are the corresponding eigenvalues?

(iii) Compute the spectral gap γ of P in terms of the spectral gaps γj of the Pjs.
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Exercise 5.15 (Hypercube revisited). Use Exercise 5.14 to recover Lemma 5.2.17.

Exercise 5.16 (Norm and Rayleigh quotient). Let P be irreducible and reversible
with respect to π > 0.

(i) Prove the polarization identity

〈Pf, g〉π =
1

4
[〈P (f + g), f + g〉π − 〈P (f − g), f − g〉π] .

(ii) Show that

‖P‖π = sup

{
〈f, Pf〉π
〈f, f〉π

: f ∈ `0(V ), f 6= 0

}
.

Exercise 5.17 (Random walk on a box with holes). Consider the random walk in
Example 5.3.17 with d = 2. Suppose we remove from the network an arbitrary
collection of horizontal edges at even heights. Use the canonical paths method to
derive a lower bound on the spectral gap of the form γ ≥ 1/(Cn2). [Hint: Modify
the argument in Example 5.3.17 and relate the congestion ratio before and after the
removal.]
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