
Chapter 1

Introduction

In this chapter we describe a few discrete probability models to which we will
come back repeatedly throughout the book. While there exists a vast array of
well-studied random combinatorial structures (permutations, partitions, urn mod-
els, Boolean functions, polytopes, etc.), our focus is primarily on a limited number
of graph-based processes, namely percolation, random graphs, the Ising model,
and random walks on networks. We will not attempt to derive the theory of these
models exhaustively here. Instead we will employ them to illustrate some essential
techniques from discrete probability. Note that the toolkit developed in this book
is meant to apply to other probabilistic models of interest as well, and in fact many
more will be encountered along the way. After a brief review of graph basics and
Markov chains theory in Section 1.1, we formally introduce our main models in
Section 1.2. We also formulate various questions about these models that will be
answered (at least partially) later on. We assume that the reader is familiar with the
measure-theoretic foundations of probability. A refresher of all required concepts
and results is provided in Appendix B.

1.1 Background

We start with a brief review of graph terminology and standard countable-space
Markov chains results.
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Figure 1.1: Petersen graph.

1.1.1 Review of graph theory

Basic definitions An undirected graph (or graph for short) is a pair G = (V,E)
graph

where V is the set of vertices (or nodes or sites) and

E ⊆ {{u, v} : u, v ∈ V },

is the set of edges (or bonds). See Figure 1.1 for an example. We occasionally write
V (G) and E(G) for the vertices and edges of the graph G. The set of vertices V
is either finite or countably infinite. Edges of the form {u} are called self-loops. In
general, we do not allow E to be a multiset unless otherwise stated. But, when E
is a multiset, G is called a multigraph.

multigraph
A vertex v ∈ V is incident with an edge e ∈ E (or vice versa) if v ∈ e. The

incident vertices of an edge are called endvertices. Two vertices u, v ∈ V are
adjacent (or neighbors), denoted by u ∼ v, if {u, v} ∈ E. The set of adjacent
vertices of v, denoted by N(v), is called the neighborhood of v and its size, that is,
δ(v) := |N(v)|, is the degree of v. A vertex v with δ(v) = 0 is called isolated. A
graph is called d-regular if all its degrees are d. A countable graph is locally finite
if all its vertices have a finite degree.

Example 1.1.1 (Petersen graph). All vertices in the Petersen graph in Figure 1.1
have degree 3, that is, it is a 3-regular graph. In particular it has no isolated vertex.
J

A convenient (and mathematically useful) way to specify a graph is the follow-
ing matrix representation. Assume the graph G = (V,E) has n = |V | vertices.
Assume that the vertices are numbered 1, . . . , n. The adjacency matrix A of G is

adjacency matrix
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the n× n symmetric matrix defined as

Ax,y =

{
1 if {x, y} ∈ E,
0 otherwise.

Example 1.1.2 (Triangle). The adjacency matrix of a triangle, that is, a 3-vertex
graph with all possible non-loop edges, is

A =

0 1 1
1 0 1
1 1 0

 .
J

There exist other matrix representations. Here is one. Let m = |E| and assume
that the edges are labeled arbitrarily as e1, . . . , em. The incidence matrix of an

incidence matrix
undirected graph G = (V,E) is the n×m matrix B such that Bi,j = 1 if vertex i
and edge ej are incident and 0 otherwise.

Subgraphs, paths, and cycles A subgraph of G = (V,E) is a graph G′ =
(V ′, E′) with V ′ ⊆ V and E′ ⊆ E. Implied in this definition is the fact that the
edges in E′ are incident with V ′ only. The subgraph G′ is said to be induced if

E′ = {{x, y} : x, y ∈ V ′, {x, y} ∈ E},

that is, it contains exactly those edges of G that are between vertices in V ′. In
that case the notation G′ := G[V ′] is used. A subgraph is said to be spanning if
V ′ = V . A subgraph containing all possible non-loop edges between its vertices
is called a clique (or complete subgraph). A clique with k nodes is referred to as a

clique
k-clique.

Example 1.1.3 (Petersen graph (continued)). The Petersen graph contains no tri-
angle, that is, 3-clique, induced or not. J

A walk in G is a sequence of (not necessarily distinct) vertices x0 ∼ x1 ∼
· · · ∼ xk. Note the requirement that consecutive vertices of a walk are adjacent.
The number k ≥ 0 is the length of the walk. If the endvertices x0, xk coincide,
that is, x0 = xk, we refer to the walk as closed. If the vertices of a walk are all
distinct, we call it a path (or self-avoiding walk). If the vertices of a closed walk
are all distinct except for the endvertices and its length is at least 3, we call it a
cycle. A path or cycle can be seen as a (not necessarily induced) subgraph of G.
The length of the shortest path connecting two distinct vertices u, v is the graph
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distance between u and v, denoted by dG(u, v). It can be checked that the graph
graph

distance
distance is a metric (and that, in particular, it satisfies the triangle inequality; see
Exercise 1.6). The minimum length of a cycle in a graph is its girth.

We write u ↔ v if there is a path between u and v. It can be checked that the
binary relation↔ is an equivalence relation (i.e, it is reflexive, symmetric and tran-
sitive; see Exercise 1.6). Its equivalence classes are called connected components.
A graph is connected if any two vertices are linked by a path, that is, if u ↔ v for
all u, v ∈ V . Or put differently, if there is only one connected component.

Example 1.1.4 (Petersen graph (continued)). The Petersen graph is connected. J

Trees A forest is a graph with no cycle, or acyclic graph. A tree is a connected tree
forest. Vertices of degree 1 are called leaves. A spanning tree of G is a subgraph
which is a tree and is also spanning. A tree is said to be rooted if it has a single
distinguished vertex called the root.

Trees will play a key role and we collect several important facts about them
(mostly without proofs). The following characterizations of trees will be useful.
The proof is left as an exercise (see Exercise 1.8). We write G + e (respectively
G− e) to indicate the graph G with edge e added (respectively removed).

Theorem 1.1.5 (Trees: characterizations). The following are equivalent.

(i) The graph T is a tree.

(ii) For any two vertices in T , there is a unique path between them.

(iii) The graph T is connected, but T − e is not for any edge e in T.

(iv) The graph T is acyclic, but T + {x, y} is not for any pair of non-adjacent
vertices x, y.

Here are two important implications.

Corollary 1.1.6. If G is connected, then it has at least one spanning tree.

Proof. Indeed, from Theorem 1.1.5, a graph is a tree if and only if it is minimally
connected, in the sense that removing any of its edges disconnects it. So a spanning
tree can be obtained by removing edges of G that do not disconnect it until it is not
possible anymore.

The following characterization is proved in Exercise 1.7.

Corollary 1.1.7. A connected graph with n vertices is a tree if and only if it has
n− 1 edges.



CHAPTER 1. INTRODUCTION 5

And here is a related fact.

Corollary 1.1.8. Let G be a graph with n vertices. If an acyclic subgraph H has
n vertices and n− 1 edges, then it is a spanning tree of G.

Proof. If H is not connected, then it has at least two connected components. Each
of them is acyclic and therefore a tree. By applying Corollary 1.1.7 to the connected
components and summing up, we see that the total number of edges inH is≤ n−2,
a contradiction. So H is connected and therefore a spanning tree.

Finally, a classical formula:

Cayley’s

formula
Theorem 1.1.9 (Cayley’s formula). There are kk−2 trees on a set of k labeled
vertices.

We give a proof of Cayley’s formula based on branching processes in Exercise 6.19.

Some standard graphs Here are a few more examples of finite graphs.

- Complete graph Kn: This graph is made of n vertices with all non-loop
complete graph

edges.

- Cycle graph Cn (or n-cycle): The vertex set is {0, 1, . . . , n − 1} and two
cycle graph

vertices i 6= j are adjacent if and only if |i− j| = 1 or n− 1.

- Torus Ldn: The vertex set is {0, 1, . . . , n − 1}d and two vertices x 6= y are torus
adjacent if and only if there is a coordinate i such that |xi− yi| = 1 or n− 1
and all other coordinates j 6= i satisfy xj = yj .

- Hypercube Zn2 (or n-dimensional hypercube): The vertex set is {0, 1}n and
hypercube

two vertices x 6= y are adjacent if and only if ‖x− y‖1 = 1.

- Rooted b-ary tree T̂`b: This graph is a tree with ` levels. The unique vertex on
level 0 is called the root. For j = 1, . . . , ` − 1, level j has bj vertices, each
of which has exactly one neighbor on level j− 1 (its parent) and b neighbors
on level j + 1 (its children). The b` vertices on level ` are leaves.

Here are a few examples of infinite graphs, that is, a graph with a countably infinite
number of vertices and edges.

infinite graph

- Infinite d-regular tree Td: This is an infinite tree where each vertex has ex-
actly d neighbors. The rooted version, that is, T̂`b with ` = +∞ levels, is
denoted by T̂b.
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- Lattice Ld: The vertex set is Zd and two vertices x 6= y are adjacent if and
only if ‖x− y‖1 = 1.

A bipartite graph G = (L ∪R,E) is a graph whose vertex set is composed of
the union of two disjoint sets L, R and whose edge set E is a subset of {{`, r} :
` ∈ L, r ∈ R}. That is, there is no edge between vertices in L, and likewise for R.

Example 1.1.10 (Some bipartite graphs). The cycle graph C2n is a bipartite graph.
So is the complete bipartite graphKn,m with vertex set {`1, . . . , `n}∪{r1, . . . , rm}
and edge set {{`i, rj} : i ∈ [n], j ∈ [m]}. J

In a bipartite graph G = (L ∪ R,E), a perfect matching is a collection of edges
M ⊆ E such that each vertex is incident with exactly one edge in M .

An automorphism of a graphG = (V,E) is a bijection φ of V to itself that pre-
automorphism

serves the edges, that is, such that {x, y} ∈ E if and only if {φ(x), φ(y)} ∈ E. A
graphG = (V,E) is vertex-transitive if for any u, v ∈ V there is an automorphism
mapping u to v.

Example 1.1.11 (Petersen graph (continued)). For any ` ∈ Z, a (2π`/5)-rotation
of the planar representation of the Petersen graph in Figure 1.1 corresponds to an
automorphism. J

Example 1.1.12 (Trees). The graph Td is vertex-transitive. The graph T̂b on the
other hand has many automorphisms, but is not vertex-transitive. J

Flows Let G = (V,E) be a connected graph with two distinguished disjoint
vertex sets, a source-set (or source for short) A ⊆ V and a sink-set (or sink for
short) Z. Let κ : E → R+ be a capacity function.

Definition 1.1.13 (Flow). A flow from sourceA to sinkZ is a function f : V ×V →
flow

R such that:

F1 (Antisymmetry) f(x, y) = −f(y, x), ∀x, y ∈ V .

F2 (Capacity constraint) |f(x, y)| ≤ κ(e), ∀e = {x, y} ∈ E, and f(x, y) = 0
otherwise.

F3 (Flow-conservation constraint)∑
y:y∼x

f(x, y) = 0, ∀x ∈ V \ (A ∪ Z).

For U,W ⊆ V , let f(U,W ) :=
∑

u∈U,w∈W f(u,w). The strength of f is ‖f‖ :=
f(A,Ac).
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One useful consequence of antisymmetry is that, for any U ⊆ V , we have
f(U,U) = 0 since each distinct pair x 6= y ∈ U appears exactly twice in the sum,
once in each ordering. Also if W1 and W2 are disjoint, then f(U,W1 ∪W2) =
f(U,W1) + f(U,W2). In particular, combining both observations, f(U,W ) =
f(U,W \ U) = −f(W \ U,U).

For F ⊆ E, let κ(F ) :=
∑

e∈F κ(e). We call F a cutset separating A and
Z (or cutset for short) if all paths connecting A and Z include an edge in F . For
such an F , let AF be the set of vertices not separated from A by F , that is, vertices
from which there is a path to A not crossing an edge in F . Clearly A ⊆ AF but
AF ∩ Z = ∅.

Lemma 1.1.14 (Max flow ≤ min cut). For any flow f and cutset F ,

‖f‖ = f(AF , A
c
F ) ≤

∑
{x,y}∈F

|f(x, y)| ≤ κ(F ). (1.1.1)

Proof. Since F is a cutset, (AF \A) ∩ (A ∪ Z) = ∅. So, by (F3),

f(A,Ac) = f(A,Ac) +
∑

u∈AF \A

f(u, V )

= f(A,AF \A) + f(A,AcF )

+ f(AF \A,AF ) + f(AF \A,AcF )

= f(A,AF \A) + f(A,AcF )

+ f(AF \A,A) + f(AF \A,AcF )

= f(AF , A
c
F )

≤
∑
{x,y}∈F

|f(x, y)|,

where we used (F1) twice. The last line is justified by the fact that the edges
between a vertex in AF and a vertex in AcF have to be in F by definition of AF .
That proves the first inequality in the claim. Condition (F2) implies the second
one.

Remarkably, this bound is tight, in the following sense.

Theorem 1.1.15 (Max-flow min-cut theorem). Let G be a finite connected graph
with source A and sink Z, and let κ be a capacity function. Then the following
holds

sup{‖f‖ : flow f} = min{κ(F ) : cutset F}.
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Proof. Note that, by compactness, the supremum on the left-hand side is achieved.
Let f be an optimal flow. The idea of the proof is to construct a “matching” cutset.

An augmentable path is a path x0 ∼ · · · ∼ xk with x0 ∈ A, xi /∈ A ∪ Z for
all i 6= 0 or k, and f(xi−1, xi) < κ({xi−1, xi}) for all i 6= 0. By default, each
vertex in A is an augmentable path. Moreover, by the optimality of f there cannot
be an augmentable path with xk ∈ Z. Indeed, otherwise, we could “push more
flow through that path” and increase the strength of f—a contradiction.

Let B ⊆ V be the set of all final vertices in some augmentable path and let F
be the edge set between B and Bc := V \B. Note that, again by contradiction, all
vertices in B can be reached from A without crossing F and that f(x, y) = κ(e)
for all e = {x, y} ∈ F with x ∈ B and y ∈ Bc. Furthermore F is a cutset
separating A from Z: trivially A ⊆ B; Z ⊆ Bc as argued above; and any path
from A to Z must exit B and enter Bc through an edge in F . Thus AF = B and
we have equality in (1.1.1). That concludes the proof.

Colorings, independent sets, and matchings A coloring of a graphG = (V,E)
coloring

is an assignment of colors to each vertex inG. In a coloring, two vertices may share
the same color. A coloring is proper if for every edge e in G the endvertices of e
have distinct colors. The smallest number of colors in a proper coloring of a graph
G is called the chromatic number χ(G) of G.

An independent vertex set (or independent set for short) of G = (V,E) is a
independent

set
subset of vertices W ⊆ V such that all pairs of vertices in W are non-adjacent.
Likewise, two edges are independent if they are not incident with the same vertex.
A matching is a set of pairwise independent edges. A matching F is perfect if

matching
every vertex in G is incident with an edge of F .

Edge-weighted graphs We refer to an edge-weighted graph G = (V,E,w) as
a network. Here w : E → R+ is a function that assigns positive real weights to
the edges. Definitions can be generalized naturally. In particular, one defines the
degree of a vertex i as

δ(i) =
∑

j:e={i,j}∈E

we.

The adjacency matrix A of G is the n× n symmetric matrix defined as

Ai,j =

{
we if e = {i, j} ∈ E,
0 otherwise,

where we denote the vertices {1, . . . , n}.
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Directed graphs A directed graph (or digraph for short) is a pair G = (V,E)
digraph

where V is a set of vertices (or nodes or sites) andE ⊆ V 2 is a set of directed edges
(or arcs). A directed edge from x to y is typically denoted by (x, y), or occasionally
by 〈x, y〉. A directed path is a sequence of vertices x0, . . . , xk, all distinct, with
(xi−1, xi) ∈ E for all i = 1, . . . , k. We write u → v if there is such a directed
path with x0 = u and xk = v. We say that u, v ∈ V communicate, denoted by
u ↔ v, if u → v and v → u. In particular, we always have u ↔ u for every state
u. The binary relation↔ relation is an equivalence relation (see Exercise 1.6). The
equivalence classes of↔ are called the strongly connected components of G.

The following definition will prove useful.

Definition 1.1.16 (Oriented incidence matrix). Let G = (V,E) be an undirected
graph. Assume that the vertices of G = (V,E) are numbered 1, . . . , |V | and that
the edges are labeled arbitrarily as e1, . . . , e|E|. An orientation of G is the choice
of a direction ~ei for each edge ei, turning it into a digraph ~G. An oriented incidence
matrix of G is the incidence matrix of an orientation, that is, the matrix B such

oriented

incidence matrix
that Bij = −1 if edge ~ej leaves vertex i, Bij = 1 if edge ~ej enters vertex i, and 0
otherwise.

1.1.2 Review of Markov chain theory

Informally, a Markov chain (or Markov process) is a time-indexed stochastic pro-
Markov chain

cess satisfying the property: conditioned on the present, the future is indepen-
dent of the past. We restrict ourselves to the discrete-time, time-homogeneous,
countable-space case, where such a process is characterized by its initial distribu-
tion and a transition matrix.

Construction of a Markov chain For our purposes, it will suffice to “define”
a Markov chain through a particular construction. Let V be a finite or count-
able space. Recall that a stochastic matrix on V is a nonnegative matrix P =

stochastic matrix
(P (i, j))i,j∈V satisfying ∑

j∈V
P (i, j) = 1, ∀i ∈ V.

We think of P (i, ·) as a probability distribution on V . In particular, for a set of
states A ⊆ V , we let

P (i, A) =
∑
j∈A

P (i, j).
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Let µ be a probability measure on V and let P be a stochastic matrix on V .
One way to construct a Markov chain (Xt)t≥0 on V with transition matrix P and
initial distribution µ is the following:

- Pick X0 ∼ µ and let (Y (i, n))i∈V,n≥1 be a mutually independent array of
random variables with Y (i, n) ∼ P (i, ·).

- Set inductively Xn := Y (Xn−1, n), n ≥ 1.

So in particular:

P[X0 = x0, . . . , Xt = xt] = µ(x0)P (x0, x1) · · ·P (xt−1, xt).

We use the notation Px,Ex for the probability distribution and expectation under
the chain started at x. Similarly for Pµ,Eµ where µ is a probability distribution.

Example 1.1.17 (Simple random walk on a graph). Let G = (V,E) be a finite or
infinite, locally finite graph. Simple random walk on G is the Markov chain on V ,

simple

random

walk

on a graph

started at an arbitrary vertex, which at each time picks a uniformly chosen neighbor
of the current state. (Exercise 1.9 asks for the transition matrix.) J

Markov property Let (Xt)t≥0 be a Markov chain (or chain for short) with
transition matrix P and initial distribution µ. Define the filtration (Ft)t≥0 with
Ft = σ(X0, . . . , Xt) (see Appendix B). As mentioned above the defining property
of Markov chains, known as the Markov property, is that: given the present, the
future is independent of the past. In its simplest form, that can be interpreted as
P[Xt+1 = y | Ft] = PXt [Xt+1 = y] = P (Xt, y). More formally:

Markov propertyTheorem 1.1.18 (Markov property). Let f : V∞ → R be bounded, measurable
and let F (x) := Ex[f((Xt)t≥0)], then

E[f((Xs+t)t≥0) | Fs] = F (Xs) a.s.

Remark 1.1.19. We will come back to the “strong” Markov property in Chapter 3.

We define P t(x, y) := Px[Xt = y]. An important consequence of the Markov
property (Theorem 1.1.18) is the following.

Theorem 1.1.20 (Chapman-Kolmogorov).

P t(x, z) =
∑
y∈V

P s(x, y)P t−s(y, z), s ∈ {0, 1, . . . , t}.

Proof. This follows from the Markov property. Indeed note that Px[Xt = z | Fs] =
F (Xs) with F (y) := Py[Xt−s = z] and take Ex on each side.
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Example 1.1.21 (Random walk on Z). Let (Xt) be simple random walk on Z
interpreted as a graph (i.e., L) where i ∼ j if |i− j| = 1.* Then P (0, x) = 1/2 if
|x| = 1. And P 2(0, x) = 1/4 if |x| = 2 and P 2(0, 0) = 1/2. J

As is conventional in Markov chain theory, we think of probability distributions
over the state space as row vectors. We will typically denote them by Greek letters
(e.g., µ, π). If we write µs for the law of Xs as a row vector, then

µs = µ0P
s

where here P s is the matrix product of P by itself s times.

Stationarity The transition graph of a chain is the directed graph on V whose
edges are the transitions with strictly positive probability. A chain is irreducible if

irreducible
V is the unique (strongly) connected component of its transition graph, that is, if
all pairs of states have a directed path between them in the transition graph.

Example 1.1.22 (Simple random walk on a graph (continued)). Simple random
walk on G is irreducible if and only if G is connected. J

A stationary measure π is a measure on V such that∑
x∈V

π(x)P (x, y) = π(y), ∀y ∈ V,

or in matrix form π = πP . We say that π is a stationary distribution if in addition
stationary

distribution
π is a probability measure.

Example 1.1.23 (Random walk on Zd). The all-one measure π ≡ 1 is stationary
for simple random walk on Ld. J

Finite, irreducible chains always have a unique stationary distribution.

Theorem 1.1.24 (Existence and uniqueness: finite case). If P is irreducible and
has a finite state space, then:

(i) (Existence) it has a stationary distribution which, furthermore, is strictly
positive;

(ii) (Uniqueness) the stationary distribution is unique.
*On Z, simple random walk often refers to any nearest-neighbor random walk, whereas the ex-

ample here is called simple symmetric random walk. We will not adopt this terminology here.



CHAPTER 1. INTRODUCTION 12

This result follows from Perron-Frobenius theory (a version of which is stated as
Theorem 6.1.17). We give a self-contained proof.

Proof of Theorem 1.1.24 (i). We begin by proving existence. Denote by n the
number of states. Because P is stochastic, we have by definition that P1 = 1,
where 1 is the all-one vector. Put differently,

(P − I)1 = 0.

In particular, the columns of P −I are linearly dependent, that is, the rank of P −I
is < n. That, in turn, implies that the rows of P − I are linearly dependent since
row rank and column rank are equal. Hence there exists a non-zero row vector
z ∈ Rn such that z(P − I) = 0, or after rearranging,

zP = z. (1.1.2)

The rest of the proof is broken up into a series of lemmas. To take advantage
of irreducibility, we first construct a positive stochastic matrix with z as a left
eigenvector with eigenvalue 1. We then show that all entries of z have the same
sign. Finally, we normalize z.

Lemma 1.1.25 (Existence: Step 1). There exists a non-negative integer h such that

R =
1

h+ 1
[I + P + P 2 + · · ·+ P h],

is a stochastic matrix with strictly positive entries which satisfies

zR = z. (1.1.3)

Lemma 1.1.26 (Existence: Step 2). The entries of z are either all nonnegative or
all nonpositive.

Lemma 1.1.27 (Existence: Step 3). Let

π =
z

z1
.

Then π is a strictly positive stationary distribution.

We denote the entries of R and P s by Rx,y and P sx,y, x, y = 1, . . . , n, respectively.

Proof of Lemma 1.1.25. By irreducibility (see Exercise 1.10), for any x, y ∈ [n]

there is hxy such that P hxyx,y > 0. Now define

h = max
x,y∈[n]

hxy.
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The matrix P s, as a product of stochastic matrices, is a stochastic matrix for all s
(see Exercise 1.11). In particular, it has nonnegative entries. Hence, for each x, y,

Rx,y =
1

h+ 1
[Ix,y + Px,y + P 2

x,y + · · ·+ P hx,y]

≥ 1

h+ 1
P
hx,y
x,y > 0.

Moreover the matrixR, as a convex combination of stochastic matrices, is a stochas-
tic matrix (see Exercise 1.11).

Since zP = z, it follows by induction that zP s = z for all s. Therefore,

zR =
1

h+ 1
[zI + zP + zP 2 + · · ·+ zP h]

=
1

h+ 1
[z + z + z + · · ·+ z]

= z.

That concludes the proof.

Proof of Lemma 1.1.26. We argue by contradiction. Suppose that two entries of
z = (z1, . . . , zn) have different signs, say zi > 0 while zj < 0. By the previous
lemma,

|zy| =

∣∣∣∣∣∑
x

zxRx,y

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
x:zx≥0

zxRx,y +
∑
x:zx<0

zxRx,y

∣∣∣∣∣∣ .
Moreover, Rx,y > 0 for all x, y. Therefore, the first term on the last line is strictly
positive (since it is at least ziRi,y > 0) while the second term is strictly nega-
tive (since it is at most zjRj,y < 0). Hence, because of cancellations (see Exer-
cise 1.13), the expression in the previous display is strictly smaller than the sum of
the absolute values, that is,

|zy| <
∑
x

|zx|Rx,y.

Since R is also stochastic by the previous lemma, we deduce after summing
over y that∑

y

|zy| <
∑
y

∑
x

|zx|Rx,y =
∑
x

|zx|
∑
y

Rx,y =
∑
x

|zx|,

a contradiction, thereby proving the claim.
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Proof of Lemma 1.1.27. Now define π entrywise by

πx =
zx∑
i zi

=
|zx|∑
i |zi|

≥ 0,

where the second equality comes from the previous lemma. We also used the fact
that z 6= 0.

For all y, by definition of z,∑
x

πxPx,y =
∑
x

zx∑
i zi

Px,y =
1∑
i zi

∑
x

zxPx,y =
zy∑
i zi

= πy.

The same holds with Px,y replaced by Rx,y from (1.1.3). Since Rx,y > 0 and
z 6= 0 it follows that πy > 0 for all y. That proves the claim.

That concludes the proof of the existence claim.

It remains to prove uniqueness. See Exercise 1.14 for an alternative proof
based on the maximum principle (to which we come back in Theorem 3.3.9 and
Exercise 3.12).

Proof of Theorem 1.1.24 (ii). Suppose there are two distinct stationary distribu-
tions π1 and π2 (which must be strictly positive). Since they are distinct and both
sum to 1, they are not a multiple of each other and therefore are linearly indepen-
dent. Apply the Gram-Schmidt procedure:

q1 =
π1

‖π1‖2
and q2 =

π2 − 〈π2,q1〉q1

‖π2 − 〈π2,q1〉q1‖2
.

Then
q1P =

π1

‖π1‖2
P =

π1P

‖π1‖2
=

π1

‖π1‖2
= q1,

and all entries of q1 are strictly positive.
Similarly,

q2P =
π2 − 〈π2,q1〉q1

‖π2 − 〈π2,q1〉q1‖2
P

=
π2P − 〈π2,q1〉q1P

‖π2 − 〈π2,q1〉q1‖2

=
π2 − 〈π2,q1〉q1

‖π2 − 〈π2,q1〉q1‖2
= q2.
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Since z := q2 satisfies (1.1.2), by Lemmas 1.1.25–1.1.27 there is a multiple of
q2, say q′2 = αq2 with α 6= 0, such that q′2P = q′2 and all entries of q′2 are strictly
positive. By the Gram-Schmidt procedure,

〈q1,q
′
2〉 = 〈q1, αq2〉 = α〈q1,q2〉 = 0.

But this is a contradiction since both vectors are strictly positive. That concludes
the proof of the uniqueness claim.

Reversibility A transition matrix P is reversible with respect to a measure η if
reversible

η(x)P (x, y) = η(y)P (y, x)

for all x, y ∈ V . These equations are known as detailed balance. Here is the key
observation: by summing over y and using the fact that P is stochastic, such a
measure is necessarily stationary. (Exercise 1.12 explains the name.)

Example 1.1.28 (Random walk on Zd (continued)). The measure η ≡ 1 is re-
versible for simple random walk on Ld. J

Example 1.1.29 (Simple random walk on a graph (continued)). Let (Xt) be simple
random walk on a connected graph G = (V,E). Then (Xt) is reversible with
respect to η(v) := δ(v), where recall that δ(v) is the degree of v. Indeed, for all
{u, v} ∈ E,

δ(u)P (u, v) = δ(u)
1

δ(u)
= 1 = δ(v)

1

δ(v)
= δ(v)P (v, u).

(See Exercise 1.9 for the transition matrix of simple random walk on a graph.) J

Metropolis

algorithm
Example 1.1.30 (Metropolis chain). The Metropolis algorithm modifies an irre-
ducible, symmetric (i.e., whose transition matrix is a symmetric matrix) chain Q
to produce a new chain P with the same transition graph and a prescribed positive
stationary distribution π. The idea is simple. For each pair x 6= y, either we multi-
plyQ(x, y) by π(y)/π(x) and leaveQ(y, x) intact, or vice versa. Detailed balance
immediately follows. To ensure that the new transition matrix remains stochastic,
for each pair we make the choice that lowers the transition probabilities; then we
add the lost probability to the diagonal (i.e., to the probability of staying put).

Formally, the definition of the new chain is

P (x, y) :=

Q(x, y)
[
π(y)
π(x) ∧ 1

]
if x 6= y,

1−
∑

z 6=xQ(x, z)
[
π(z)
π(x) ∧ 1

]
otherwise.
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Note that, by definition of P and the fact that Q is stochastic, we have P (x, y) ≤
Q(x, y) for all x 6= y so ∑

y 6=x
P (x, y) ≤ 1,

and hence P is well-defined as a transition matrix. We claim further that P is
reversible with respect to π. Suppose x 6= y and assume without loss of generality
that π(x) ≥ π(y). Then, by definition of P , we have

π(x)P (x, y) = π(x)Q(x, y)
π(y)

π(x)

= Q(x, y)π(y)

= Q(y, x)π(y)

= P (y, x)π(y),

where we used the symmetry of Q. J

Convergence and mixing time A key property of Markov chains is that, under
suitable assumptions, they converge to a stationary regime. We need one more
definition before stating the theorem. A chain is said to be aperiodic if, for all

aperiodic
x ∈ V , the greatest common divisor of {t : P t(x, x) > 0} is 1.

Example 1.1.31 (Lazy random walk on a graph). The lazy simple random walk on
lazy

G is the Markov chain such that, at each time, it stays put with probability 1/2 or
chooses a uniformly random neighbor of the current state otherwise. Such a chain
is aperiodic. J

Lemma 1.1.32 (Consequence of aperiodicity). If P is aperiodic, irreducible and
has a finite state space, then there is a positive integer t0 such that for all t ≥ t0
the matrix P t has strictly positive entries.

We can now state the convergence theorem. For probability measures µ, ν on
V , their total variation distance is

total

variation

distance
‖µ− ν‖TV := sup

A⊆V
|µ(A)− ν(A)|. (1.1.4)

Theorem 1.1.33 (Convergence theorem). Suppose P is irreducible, aperiodic and
has stationary distribution π. Then, for all x

‖P t(x, ·)− π(·)‖TV → 0,

as t→ +∞.
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We give a proof in the finite case in Example 4.3.3. In particular, the convergence
theorem implies that for all x, y,

P t(x, y)→ π(y).

Without aperiodicity, it can be shown that we have the weaker claim

1

t

t∑
s=1

P s(x, y)→ π(y), (1.1.5)

as t→ +∞.
We will be interested in quantifying the speed of convergence in Theorem 1.1.33.

For this purpose, we define

d(t) := sup
x∈V
‖P t(x, ·)− π(·)‖TV. (1.1.6)

Lemma 1.1.34 (Monotonicity of d(t)). The function d(t) is non-increasing in t.

Proof. Note that, by definition of P t+1,

d(t+ 1) = sup
x∈V

sup
A⊆V
|P t+1(x,A)− π(A)|

= sup
x∈V

sup
A⊆V

∣∣∣∣∣∑
z

P (x, z)(P t(z,A)− π(A))

∣∣∣∣∣
≤ sup

x∈V

∑
z

P (x, z) sup
A⊆V
|P t(z,A)− π(A)|

≤ sup
z∈V

sup
A⊆V
|P t(z,A)− π(A)|

= d(t),

where on the second and fourth line we used that P is a stochastic matrix.

The following concept will play a key role in quantifying the “speed of conver-
gence” to stationarity.

Definition 1.1.35 (Mixing time). For a fixed ε > 0, the mixing time is defined as
mixing time

tmix(ε) := inf{t ≥ 0 : d(t) ≤ ε}.



CHAPTER 1. INTRODUCTION 18

1.2 Some discrete probability models

With the necessary background covered, we are now in a position to define for-
mally a few important discrete probability models that will be ubiquitous in this
book. These are all graph-based processes. Many more interesting random discrete
structures and other related probabilistic models will be encountered throughout
(and defined where needed).

Percolation Percolation processes are meant to model the movement of a fluid
through a porous medium. There are several types of percolation models. We
focus here on bond percolation. In words, edges of a graph are “open” at random,
indicating that fluid is passing through. We are interested in the “open clusters,”
that is, the regions reached by the fluid.

Definition 1.2.1 (Bond percolation). Let G = (V,E) be a finite or infinite graph.
The bond percolation process on G with density p ∈ [0, 1], whose probability mea-

bond percolation
sure is denoted by Pp, is defined as follows: each edge of G is independently set to
open with probability p, otherwise it is set to closed. Write x ⇔ y if x, y ∈ V are
connected by a path all of whose edges are open. The open cluster of x is

Cx := {y ∈ V : x⇔ y}.

We will mostly consider bond percolation on the infinite graphsLd orTd. The main
question we will ask is: For which values of p is there an infinite open cluster?

Random graphs Random graphs provide a natural framework to study complex
networks. Different behaviors are observed depending on the modeling choices
made. Perhaps the simplest and most studied is the Erdős-Rényi random graph
model. We consider the version due to Gilbert. Here the edges are present in-
dependently with a fixed probability. Despite its simplicity, this model exhibits
a rich set of phenomena that make it a prime example for the use of a variety of
probabilistic techniques.

Definition 1.2.2 (Erdős-Rényi graph model). Let n ∈ N and p ∈ [0, 1]. Set V :=
[n]. Under the Erdős-Rényi graph model on n vertices with density p, a random

Erdős-Rényi

graph model
graph G = (V,E) is generated as follows: for each pair x 6= y in V , the edge
{x, y} is in E with probability p independently of all other edges. We write G ∼
Gn,p and we denote the corresponding probability measure by Pn,p.

Typical questions regarding the Erdős-Rényi graph model (and random graphs
more generally) include: How are degrees distributed? Is G connected? What
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is the (asymptotic) probability of observing a particular subgraph, for example, a
triangle? What is the typical chromatic number?

As one alternative to the Erdős-Rényi model, we will also encounter preferen-
tial attachment graphs. These are meant to model the growth of a network where
new edges are more likely to be incident with vertices of high degree, a reasonable
assumption in some applied settings. Such a process produces graphs with prop-
erties that differ from those of the Erdős-Rényi model; in particular they tend to
have a “fatter” degree distribution tail. In the definition of preferential attachment
graphs, we restrict ourselves to the tree case (see Exercise 1.15).

Definition 1.2.3 (Preferential attachment graph). The preferential attachment graph
process produces a sequence of graphs (Gt)t≥1 as follows. We start at time 1 with

preferential

attachment

graphs

two vertices, denoted v0 and v1, connected by an edge. At time t, we add vertex vt
with a single edge connecting it to an old vertex, which is picked proportionally to
its degree. We write (Gt)t≥1 ∼ PA1.

Markov random fields Another common class of graph-based processes in-
volves the assignment of random “states” to the vertices of a fixed graph. The
state distribution is typically specified through “interactions between neighboring
vertices.” Such models are widely studied in statistical physics and also have im-
portant applications in statistics. We focus on models with a Markovian (i.e., con-
ditional independence) structure that makes them particularly amenable to rigorous
analysis and computational methods. We start with Gibbs random fields, a broad
class of such models.

Definition 1.2.4 (Gibbs random field). Let S be a finite set and letG = (V,E) be a
finite graph. Denote byK the set of all cliques ofG. A positive probability measure
µ on X := SV is called a Gibbs random field if there exist clique potentials φK :

Gibbs

random

field

SK → R, K ∈ K, such that

µ(σ) =
1

Z
exp

(∑
K∈K

φK(σK)

)
,

where σK is the vector σ ∈ X restricted to the vertices (i.e., coordinates) in K and
Z is a normalizing constant.

The following example introduces the primary Gibbs random field we will en-
counter.

Example 1.2.5 (Ising model). For β > 0, the (ferromagnetic) Ising model with in-
Ising model

verse temperature β is the Gibbs random field with S := {−1,+1}, φ{i,j}(σ{i,j}) =
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βσiσj and φK ≡ 0 if |K| 6= 2. The function H(σ) := −
∑
{i,j}∈E σiσj is known

as the Hamiltonian. The normalizing constant Z := Z(β) is called the partition
function. The states (σi)i∈V are referred to as spins. J

Typical questions regarding Ising models include: How fast is correlation de-
caying down the graph? How well can one guess the state at an unobserved vertex?
We will also consider certain Markov chains related to Ising models (see Defini-
tion 1.2.8).

Random walks on graphs and reversible Markov chains The last class of pro-
cesses we focus on are random walks on graphs and their generalizations. Recall
the following definition.

Definition 1.2.6 (Simple random walk on a graph). Let G = (V,E) be a finite
or countable, locally finite graph. Simple random walk on G is the Markov chain

simple

random

walk on a

graph

on V , started at an arbitrary vertex, which at each time picks a uniformly chosen
neighbor of the current state.

We generalize the definition by adding weights to the edges. In this context, we
denote edge weights by c(e) for “conductance” (see Section 3.3).

Definition 1.2.7 (Random walk on a network). Let G = (V,E) be a finite or
countably infinite graph. Let c : E → R+ be a positive edge weight function on G.
Recall that we call N = (G, c) a network. We assume that for all u ∈ V

random

walk on a

network
c(u) :=

∑
e={u,v}∈E

c(e) < +∞.

Random walk on network N is the Markov chain on V , started at an arbitrary
vertex, which at each time picks a neighbor of the current state proportionally to
the weight of the corresponding edge. That is, the transition matrix is given by

P (u, v) =

{
c(e)
c(u) if e = {u, v} ∈ E,

0 otherwise.

By definition of P , it is immediate that this Markov chain is reversible with respect
to the measure η(u) := c(u). In fact, conversely, any countable reversible Markov
chain can be seen as a random walk on a network by setting c(e) := π(x)P (x, y) =
π(y)P (y, x) for all x, y such that P (x, y) > 0.

Typical questions include: How long does it take to visit all vertices at least
once or a particular subset of vertices for the first time? How fast does the walk
approach stationarity? How often does the walk return to its starting point?

We will also encounter a particular class of Markov chains related to Ising
models, the Glauber dynamics.
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Definition 1.2.8 (Glauber dynamics of the Ising model). Let µβ be the Ising model
with inverse temperature β > 0 on a graph G = (V,E). The (single-site) Glauber
dynamics is the Markov chain on X := {−1,+1}V which at each time:

Glauber

dynamics- selects a site i ∈ V uniformly at random, and

- updates the spin at i according to µβ conditioned on agreeing with the cur-
rent state at all sites in V \{i}.

Specifically, for γ ∈ {−1,+1}, i ∈ V , and σ ∈ X , let σi,γ be the configuration σ
with the spin at i being set to γ. Let n = |V | and Si(σ) :=

∑
j∼i σj . The nonzero

entries of the transition matrix are

Qβ(σ, σi,γ) :=
1

n
· eγβSi(σ)

e−βSi(σ) + eβSi(σ)
.

This chain is irreducible since we can flip each site one by one to go from any
state to any other. It is straightforward to check that Qβ(σ, σi,γ) is a stochastic
matrix. The next theorem shows that µβ is its stationary distribution.

Theorem 1.2.9. The Glauber dynamics is reversible with respect to µβ .

Proof. For all σ ∈ X and i ∈ V , let

S6=i(σ) := H(σi,+) + Si(σ) = H(σi,−)− Si(σ).

We have

µβ(σi,−)Qβ(σi,−, σi,+) =
e−βS 6=i(σ)e−βSi(σ)

Z(β)
· eβSi(σ)

n[e−βSi(σ) + eβSi(σ)]

=
e−βS 6=i(σ)

nZ(β)[e−βSi(σ) + eβSi(σ)]

=
e−βS 6=i(σ)eβSi(σ)

Z(β)
· e−βSi(σ)

n[e−βSi(σ) + eβSi(σ)]

= µβ(σi,+)Qβ(σi,+, σi,−).

That concludes the proof.
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Exercises

Exercise 1.1 (0-norm). Show that ‖u‖0 does not define a norm.

Exercise 1.2 (A factorial bound: one way). Let ` be a positive integer.

(i) Use the bound 1 + x ≤ ex to show that

k + 1

k
≤ e1/k,

and
k

k + 1
≤ e1/(k+1),

for all positive integers k.

(ii) Use part (i) and the quantity

`−1∏
k=1

(k + 1)k

kk
,

to show that

`! ≥ ``

e`−1
.

(iii) Use part (i) and the quantity

`−1∏
k=1

kk+1

(k + 1)k+1
,

to show that

`! ≤ ``+1

e`−1
.

Exercise 1.3 (A factorial bound: another way). Let ` be a positive integer. Show
that

``

e`−1
≤ `! ≤ ``+1

e`−1
,

by considering the logarithm of `!, interpreting the resulting quantity as a Riemann
sum, and bounding above and below by an integral.
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Exercise 1.4 (A binomial bound). Show that for integers 0 < d ≤ n,

d∑
k=0

(
n

k

)
≤
(en
d

)d
.

[Hint: Multiply the left-hand side of the inequality by (d/n)d ≤ (d/n)k and use
the binomial theorem.]

Exercise 1.5 (Powers of the adjacency matrix). Let An be the n-th matrix power
of the adjacency matrix A of a graph G = (V,E). Prove that the (i, j)-th entry anij
is the number of walks of length exactly n between vertices i and j in G. [Hint:
Use induction on n.]

Exercise 1.6 (Paths). Let u, v be vertices of a graph G = (V,E).

(i) Show that the graph distance dG(u, v) is a metric.

(ii) Show that the binary relation u↔ v is an equivalence relation.

(iii) Prove (ii) in the directed case.

Exercise 1.7 (Trees: number of edges). Prove that a connected graph with n ver-
tices is a tree if and only if it has n − 1 edges. [Hint: Proceed by induction. Then
use Corollary 1.1.6.]

Exercise 1.8 (Trees: characterizations). Prove Theorem 1.1.5.

Exercise 1.9 (Simple random walk on a graph). Let (Xt)t≥0 be simple random
walk on a finite graph G = (V,E). Suppose the vertex set is V = [n]. Write down
an expression for the transition matrix of (Xt).

Exercise 1.10 (Communication lemma). Let (Xt) be a finite Markov chain. Show
that, if x→ y, then there is an integer r ≥ 1 such that

P[Xr = y |X0 = x] = (P r)x,y > 0.

Exercise 1.11 (Stochastic matrices from stochastic matrices). Let

P (1), P (2), . . . , P (r) ∈ Rn×n,

be stochastic matrices.

(i) Show that P (1)P (2) is a stochastic matrix. That is, a product of stochastic
matrices is a stochastic matrix.
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(ii) Show that for any α1, . . . , αr ∈ [0, 1] with
∑r

i=1 αi = 1,

r∑
i=1

αiP
(i)

is stochastic. That is, a convex combination of stochastic matrices is a
stochastic matrix.

Exercise 1.12 (Reversing time). Let (Xt) be a finite Markov chain with transition
matrix P . Assume P is reversible with respect to a probability distribution π.
Assume that the initial distribution is π. Show that for any sequence of states
z0, . . . , zs, the reversed sequence has the same probability, that is,

P[Xs = z0, . . . , X0 = zs] = P[Xs = zs, . . . , X0 = z0].

Exercise 1.13 (A strict inequality). Let a, b ∈ R with a < 0 and b > 0. Show that

|a+ b| < |a|+ |b|.

[Hint: Consider the cases a+ b ≥ 0 and a+ b < 0 separately.]

Exercise 1.14 (Uniqueness: maximum principle). Let P = (Pi,j)
n
i,j=1 ∈ Rn be a

transition matrix.

(i) Let α1, . . . , αm > 0 such that
∑m

i=1 αi = 1. Let x = (x1, . . . , xm) ∈ Rn.
Show that

m∑
i=1

αixi ≤ max
i
xi,

and that equality holds if and only if x1 = x2 = · · · = xm.

(ii) Let 0 6= y ∈ Rn be a right eigenvector of P with eigenvalue 1, that is,
Py = y. Assume that y is not a constant vector, that is, there is i 6= j such
that yi 6= yj . Let k be such that yk = maxi∈[n] yi. Show that for any ` such
that Pk,` > 0 we necessarily have y` = yk. [Hint: Use that yk =

∑n
i=1 Pk,iyi

and apply (i).]

(iii) Assume that P is irreducible. Let 0 6= y ∈ Rn again be a right eigenvector
of P with eigenvalue 1. Use (ii) to show that y is necessarily a constant
vector.

(iv) Assume again that P is irreducible. Use (iii) to conclude that the dimen-
sion of the null space of P T − I is exactly 1. [Hint: Use the Rank-Nullity
Theorem.]
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Exercise 1.15 (Preferential attachment trees). Let (Gt)t≥1 ∼ PA1 as in Defini-
tion 1.2.3. Show that Gt is a tree with t+ 1 vertices for all t ≥ 1.

Exercise 1.16 (Warm-up: a little calculus). Prove the following inequalities which
we will encounter throughout. [Hint: Basic calculus should do.]

(i) Show that 1− x ≤ e−x for all x ∈ R.

(ii) Show that 1− x ≥ e−x−x2
for x ∈ [0, 1/2].

(iii) Show that log(1 + x) ≤ x− x2/4 for x ∈ [0, 1].

(iv) Show that log x ≤ x− 1 for all x ∈ R+.

(v) Show that cosx ≤ e−x
2/2 for x ∈ [0, π/2). [Hint: Consider the function

h(x) = log(ex
2/2 cosx) and recall that the derivative of tanx is 1+tan2 x.]
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