
Appendix A

Useful combinatorial formulas

Recall the following facts about factorials and binomial coefficients:
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where H(p) := −p log p − (1 − p) log(1 − p). The third one is the binomial
theorem. The fifth one is Stirling’s formula.
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Appendix B

Measure-theoretic foundations

This appendix contains relevant background on measure-theoretic probability. We
follow closely the highly recommended [Wil91]. Missing proofs (and a lot more
details and examples) can be found there. Another excellent textbook on this topic
is [Dur10].

B.1 Probability spaces

Let S be a set. In general it turns out that we cannot assign a probability to ev-
ery subset of S. Here we discuss “well-behaved” collections of subsets. First an
algebra on S is a collection of subsets stable under finitely many set operations.

Definition B.1.1 (Algebra on S). A collection Σ0 of subsets of S is an algebra on
S if the following conditions hold:

(i) S ∈ Σ0;

(ii) F ∈ Σ0 implies F c ∈ Σ0;

(iii) F,G ∈ Σ0 implies F ∪G ∈ Σ0.

That, of course, implies that the empty set as well as all pairwise intersections
are also in Σ0. The collection Σ0 is an actual algebra (i.e., a vector space with a
bilinear product) with the symmetric difference as its “sum,” the intersection as its
“product” and the underlying field being the field with two elements.
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Example B.1.2. On R, sets of the form

k⋃
i=1

(ai, bi]

where the union is disjoint with k < +∞ and −∞ ≤ ai ≤ bi ≤ +∞ form an
algebra. J

Finite set operations are not enough for our purposes. For instance, we want to
be able to take limits. A σ-algebra is stable under countably many set operations.

Definition B.1.3 (σ-algebra on S). A collection Σ of subsets of S is a σ-algebra on
S (or σ-field on S) if

(i) S ∈ Σ;

(ii) F ∈ Σ implies F c ∈ Σ;

(iii) Fn ∈ Σ, ∀n implies ∪nFn ∈ Σ.

Example B.1.4. 2S is a trivial example. J

To give a nontrivial example, we need the following definition. We begin with
a lemma.

Lemma B.1.5 (Intersection of σ-algebras). Let Fi, i ∈ I , be σ-algebras on S
where I is arbitrary. Then ∩iFi is a σ-algebra.

Proof. We prove only one of the conditions. The other ones are similar. Suppose
A ∈ Fi for all i. Then Ac is in Fi for all i since each Fi is itself a σ-algebra.

Definition B.1.6 (σ-algebra generated by C). Let C be a collection of subsets of S.
Then we let σ(C) be the smallest σ-algebra containing C, defined as the intersection
of all such σ-algebras (including in particular 2S).

Example B.1.7. The smallest σ-algebra containing all open sets in R, denoted
B(R), is called the Borel σ-algebra. This is a non-trivial σ-algebra in the sense
that it can be proved that there exist subsets of R that are not in B, but that any
“reasonable” set is in B. In particular, it contains the algebra in Example B.1.2. J

Example B.1.8. The σ-algebra generated by the algebra in Example B.1.2 is B(R).
This follows from the fact that all open sets ofR can be written as a countable union
of open intervals. (Indeed, for x ∈ O an open set, let Ix be the largest open interval
contained in O and containing x. If Ix ∩ Iy 6= ∅ then Ix = Iy by maximality (i.e.,
take the union). Then O = ∪xIx and there are only countably many disjoint ones
because each one contains a rational.) J
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We now define measures.

Definition B.1.9 (Additivity and σ-additivity). A non-negative set function on an
algebra Σ0

µ0 : Σ0 → [0,+∞],

is additive if

(i) µ0(∅) = 0;

(ii) F,G ∈ Σ0 with F ∩G = ∅ implies µ0(F ∪G) = µ0(F ) + µ0(G).

Moreover µ0 is said to be σ-additive if condition (ii) is true for any countable
collection of disjoint sets whose union is in Σ0, that is, if Fn ∈ Σ0, n ≥ 0, all
pairwise disjoint with ∪nFn ∈ Σ0, then µ0(∪nFn) =

∑
n µ0(Fn).

Example B.1.10. For the algebra in the Example B.1.2, the set function

λ0

(
k⋃
i=1

(ai, bi]

)
=

k∑
i=1

(bi − ai)

is additive. (In fact, it is also σ-additive. We will show this later.) J

Definition B.1.11 (Measure space). Let Σ be a σ-algebra on S. Then (S,Σ) is a
measurable space. A σ-additive function µ on Σ is called a measure and (S,Σ, µ)
is called a measure space.

probability spaceDefinition B.1.12 (Probability space). If (Ω,F ,P) is a measure space with P(Ω) =
1 then P is called a probability measure and (Ω,F ,P) is called a probability space
(or probability triple).

The sets in F are referred to as events. events
To define a measure on B(R) we need the following tools from abstract mea-

sure theory.

Theorem B.1.13 (Caratheodory’s extension theorem). Let Σ0 be an algebra on S
and let Σ = σ(Σ0). If µ0 is σ-additive on Σ0 then there exists a measure µ on Σ
that agrees with µ0 on Σ0.

If in addition µ0 is finite, the next lemma implies that the extension is unique.

Lemma B.1.14 (Uniqueness of extensions). Let I be a π-system on S, that is, a
family of subsets closed under finite intersections, and let Σ = σ(I). If µ1, µ2 are
finite measures on (S,Σ) that agree on I, then they agree on Σ.
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Example B.1.15. The sets (−∞, x] for x ∈ R form a π-system generating B(R).
That is, B(R) is the smallest σ-algebra containing that π-system. J

Finally we can define Lebesgue measure. We start with (0, 1] and extend to R
in the obvious way. We need the following lemma.

Lemma B.1.16 (σ-additivity of λ0). Let λ0 be the set function defined above in
Example B.1.10, restricted to (0, 1]. Then λ0 is σ-additive.

Definition B.1.17 (Lebesgue measure on unit interval). The unique extension of λ0

(see Example B.1.10) to (0, 1] is denoted λ and is called Lebesgue measure.

B.2 Random variables

Let (S,Σ, µ) be a measure space and let B = B(R).

Definition B.2.1 (Measurable function). Suppose h : S → R and define

h−1(A) = {s ∈ S : h(s) ∈ A}.

The function h is Σ-measurable if h−1(B) ∈ Σ for all B ∈ B. We denote by
mΣ (resp., (mΣ)+, bΣ) the Σ-measurable functions (resp., that are non-negative,
bounded).

In the probabilistic case:

Definition B.2.2. A random variable is a measurable function on a probability
random variable

space (Ω,F ,P).

The behavior of a random variable is characterized by its distribution function.

Definition B.2.3 (Distribution function). Let X be a random variable on a proba-
bility space (Ω,F ,P). The law of X is

LX = P ◦X−1,

which is a probability measure on (R,B). By Lemma B.1.14, LX is determined by
the distribution function (DF) of X

distribution

functionFX(x) = P[X ≤ x], x ∈ R.
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Example B.2.4. The distribution function of a constant random variable is a jump
of size 1 at the value it takes almost surely. The distribution function of a random
variable with law equal to Lebesgue measure on (0, 1] is

FX(x) =


x x ∈ (0, 1],

0 x ≤ 0,

1 x > 1.

We refer to such as random variable as a uniform random variable over (0, 1]. J

Distribution functions are characterized by a few simple properties.

Proposition B.2.5. Suppose F = FX is the distribution function of a random
variable X on (Ω,F ,P). Then the following hold:

(i) F is non-decreasing;

(ii) limx→+∞ F (x) = 1, limx→−∞ F (x) = 0;

(iii) F is right-continuous.

Proof. The first property follows from the monotonicity of probability measure
(which itself follows immediately from σ-additivity).

For the second property, note that the limit exists by the first property. The
value of the limit follows from the following important lemma.

Lemma B.2.6 (Monotone convergence properties of measures). Let (S,Σ, µ) be a
measure space.

(i) If Fn ∈ Σ, n ≥ 1, with Fn ↑ F , then µ(Fn) ↑ µ(F ).

(ii) If Gn ∈ Σ, n ≥ 1, with Gn ↓ G and µ(Gk) < +∞ for some k, then
µ(Gn) ↓ µ(G).

Proof. Clearly F = ∪nFn ∈ Σ. For n ≥ 1, write Hn = Fn\Fn−1 (with F0 = ∅).
Then by disjointness

µ(Fn) =
∑
k≤n

µ(Hk) ↑
∑
k<+∞

µ(Hk) = µ(F ).

The second statement is similar.

Similarly, for the third property, by Lemma B.2.6 again

P[X ≤ xn] ↓ P[X ≤ x],

if xn ↓ x.
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It turns out that the properties above characterize distribution functions in the
following sense.

Theorem B.2.7 (Skorokhod representation). Let F satisfy the three properties
above in Proposition B.2.5. Then there is a random variable X on

(Ω,F ,P) = ((0, 1],B(0, 1], λ),

with distribution function F . The law ofX is called the Lebesgue-Stieltjes measure
associated to F .

The result says that all real random variables can be generated from uniform
random variables over (0, 1].

Proof. Assume first that F is continuous and strictly increasing. Define X(ω) =
F−1(ω) for all ω ∈ Ω. Then, ∀x ∈ R,

P[X ≤ x] = P[{ω : F−1(ω) ≤ x}] = P[{ω : ω ≤ F (x)}] = F (x).

In general, let
X(ω) = inf{x : F (x) ≥ ω}.

It suffices to prove that

X(ω) ≤ x ⇐⇒ ω ≤ F (x).

The ⇐ direction is clear by definition of X . On the other hand, by the right-
continuity of F , we have that ω ≤ F (X(ω)). Therefore, by monotonicity of F ,

X(ω) ≤ x ⇒ ω ≤ F (X(ω)) ≤ F (x).

That proves the claim.

Turning measurability on its head, we get the following important definition.

Definition B.2.8. Let (Ω,F ,P) be a probability space. Let Yγ , γ ∈ Γ, be a collec-
tion of maps from Ω to R. We let

σ(Yγ , γ ∈ Γ),

be the smallest σ-algebra on which the Yγ’s are measurable.

In a sense, the above σ-algebra corresponds to “the partial information avail-
able when the Yγs are observed.”
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Example B.2.9. Suppose we flip two unbiased coins and let X be the number of
heads observed. Then, denoting heads by H and tails by T,

σ(X) = σ({{HH}, {HT,TH}, {TT}}),

which is coarser than the full σ-algebra 2Ω. J

Note that h−1 preserves all set operations. For example, h−1(A ∪ B) =
h−1(A) ∪ h−1(B). This gives the following important lemma.

Lemma B.2.10 (Sufficient condition for measurability). Suppose C ⊆ B with
σ(C) = B. Then h−1 : C → Σ implies h ∈ mΣ. That is, it suffices to check
measurability on a collection generating B.

Proof. Let E be the sets such that h−1(B) ∈ Σ. By the observation before the
statement, E is a σ-algebra. But C ⊆ E which implies σ(C) ⊆ E by minimality.

As a consequence we get the following properties of measurable functions.

Proposition B.2.11 (Properties of measurable functions). Let h, hn, n ≥ 1, be in
mΣ and f ∈ mB.

(i) f ◦ h ∈ mΣ.

(ii) If S is a topological space and h is continuous, then h is B(S)-measurable,
where B(S) is generated by the open sets of S.

(iii) The function g : S → R is in mΣ if for all c ∈ R,

{g ≤ c} ∈ Σ.

(iv) ∀α ∈ R, h1 + h2, h1h2, αh ∈ mΣ.

(v) inf hn, suphn, lim inf hn, lim suphn are in mΣ.

(vi) The set
{s : limhn(s) exists in R},

is measurable.

Proof. We sketch the proof of a few of them.
(ii) This follows from Lemma B.2.10 by taking C as the open sets of R.
(iii) Similarly, take C to be the sets of the form (−∞, c].
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(iv) This follows from (iii). For example note that, writing the left-hand side as
h1 > c− h2,

{h1 + h2 > c} = ∪q∈Q[{h1 > q} ∩ {q > c− h2}],

which is a countable union of measurable sets by assumption.
(v) Note that

{suphn ≤ c} = ∩n{hn ≤ c}.

Further, note that lim inf is the sup of an inf .

B.3 Independence

Let (Ω,F ,P) be a probability space.

Definition B.3.1 (Independence). Sub-σ-algebras G1,G2, . . . ofF are independent
independence

if: for all Gi ∈ Gi, i ≥ 1, and distinct i1, . . . , in we have

P[Gi1 ∩ · · · ∩Gin ] =
n∏
j=1

P[Gij ].

Specializing to events and random variables:

Definition B.3.2 (Independent random variables). Random variables X1, X2, . . .
are independent if the σ-algebras σ(X1), σ(X2), . . . are independent.

Definition B.3.3 (Independent events). Events E1, E2, . . . are independent if the
σ-algebras

Ei = {∅, Ei, Eci ,Ω}, i ≥ 1,

are independent.

Recall the more familiar definitions.

Theorem B.3.4 (Independent random variables: familiar definition). Random vari-
ables X , Y are independent if and only if for all x, y ∈ R

P[X ≤ x, Y ≤ y] = P[X ≤ x]P[Y ≤ y].

Theorem B.3.5 (Independent events: familiar definition). Events E1, E2 are inde-
pendent if and only if

P[E1 ∩ E2] = P[E1]P[E2].



APPENDIX B. MEASURE-THEORETIC FOUNDATIONS 511

The proofs of these characterizations follow immediately from the following
lemma.

Lemma B.3.6 (Independence and π-systems). Suppose that G and H are sub-σ-
algebras and that I and J are π-systems such that

σ(I) = G, σ(J ) = H.

Then G andH are independent if and only if I and J are as well, that is,

P[I ∩ J ] = P[I]P[J ], ∀I ∈ I, J ∈ J .

Proof. Suppose I and J are independent. For fixed I ∈ I, the measures P[I ∩H]
and P[I]P[H] are equal for H ∈ J and have total mass P[I] < +∞. By the
Uniqueness of Extensions Lemma (Lemma B.1.14) the above measures agree on
σ(J ) = H.

Repeat the argument. FixH ∈ H. Then the measures P[G∩H] and P[G]P[H]
agree on I and have total mass P[H] < +∞. Therefore they must agree on σ(I) =
G.

We give a standard construction of an infinite sequence of independent random
variables with prescribed distributions.

Let (Ω,F ,P) = ((0, 1],B(0, 1], λ) and for ω ∈ Ω consider the binary expan-
sion

ω = 0.ω1ω2 . . . .

(For dyadic rationals, use the all-1 ending and note that the dyadic rationals have
measure 0 by countability.) This construction produces a sequence of independent
so-called Bernoulli trials. That is, under λ, each bit is Bernoulli(1/2) and any finite

Bernoulli

trials
collection is independent.

To get two independent uniform random variables, consider the following con-
struction:

U1 = 0.ω1ω3ω5 . . .

U2 = 0.ω2ω4ω6 . . .

Let A1 (resp. A2) be the π-system consisting of all finite intersections of events of
the form {ωi ∈ Hi} for odd i (resp. even i). By Lemma B.3.6, the σ-fields σ(A1)
and σ(A2) are independent.

More generally, let

V1 = 0.ω1ω3ω6 . . .

V2 = 0.ω2ω5ω9 . . .

V3 = 0.ω4ω8ω13 . . .
... =

. . .



APPENDIX B. MEASURE-THEORETIC FOUNDATIONS 512

that is, fill up the array diagonally. By the argument above, the Vi’s are independent
and Bernoulli(1/2).

Finally let µn, n ≥ 1, be a sequence of probability measures with distribution
functions Fn, n ≥ 1. For each n, define

Xn(ω) = inf{x : Fn(x) ≥ Vn(ω)}

By the (proof of the) Skorokhod Representation (Theorem B.2.7), Xn has distribu-
tion function Fn.

Definition B.3.7 (I.i.d. random variables). A sequence of independent random vari-
ables (Xn) as above is independent and identically distributed (i.i.d.) if Fn = F
for some n.

Alternatively, we have the following more general result.

Theorem B.3.8 (Kolmogorov’s extension theorem). Suppose we are given proba-
bility measures µn on (Rn,B(Rn)) that are consistent, that is,

µn+1((a1, b1]× · · · × (an, bn]× R) = µn((a1, b1]× · · · × (an, bn]).

Then there exists a unique probability measure P on (RN,RN) with

P[ω : ωi ∈ (ai, bi], 1 ≤ i ≤ n] = µn((a1, b1]× · · · × (an, bn]).

HereRN is the product σ-algebra, that is, the σ-algebra generated by finite-dimen-
sional rectangles.

Next, we discuss a first non-trivial result about independent sequences.

Definition B.3.9 (Tail σ-algebra). Let X1, X2, . . . be random variables on a prob-
ability space (Ω,F ,P). Define

T =
⋂
n≥1

Tn,

where
Tn = σ(Xn+1, Xn+2, . . .).

As an intersection of σ-algebras, T is a σ-algebra. It is called the tail σ-algebra of
the sequence (Xn).

Intuitively, an event is in the tail if changing a finite number of values does not
affect its occurence.
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Example B.3.10. If Sn =
∑

k≤nXk, then

{lim
n
Sn exists} ∈ T ,

{lim sup
n

n−1Sn > 0} ∈ T ,

but
{lim sup

n
Sn > 0} /∈ T .

J

Theorem B.3.11 (Kolmogorov’s 0-1 law). Let (Xn) be a sequence of independent
random variables with tail σ-algebra T . Then T is P-trivial, that is, for all A ∈ T
we have either P[A] = 0 or 1.

Proof. Let Xn = σ(X1, . . . , Xn). Note that Xn and Tn are independent. More-
over, since T ⊆ Tn we have that Xn is independent of T . Now let

X∞ = σ(Xn, n ≥ 1).

Note that
K∞ =

⋃
n≥1

Xn,

is a π-system generating X∞. Therefore, by Lemma B.3.6, X∞ is independent of
T . But T ⊆ X∞ and therefore T is independent of itself! Hence if A ∈ T ,

P[A] = P[A ∩A] = P[A]2,

which can occur only if P[A] ∈ {0, 1}.

B.4 Expectation

Let (S,Σ, µ) be a measure space. We denote by 1A the indicator of a set A, that is,

1A(s) =

{
1, if s ∈ A
0, o.w.

Definition B.4.1 (Simple functions). A simple function is a function of the form

f =
m∑
k=1

ak1Ak ,
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where ak ∈ [0,+∞] and Ak ∈ Σ for all k. We denote the set of all such functions
by SF+. We define the integral of f by

µ(f) :=

m∑
k=1

akµ(Ak) ≤ +∞.

We also write µf = µ(f).
The following is left as a (somewhat tedious but) immediate exercise.

Proposition B.4.2. Let f, g ∈ SF+.

(i) If µ(f 6= g) = 0, then µf = µg. [Hint: Rewrite f and g over the same
disjoint sets.]

(ii) For all c ≥ 0, f + g, cf ∈ SF+ and

µ(f + g) = µf + µg, µ(cf) = cµf.

[Hint: This one is obvious by definition.]

(iii) If f ≤ g then µf ≤ µg. [Hint: Show that g − f ∈ SF+ and use linearity.]

The main definition and theorem of integration theory follows.

Definition B.4.3 (Nonnegative functions). Let f ∈ (mΣ)+. Then the integral of f
is defined by

µ(f) = sup{µ(h) : h ∈ SF+, h ≤ f}.

Again we also write µf = µ(f).

Theorem B.4.4 (Monotone convergence theorem). If fn, f ∈ (mΣ)+, n ≥ 1, with
fn ↑ f , then

µfn ↑ µf.

Many theorems in integration follow from the monotone convergence theorem.
In that context, the following approximation is useful.

Definition B.4.5 (Staircase function). For f ∈ (mΣ)+ and r ≥ 1, the r-th staircase
function α(r) is

α(r)(x) =


0, if x = 0,
(i− 1)2−r, if (i− 1)2−r < x ≤ i2−r ≤ r,
r, if x > r,

We let f (r) = α(r)(f). Note that f (r) ∈ SF+ and f (r) ↑ f as r → +∞.
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Using the previous definition, we get for example the following properties.

Proposition B.4.6. Let f, g ∈ (mΣ)+.

(i) If µ(f 6= g) = 0, then µ(f) = µ(g).

(ii) For all c ≥ 0, f + g, cf ∈ (mΣ)+ and

µ(f + g) = µf + µg, µ(cf) = cµf.

(iii) If f ≤ g then µf ≤ µg.

For a function f , let f+ and f− be the positive and negative parts of f , that is,

f+(s) = f(s) ∨ 0, f−(s) = (−f(s)) ∨ 0.

Note that |f | = f+ + f−. Finally we define

µ(f) := µ(f+)− µ(f−),

provided µ(f+) +µ(f−) < +∞, in which case we write f ∈ L1(S,Σ, µ). Propo-
sition B.4.6 can be generalized naturally to this definition. Moreover we have the
following.

Theorem B.4.7 (Dominated convergence theorem). If fn, f ∈ mΣ, n ≥ 1, with
fn(s) → f(s) for all s ∈ S, and there is a nonnegative function g ∈ L1(S,Σ, µ)
such that |fn| ≤ g, then

µ(|fn − f |)→ 0,

and in particular
µfn → µf,

as n→∞.

More generally, for 0 < p < +∞, the space Lp(S,Σ, µ) contains all functions
f : S → R such that ‖f‖p < +∞, where

‖f‖p := µ(|f |p)1/p,

up to equality almost everywhere. We state the following results without proof.

Theorem B.4.8 (Hölder’s inequality). Let 1 < p, q < +∞ such that p−1 +
q−1 = 1. Then, for any f ∈ Lp(S,Σ, µ) and g ∈ Lq(S,Σ, µ), it holds that
fg ∈ L1(S,Σ, µ) and further

‖fg‖1 ≤ ‖f‖p‖g‖q.

The case p = q = 2 is known as the Cauchy-Schwarz inequality (or Schwarz
inequality).

Cauchy-Schwarz

inequality
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Theorem B.4.9 (Minkowski’s inequality). Let 1 < p < +∞. Then, for any f, g ∈
Lp(S,Σ, µ), it holds that f + g ∈ Lp(S,Σ, µ) and further

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Theorem B.4.10 (Lp completeness). Let 1 ≤ p < +∞. If (fn)n in Lp(S,Σ, µ) is
Cauchy, that is,

sup
n,m≥k

‖fn − fm‖p → 0,

as k → +∞, then there exists f ∈ Lp(S,Σ, µ) such that

‖fn − f‖p → 0,

as n→ +∞.

We can now define the expectation. Let (Ω,F ,P) be a probability space.

Definition B.4.11 (Expectation). If X ≥ 0 is a random variable then we define the
expectation of X , denoted by E[X], as the integral of X over P. More generally
(i.e., not assuming non-negativity), if

E|X| = E[X+] + E[X−] < +∞,

we let
E[X] = E[X+]− E[X−].

We denote the set of all such integrable random variables (up to equality almost
integrable

surely) by L1(Ω,F ,P).

The properties of the integral for nonnegative functions (see Proposition B.4.6)
extend to the expectation.

Proposition B.4.12. Let X,X1, X2 be random variables in L1(Ω,F ,P).

(LIN) If a1, a2 ∈ R, then E[a1X1 + a2X2] = a1E[X1] + a2E[X2].

(POS) If X ≥ 0, then E[X] ≥ 0.

One useful implication of (POS) is that |X| − X ≥ 0 so that E[X] ≤ E|X| and,
by applying the same argument to −X , we have further |E[X]| ≤ E|X|.

The monotone convergence theorem (Theorem B.4.4) implies the following
results. We first need a definition.

Definition B.4.13 (Convergence almost sure). We say that Xn → X almost surely
(a.s.) if

P[Xn → X] = 1.
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Proposition B.4.14. Let X,Y,Xn, n ≥ 1, be random variables in L1(Ω,F ,P).

(MON) If 0 ≤ Xn ↑ X , then E[Xn] ↑ E[X] ≤ +∞.

(FATOU) If Xn ≥ 0, then E[lim infnXn] ≤ lim infn E[Xn].

(DOM) If |Xn| ≤ Y , n ≥ 1, with E[Y ] < +∞ and Xn → X a.s., then

E|Xn −X| → 0,

and, hence,
E[Xn]→ E[X].

(Indeed,

|E[Xn]− E[X]| = |E[Xn −X]|
≤ E|Xn −X|.)

(SCHEFFE) If Xn → X a.s. and E|Xn| → E|X| then

E|Xn −X| → 0.

(BDD) If Xn → X a.s. and |Xn| ≤ K < +∞ for all n then

E|Xn −X| → 0.

Proof. We only prove (FATOU). To use (MON) we write the lim inf as an increas-
ing limit. Letting Zk = infn≥kXn, we have

lim inf
n
Xn =↑ lim

k
Zk,

so that by (MON)
E[lim inf

n
Xn] =↑ lim

k
E[Zk].

For n ≥ k we have Xn ≥ Zk so that E[Xn] ≥ E[Zk] hence

E[Zk] ≤ inf
n≥k

E[Xn].

Finally, we get
E[lim inf

n
Xn] ≤↑ lim

k
inf
n≥k

E[Xn].

The following inequality is often useful. We give an example below.
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Jensen’s

inequality
Theorem B.4.15 (Jensen’s inequality). Let h : G → R be a convex function on
an open interval G such that P[X ∈ G] = 1 and X,h(X) ∈ L1(Ω,F ,P) then

E[h(X)] ≥ h(E[X]).

The Lp norm defined earlier applies to random variables as well. That is, for
p ≥ 1, we let ‖X‖p = E[|X|p]1/p and denote by Lp(Ω,F ,P) the collection of
random variables X (up to almost sure equality) such that ‖X‖p < +∞. Jensen’s
inequality (Theorem B.4.15) implies the following relationship.

Lemma B.4.16 (Monotonicity of norms). For 1 ≤ p ≤ r < +∞, we have ‖X‖p ≤
‖X‖r.

Proof. For n ≥ 0, let
Xn = (|X| ∧ n)p.

Take h(x) = xr/pwhich is convex on (0,+∞). Then, by Jensen’s inequality,

(E[Xn])r/p ≤ E[(Xn)r/p] = E[(|X| ∧ n)r] ≤ E[|X|r].

Take n→∞ and use (MON).

This latter inequality is useful among other things to argue about the convergence
of expectations. We say that Xn converges to X∞ in Lp if ‖Xn −X∞‖p → 0. By
the previous lemma, convergence on Lr implies convergence in Lp for r ≥ p ≥ 1.
Further we have:

Lemma B.4.17 (Convergence of expectations). Assume Xn, X∞ ∈ L1. Then

‖Xn −X∞‖1 → 0,

implies
E[Xn]→ E[X∞].

Proof. Note that

|E[Xn]− E[X∞]| ≤ E|Xn −X∞| → 0.

So, a fortiori, convergence in Lp, p ≥ 1, implies convergence of expectations.
Square integrable random variables have a nice geometry by virtue of forming

a Hilbert space.
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Definition B.4.18 (Square integrable variables). Recall that L2(Ω,F ,P) denotes
the set of all square integrable random variables (up to equality almost surely), that square

integrableis, those X with E[X2] < +∞ For X,Y ∈ L2(Ω,F ,P), define the inner product
〈X,Y 〉 := E[XY ]. Then the L2 norm is ‖X‖2 =

√
〈X,X〉.

Theorem B.4.19 (Cauchy-Schwarz inequality). IfX,Y ∈ L2(Ω,F ,P), thenXY ∈
L1(Ω,F ,P) and

E|XY | ≤
√
E[X2]E[Y 2],

or put differently
|〈X,Y 〉| ≤ ‖X‖2‖Y ‖2.

parallelogram

law
Theorem B.4.20 (Parallelogram law). If X,Y ∈ L2(Ω,F ,P), then

‖X + Y ‖22 + ‖X − Y ‖22 = 2‖X‖22 + 2‖Y ‖22.

B.5 Fubini’s theorem

We now define product measures and state (without proof) Fubini’s Theorem.

Definition B.5.1 (Product σ-algebra). Let (S1,Σ1) and (S2,Σ2) be measure spaces.
Let S = S1 × S2 be the Cartesian product of S1 and S2. For i = 1, 2, let
πi : S → Si be the projection on the i-th coordinate, that is,

πi(s1, s2) = si.

The product σ-algebra Σ = Σ1 × Σ2 is defined as

Σ = σ(π1, π2).

In words, it is the smallest σ-algebra that makes coordinate maps measurable. It
is generated by sets of the form

π−1
1 (B1) = B1 × S2, π−1

2 (B2) = S1 ×B2, B1 ∈ Σ1, B2 ∈ Σ2.

Fubini’s

Theorem
Theorem B.5.2 (Fubini’s Theorem). For F ∈ Σ, let f = 1F and define

µ(F ) :=

∫
S1

If1 (s1)µ1(ds1) =

∫
S2

If2 (s2)µ2(ds2),

where

If1 (s1) :=

∫
S2

f(s1, s2)µ2(ds2) ∈ bΣ1,

If2 (s2) :=

∫
S1

f(s1, s2)µ1(ds1) ∈ bΣ2.
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(The equality and inclusions above are part of the statement.) The set function
µ is a measure on (S,Σ) called the product measure of µ1 and µ2 and we write
µ = µ1 × µ2 and

(S,Σ, µ) = (S1,Σ1, µ1)× (S2,Σ2, µ2).

Moreover µ is the unique measure on (S,Σ) for which

µ(A1 ×A2) = µ(A1)µ(A2), Ai ∈ Σi.

If f ∈ (mΣ)+ then

µ(f) =

∫
S1

If1 (s1)µ1(ds1) =

∫
S2

If2 (s2)µ2(ds2),

where If1 , If2 are defined as before (i.e., as the sup over bounded functions from
below). The same is valid if f ∈ mΣ and µ(|f |) < +∞.

Some applications of Fubini’s Theorem (Theorem B.5.2) follow. We first recall
the following useful formula.

Theorem B.5.3 (Change-of-variables formula). Let X be a random variable with
law L. If f : R→ R is such that either f ≥ 0 or E|f(X)| < +∞ then

E[f(X)] =

∫
R
f(y)L(dy).

Proof. We use the standard machinery.

1. For f = 1B with B ∈ B,

E[1B(X)] = L(B) =

∫
R
1B(y)L(dy).

2. If f =
∑m

k=1 ak1Ak is a simple function, then by (LIN)

E[f(X)] =

m∑
k=1

akE[1Ak(X)] =

m∑
k=1

ak

∫
R
1Ak(y)L(dy) =

∫
R
f(y)L(dy).

3. Let f ≥ 0 and approximate f by a sequence {fn} of increasing simple
functions. By (MON)

E[f(X)] = lim
n
E[fn(X)] = lim

n

∫
R
fn(y)L(dy) =

∫
R
f(y)L(dy).
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4. Finally, assume that f is such that E|f(X)| < +∞. Then by (LIN)

E[f(X)] = E[f+(X)]− E[f−(X)]

=

∫
R
f+(y)L(dy)−

∫
R
f−(y)L(dy)

=

∫
R
f(y)L(dy).

Theorem B.5.4. Let X and Y be independent random variables with respective
laws µ and ν. Let f and g be measurable functions such that either f, g ≥ 0 or
E|f(X)|,E|g(Y )| < +∞. Then

E[f(X)g(Y )] = E[f(X)]E[g(Y )].

Proof. From the change-of-variables formula (Theorem B.5.3) and Fubini’s Theo-
rem (Theorem B.5.2), we get

E[f(X)g(Y )] =

∫
R2

f(x)g(y)(µ× ν)(dx× dy)

=

∫
R

(∫
R
f(x)g(y)µ(dx)

)
ν(dy)

=

∫
R

(g(y)E[f(X)]) ν(dy)

= E[f(X)]E[g(Y )].

Definition B.5.5 (Density). Let X be a random variable with law µ. We say that
X has density fX if for all B ∈ B(R)

µ(B) = P[X ∈ B] =

∫
B
fX(x)λ(dx).

Theorem B.5.6 (Convolution). Let X and Y be independent random variables
with distribution functions F and G respectively. Then the distribution function,
H , of X + Y is

H(z) =

∫
F (z − y)dG(y).

This is called the convolution of F and G. Moreover, if X and Y have densities f
and g respectively, then X + Y has density

h(z) =

∫
f(z − y)g(y)dy.
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Proof. From Fubini’s Theorem (Theorem B.5.3), denoting the laws of X and Y
by µ and ν respectively,

P[X + Y ≤ z] =

∫ ∫
1{x+y≤z}µ(dx)ν(dy)

=

∫
F (z − y)ν(dy)

=

∫
F (z − y)dG(y)

=

∫ (∫ z

−∞
f(x− y)dx

)
dG(y)

=

∫ z

−∞

(∫
f(x− y)dG(y)

)
dx

=

∫ z

−∞

(∫
f(x− y)g(y)dy

)
dx.

See Exercise 2.1 for a proof of the following standard formula.

Theorem B.5.7 (Moments of nonegative random variables). For any nonnegative
random variable X and positive integer k,

E[Xk] =

∫ +∞

0
kxk−1P[X > x] dx. (B.5.1)

B.6 Conditional expectation

Before defining the conditional expectation, we recall some elementary concepts.
For two events A,B, the conditional probability of A given B is defined as

P[A |B] =
P[A ∩B]

P[B]
,

where we assume P[B] > 0.
Now letX and Z be random variables taking values x1, . . . , xm and z1, . . . , zn

respectively. The conditional expectation of X given Z = zj is defined as

yj = E[X |Z = zj ] =
∑
i

xiP[X = xi |Z = zj ],

where we assume P[Z = zj ] > 0 for all j. As motivation for the general definition,
we make the following observations.
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• We can think of the conditional expectation as a random variable Y =
E[X |Z] defined as follows

Y (ω) = yj on Gj = {ω : Z(ω) = zj}.

• Then Y is G-measurable where G = σ(Z).

• On sets in G, the expectation of Y agrees with the expectation of X . Indeed,
note first that

E[Y ;Gj ] = yjP[Gj ]

=
∑
i

xiP[X = xi |Z = zj ]P[Z = zj ]

=
∑
i

xiP[X = xi, Z = zj ]

= E[X;Gj ].

This is also true for all G ∈ G by summation over j.

We are ready to state the general definition of the conditional expectation. Its
existence and uniqueness follow from the next theorem.

Theorem B.6.1 (Conditional expectation). Let X ∈ L1(Ω,F ,P) and G ⊆ F a
sub-σ-algebra. Then:

(i) (Existence) There exists a random variable Y ∈ L1(Ω,G,P) such that

E[Y ;G] = E[X;G], ∀G ∈ G. (B.6.1)

Such a Y is called a version of the conditional expectation of X given G and
conditional

expectation
is denoted by E[X | G].

(ii) (Uniqueness) It is unique in the sense that, if Y and Y ′ are two versions of
the conditional expectation, then Y = Y ′ almost surely.

When G = σ(Z), we sometimes use the notation E[X |Z] := E[X | G]. A similar
convention applies to collections of random variables, for example, E[X |Z1, Z2] :=
E[X |σ(Z1, Z2)] and so on.

We first prove uniqueness. Existence is proved below after some more concepts
are introduced.
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Proof of Theorem B.6.1 (ii). By way of contradiction, let Y, Y ′ be two versions of
E[X |G] such that without loss of generality P[Y > Y ′] > 0. By monotonicity,
there is n ≥ 1 with G = {Y > Y ′ + n−1} ∈ G such that P[G] > 0. Then, by
definition,

0 = E[Y − Y ′;G] > n−1P[G] > 0,

which gives a contradiction.

To prove existence, we use the L2 method. In L2(Ω,F ,P), the conditional
expectation reduces to an orthogonal projection.

Theorem B.6.2 (Conditional expectation: L2 case). Let X ∈ L2(Ω,F ,P) and
G ⊆ F a sub-σ-algebra. Then there exists an (almost surely) unique Y ∈ L2(Ω,G,P)
such that

‖X − Y ‖2 = ∆ := inf{‖X −W‖2 : W ∈ L2(Ω,G,P)},

and, moreover, 〈Z,X − Y 〉 = 0, ∀Z ∈ L2(Ω,G,P). In particular, it satis-
fies (B.6.1). Such a Y is called the orthogonal projection of X on L2(Ω,G,P).

Proof. Take (Yn) such that ‖X − Yn‖2 → ∆. We use the fact that L2(Ω,G,P) is
complete (Theorem B.4.10) and first seek to prove that (Yn) is Cauchy. Using the
parallelogram law (Theorem B.4.20), note that

‖X − Yr‖22 + ‖X − Ys‖22 = 2

∥∥∥∥X − 1

2
(Yr + Ys)

∥∥∥∥2

2

+ 2

∥∥∥∥1

2
(Yr − Ys)

∥∥∥∥2

2

.

The first term on the right-hand side is ≥ 2∆2 by definition of ∆, so taking limits
r, s→ +∞ we have what we need, that is, that (Yn) is indeed Cauchy.

Let Y be the limit of (Yn) in L2(Ω,G,P). Note that by the triangle inequality

∆ ≤ ‖X − Y ‖2 ≤ ‖X − Yn‖2 + ‖Yn − Y ‖2 → ∆,

as n→ +∞. As a result, for any Z ∈ L2(Ω,G,P) and t ∈ R,

‖X − Y − tZ‖22 ≥ ∆2 = ‖X − Y ‖22,

so that, expanding and rearranging, we have

−2t〈Z,X − Y 〉+ t2‖Z‖22 ≥ 0,

which is only possible for every t ∈ R if the first term is 0.
Uniqueness follows from the parallelogram law and the definition of ∆.
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We return to the proof of existence of the conditional expectation. We use the
standard machinery.

Proof of Theorem B.6.1 (i). The previous theorem implies that conditional expec-
tations exist for indicators and simple functions. Now take X ∈ L1(Ω,F ,P) and
write X = X+ −X−, so we can assume X is in fact nonnegative without loss of
generality. Using the staircase function

X(r) =


0, if X = 0
(i− 1)2−r, if (i− 1)2−r < X ≤ i2−r ≤ r
r, if X > r,

we have 0 ≤ X(r) ↑ X . Let Y (r) = E[X(r) | G]. Using an argument similar to
the proof of uniqueness, it follows that U ≥ 0 implies E[U | G] ≥ 0 for a simple
function U . Using linearity (which is immediate from the definition), we then have
Y (r) ↑ Y := lim supY (r) which is measurable in G. By (MON),

E[Y ;G] = E[X;G], ∀G ∈ G.

That concludes the proof.

Before deriving some properties, we give a few examples.

Example B.6.3. If X ∈ L1(Ω,G,P) then E[X | G] = X almost surely trivially. J

Example B.6.4. If G = {∅,Ω}, then E[X | G] = E[X]. J

Example B.6.5. Let A,B ∈ F with 0 < P[B] < 1. If G = {∅, B,Bc,Ω} and
X = 1A, then

P[A | G] =

{P[A∩B]
P[B] , on ω ∈ B,
P[A∩Bc]
P[Bc] , on ω ∈ Bc.

J

Intuition about the conditional expectation sometimes breaks down.

Example B.6.6. On (Ω,F ,P) = ((0, 1],B(0, 1], λ), let G be the σ-algebra of all
countable and co-countable (i.e., whose complement in (0, 1] is countable) subsets
of (0, 1]. Then P[G] ∈ {0, 1} for all G ∈ G and

E[X;G] = E[E[X];G] = E[X]P[G],

so that E[X | G] = E[X]. Yet, G contains all singletons and we seemingly have
“full information,” which would lead to the wrong guess E[X | G] = X . J
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We show that the conditional expectation behaves similarly to the ordinary
expectation. Below all X and Xis are in L1(Ω,F ,P) and G is a sub σ-algebra of
F .

Lemma B.6.7 (cLIN). If a1, a2 ∈ R, then E[a1X1 + a2X2 | G] = a1E[X1 | G] +
a2E[X2 | G] a.s.

Proof. Use the linearity of expectation and the fact that a linear combination of
random variables in G is also in G.

Lemma B.6.8 (cPOS). If X ≥ 0 then E[X | G] ≥ 0 a.s.

Proof. Let Y = E[X | G] and assume for contradiction that P[Y < 0] > 0. There
is n ≥ 1 such that P[Y < −n−1] > 0. But that implies, for G = {Y < −n−1},

E[X;G] = E[Y ;G] < −n−1P[G] < 0,

a contradiction.

Lemma B.6.9 (cMON). If 0 ≤ Xn ↑ X then E[Xn | G] ↑ E[X | G] a.s.

Proof. Let Yn = E[Xn | G]. By (cLIN) and (cPOS), 0 ≤ Yn ↑. Then letting
Y = lim supYn, by (MON),

E[X;G] = E[Y ;G],

for all G ∈ G.

Lemma B.6.10 (cFATOU). If Xn ≥ 0 then E[lim inf Xn | G] ≤ lim inf E[Xn | G]
a.s.

Proof. Note that, for n ≥ m,

Xn ≥ Zm := inf
k≥m

Xk ↑∈ G,

so that infn≥m E[Xn | G] ≥ E[Zm | G]. Applying (cMON)

E[limZm | G] = limE[Zm | G] ≤ lim inf
n≥m

E[Xn | G].

Lemma B.6.11 (cDOM). If Xn ≤ V ∈ L1(Ω,F ,P) and Xn → X a.s., then

E[Xn | G]→ E[X | G] a.s.
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Proof. Applying (cFATOU) to Wn := 2V − |Xn −X| ≥ 0,

E[2V | G] = E[lim inf
n

Wn | G]

≤ lim inf
n

E[Wn | G]

= E[2V | G]− lim inf
n

E[|Xn −X| | G],

so we must have
lim inf

n
E[|Xn −X| | G] = 0.

Now use that |E[Xn−X | G]| ≤ E[|Xn−X| | G] (which follows from (cPOS)).

Lemma B.6.12 (cJENSEN). If f is convex and E[|f(X)|] < +∞ then

f(E[X | G]) ≤ E[f(X) | G].

In addition, we highlight (without proof) the following important properties of
the conditional expectation.

Lemma B.6.13 (Taking out what is known). If X ∈ L1(Ω,F ,P) and Z ∈ mG is
bounded or if X is bounded and Z ∈ L1(Ω,G,P), then E[ZX | G] = Z E[X | G].
This is also true if X,Z ≥ 0, E[X] < +∞ and E[ZX] < +∞, or X ∈
L2(Ω,F ,P) and Z ∈ L2(Ω,G,P).

Lemma B.6.14 (Role of independence). If X ∈ L1(Ω,F ,P) is independent of
H then E[X |H] = E[X]. In fact, if H is independent of σ(σ(X),G), then
E[X |σ(G,H)] = E[X | G].

Lemma B.6.15 (Conditioning on an independent random variable). Suppose X,Y
are independent. Let φ be a function with E|φ(X,Y )| < +∞ and let g(x) =
E(φ(x, Y )). Then,

E(φ(X,Y )|X) = g(X).

tower

property
Lemma B.6.16 (Tower property). IfH ⊆ G is a σ-algebra and X ∈ L1(Ω,F ,P)

E[E[X | G] |H] = E[E[X |H] | G] = E[X |H].

That is, the “smallest σ-algebra wins.”

An important special case of the latter, also known as the law of total probability
or the law of total expectation, is E[E[X | G]] = E[X].

One last useful property:

Lemma B.6.17. Let (Ω,F ,P) be a probability space. If Y1 = Y2 a.s. on B ∈ F
then E[Y1 | F ] = E[Y2 | F ] a.s. on B.
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B.7 Filtered spaces

Finally we define stochastic processes. Let E be a set and let E be a σ-algebra
defined over E.

Definition B.7.1. A stochastic process (or process) is a collection {Xt}t∈T of process
(E, E)-valued random variables on a probability space (Ω,F ,P), where T is an
arbitrary index set.

Here is a typical example.

Example B.7.2. When T = Z+ (or T = N or T = Z) we have a discrete-
time process, in which case we often write the process as a sequence (Xt)t≥0. For
instance:

• X0, X1, X2, . . . i.i.d. random variables;

• (St)t≥0 where St =
∑

i≤tXi with Xi as above.

We let
Ft = σ(X0, X1, . . . , Xt),

which can be thought of as “the information known up to time t.” For a fixed
ω ∈ Ω, (Xt(ω) : t ∈ T ) is called a sample path. J

sample path

Definition B.7.3. A random walk on Rd is a process of the form:

St = S0 +

t∑
i=1

Xi, t ≥ 1

where theXis are i.i.d. inRd, independent of S0. The caseXi uniform in {−1,+1}
is called simple random walk on Z.

Filtered spaces provide a formal framework for time-indexed processes. We
restrict ourselves to discrete time. (We will not discuss continuous-time processes
in this book.)

Definition B.7.4. A filtered space is a tuple (Ω,F , (Ft)t∈Z+ ,P) where:

• (Ω,F ,P) is a probability space;

• (Ft)t∈Z+ is a filtration, that is,
filtration

F0 ⊆ F1 ⊆ · · · ⊆ F∞ := σ(∪tFt) ⊆ F .

where each Fi is a σ-algebra.
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Definition B.7.5. Fix (Ω,F , (Ft)t∈Z+ ,P). A process (Wt)t≥0 is adapted if Wt ∈ adaptedFt for all t.

Intuitively, in the previous definition, the value of Wt is “known at time t.”

Definition B.7.6. A process (Ct)t≥1 is predictable if Ct ∈ Ft−1 for all t ≥ 1.
predictable

Example B.7.7. Continuing Example B.7.2. The collection (Ft)t≥0 forms a fil-
tration. The process (St)t≥0 is adapted. On the other hand, the process Ct =
1{St−1 ≤ k} is predictable. J
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ration–exploitation tradeoff using variance estimates in multi-armed
bandits. Theoretical Computer Science, 410(19):1876–1902, April
2009.

[AN04] K. B. Athreya and P. E. Ney. Branching processes. Dover Pub-
lications, Inc., Mineola, NY, 2004. Reprint of the 1972 original
[Springer, New York; MR0373040].

[ANP05] Dimitris Achlioptas, Assaf Naor, and Yuval Peres. Rigorous lo-
cation of phase transitions in hard optimization problems. Nature,
435:759–764, 2005.

[AS11] N. Alon and J.H. Spencer. The Probabilistic Method. Wiley Series
in Discrete Mathematics and Optimization. Wiley, 2011.

[AS15] Emmanuel Abbe and Colin Sandon. Community detection in gen-
eral stochastic block models: Fundamental limits and efficient algo-
rithms for recovery. In Venkatesan Guruswami, editor, IEEE 56th
Annual Symposium on Foundations of Computer Science, FOCS
2015, Berkeley, CA, USA, 17-20 October, 2015, pages 670–688.
IEEE Computer Society, 2015.

[Axl15] Sheldon Axler. Linear algebra done right. Undergraduate Texts in
Mathematics. Springer, Cham, third edition, 2015.

[AZ18] Martin Aigner and Günter M. Ziegler. Proofs from The Book.
Springer, Berlin, sixth edition, 2018. See corrected reprint of the
1998 original [ MR1723092], Including illustrations by Karl H. Hof-
mann.

531



[Azu67] Kazuoki Azuma. Weighted sums of certain dependent random vari-
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[Fel71] William Feller. An introduction to probability theory and its ap-
plications. Vol. II. Second edition. John Wiley & Sons, Inc., New
York-London-Sydney, 1971.
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Bounded Stochastic Bandits and Beyond. In Proceedings of the 24th
Annual Conference on Learning Theory, pages 359–376. JMLR
Workshop and Conference Proceedings, December 2011. ISSN:
1938-7228.

[GCS+14] Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson,
Aki Vehtari, and Donald B. Rubin. Bayesian data analysis. Texts in
Statistical Science Series. CRC Press, Boca Raton, FL, third edition,
2014.

[Gil59] E. N. Gilbert. Random graphs. Ann. Math. Statist., 30:1141–1144,
1959.

[GL06] Dani Gamerman and Hedibert Freitas Lopes. Markov chain Monte
Carlo. Texts in Statistical Science Series. Chapman & Hall/CRC,
Boca Raton, FL, second edition, 2006. Stochastic simulation for
Bayesian inference.

[Gri97] Geoffrey Grimmett. Percolation and disordered systems. In Lec-
tures on probability theory and statistics (Saint-Flour, 1996), vol-
ume 1665 of Lecture Notes in Math., pages 153–300. Springer,
Berlin, 1997.

[Gri10a] Geoffrey Grimmett. Probability on graphs, volume 1 of Institute
of Mathematical Statistics Textbooks. Cambridge University Press,
Cambridge, 2010. Random processes on graphs and lattices.

[Gri10b] G.R. Grimmett. Percolation. Grundlehren der mathematischen Wis-
senschaften. Springer, 2010.

[Gri75] David Griffeath. A maximal coupling for Markov chains. Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete, 31:95–106, 1974/75.

539



[GS20] Geoffrey R. Grimmett and David R. Stirzaker. Probability and ran-
dom processes. Oxford University Press, Oxford, 2020. Fourth edi-
tion [of 0667520].

[Ham57] J. M. Hammersley. Percolation processes. II. The connective con-
stant. Proc. Cambridge Philos. Soc., 53:642–645, 1957.

[Har] Nicholas Harvey. Lecture notes for CPSC 536N: Randomized Al-
gorithms. http://www.cs.ubc.ca/˜nickhar/W12/.

[Har60] T. E. Harris. A lower bound for the critical probability in a certain
percolation process. Proc. Cambridge Philos. Soc., 56:13–20, 1960.

[Har63] Theodore E. Harris. The theory of branching processes. Die
Grundlehren der mathematischen Wissenschaften, Band 119.
Springer-Verlag, Berlin; Prentice Hall, Inc., Englewood Cliffs, N.J.,
1963.

[Haz16] Elad Hazan. Introduction to Online Convex Optimization. Founda-
tions and Trends® in Optimization, 2(3-4):157–325, August 2016.
Publisher: Now Publishers, Inc.

[HJ13] Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge
University Press, Cambridge, second edition, 2013.

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs
and their applications. Bull. Amer. Math. Soc. (N.S.), 43(4):439–561
(electronic), 2006.

[HMRAR98] M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, and B. Reed, ed-
itors. Probabilistic methods for algorithmic discrete mathemat-
ics, volume 16 of Algorithms and Combinatorics. Springer-Verlag,
Berlin, 1998.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded
random variables. J. Amer. Statist. Assoc., 58:13–30, 1963.

[HS07] Thomas P. Hayes and Alistair Sinclair. A general lower bound
for mixing of single-site dynamics on graphs. Ann. Appl. Probab.,
17(3):931–952, 2007.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In Jeffrey Scott Vit-
ter, editor, STOC, pages 604–613. ACM, 1998.

540

http://www.cs.ubc.ca/~nickhar/W12/


[Jan90] Svante Janson. Poisson approximation for large deviations. Random
Structures Algorithms, 1(2):221–229, 1990.

[JH01] Galin L. Jones and James P. Hobert. Honest exploration of in-
tractable probability distributions via Markov chain Monte Carlo.
Statist. Sci., 16(4):312–334, 2001.

[JL84] William B. Johnson and Joram Lindenstrauss. Extensions of Lip-
schitz mappings into a Hilbert space. In Conference in modern
analysis and probability (New Haven, Conn., 1982), volume 26 of
Contemp. Math., pages 189–206. Amer. Math. Soc., Providence, RI,
1984.

[JLR11] S. Janson, T. Luczak, and A. Rucinski. Random Graphs. Wiley
Series in Discrete Mathematics and Optimization. Wiley, 2011.

[JS89] Mark Jerrum and Alistair Sinclair. Approximating the permanent.
SIAM J. Comput., 18(6):1149–1178, 1989.

[Kan86] Masahiko Kanai. Rough isometries and the parabolicity of Rieman-
nian manifolds. J. Math. Soc. Japan, 38(2):227–238, 1986.

[Kar90] Richard M. Karp. The transitive closure of a random digraph. Ran-
dom Structures Algorithms, 1(1):73–93, 1990.

[Kes80] Harry Kesten. The critical probability of bond percolation on the
square lattice equals 1

2 . Comm. Math. Phys., 74(1):41–59, 1980.

[Kes82] Harry Kesten. Percolation theory for mathematicians, volume 2 of
Progress in Probability and Statistics. Birkhäuser, Boston, Mass.,
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[Pet] Gábor Pete. Probability and geometry on groups. Lecture notes for
a graduate course. http://www.math.bme.hu/˜gabor/PGG.html.
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Kirchhoff’s node law, 193
Kirchhoff’s resistance formula, 218
Nash-Williams inequality, 206, 229
Ohm’s law, 193, 219
parallel law, 196
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210
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Gibbs random fields, 19
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definition, 21
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graph Laplacian
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degree, 335
eigenvalues, 334
Fiedler vector, 334
network, 339
normalized, 340
quadratic form, 333

graphs
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b-ary tree T̂`b, 5, 290
n-clique, 382
adjacency matrix, see matrices
bridge, 218
Cayley’s formula, see trees
chromatic number, 8, 158
clique, 3, 48
clique number, 48, 318
coloring, 8
complete graph Kn, 5
cutset, 58, 206
cycle Cn, 5, 285
definitions, 2–9
degree, 78
diameter, 368
directed, 8, 9
expander, see expander graphs
flow, see flows
graph distance, 4
hypercube Zn2 , 5, 286
incidence matrix, see matrices
independent set, 8, 34
infinite, 5
infinite binary tree, 451
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Laplacian, see graph Laplacian
matching, 8
matrix representation, see matrices
multigraph, 2
network, see networks
oriented incidence matrix, see ma-

trices
perfect matching, 8
spanning arborescence, 222
torus Ldn, 5
tree, see trees
Turán graphs, 35

Green function, see Markov chains

Hölder’s inequality, 515
Hamming distance, 178
harmonic functions, see Markov chains
Harper’s vertex isoperimetric theorem,

158
Harris’ inequality, 320, 325
Harris’ theorem, see percolation
hitting time, see stopping time
Hoeffding’s inequality, see tail bounds
Hoeffding’s lemma, see tail bounds, 146
Holley’s inequality, 266, 321, 325

increasing event, see posets
indicator trick, 36
inherited property, 421
Ising model

boundary conditions, 260
complete graph, 401
definition, 19
FKG, 265
Glauber dynamics, 286, 297, 400
magnetization, 401
random cluster, 451
trees, 451, 499

isoperimetric inequality, 381

Janson’s inequality, 271, 325

Jensen’s inequality, 518
Johnson-Lindenstrauss

distributional lemma, 93
lemma, 93–96

Kesten’s theorem, see percolation
knapsack problem, 79
Kolmogorov’s maximal inequality, 141
Kullback-Leibler divergence, 68

Laplacian
graphs, see graph Laplacian
Markov chains, 183, 204, 323
networks, see graph Laplacian

large deviations, 69, 120
law of total probability, see conditional

expectation
laws of large numbers, 32–33
Lipschitz

condition, 178–180
process, 88

Lyapounov function, see Markov chains

Markov chain Monte Carlo, 370
Markov chain tree theorem, 231
Markov chains

average occupation time, 186
birth-death, 194, 228, 376
bottleneck ratio, see networks
Chapman-Kolmogorov, 10
commute time, 214
commute time identity, 214, 230, 290
construction, 10
cover time, 124
decomposition theorem, 127
definitions, 9–17
Doeblin’s condition, 283, 322
escape probability, 197, 205
examples, 9–16
exit law, 186
exit probability, 186
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first return time, 124
first visit time, 124, 181
Green function, 129, 186, 197
harmonic functions, 181
hitting times, 313
irreducible set, 127
lower bound, 285
Lyapounov function, 190, 294
Markov property, 10
martingales, 134
Matthews’ cover time bounds, 132,

230
mean exit time, 186
Metropolis algorithm, 15
mixing time, see mixing times
positive recurrence, 127
potential theory, 185
recurrence, 199, 209–214
recurrent state, 127
relaxation time, 358
reversibility, 181, 365
splitting, see coupling
stationary measure, 128
stochastic domination, 260, 267
stochastic monotonicity, 258
strong Markov property, 124
uniform geometric ergodicity, 284
Varopoulos-Carne bound, 365, 414

Markov’s inequality, see tail bounds, 64
martingales, 456

Azuma-Hoeffding inequality, see tail
bounds

convergence theorem, 142, 417
definition, 133
Doob martingale, 135, 147, 158
Doob’s submartingale inequality, 141,

146
edge exposure martingale, 159
exposure martingale, 158
hitting time, 230

Markov chain, see Markov chains
martingale difference, 147
optional stopping theorem, 137
orthogonality of increments, 143, 148
stopped process, 136
submartingale, 133
supermartingale, 133
vertex exposure martingale, 158

matrices
2-norm, 88
adjacency, 2, 332
block, 328
diagonal, 328
graph Laplacian, see graph Lapla-

cian
incidence, 3
oriented incidence, 9
orthogonal, 328
spectral norm, 88, 179, 341
spectral radius, 410, 425
spectrum, 410
stochastic matrix, 9
symmetric, 328

maximal Azuma-Hoeffding inequality, see
tail bounds

maximum principle, 14, 24, 183, 229
method of bounded differences, see tail

bounds
method of moments, 119, 120
method of random paths, 216, 229
Metropolis algorithm, see Markov chains
minimum bisection problem, 347
Minkowski’s inequality, 516
mixing times

b-ary tree, 290, 391
cutoff, 289, 364, 411
cycle, 322, 359, 392
definition, 17
diameter, 369
diameter bound, 369
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distinguishing statistic, 289, 322
hypercube, 362, 393, 413
lower bound, 284, 287, 297, 322,

368, 369
random walk on cycle, 285
random walk on hypercube, 286
separation distance, 357
upper bound, 297

moment-generating functions
χ2, 73
definition, 28
Gaussian, 65
Poisson, 67
Rademacher, 65

moments, 28
exponential moment, see moment-

generating functions
multi-armed bandits, see bandits
multitype branching processes

definitions, 423–425
Kesten-Stigum bound, 455
mean matrix, 424
nonsingular case, 424

negative associations, 219
networks

cut, 382
definition, 8
edge boundary, 381
edge expansion, 382
vertex boundary, 394

no free lunch, see binary classification
notation, ix–xi

operator
compact, 376
norm, 377
spectral radius, 377

optimal transport, 323

optional stopping theorem, see martin-
gales

Pólya’s theorem, see random walk
Pólya’s urn, 142
packing number, 87
Pajor’s lemma, 114
parity functions, 363
Parseval’s identity, 352
pattern matching, 155
peeling method, see slicing method
percolation

contour lemma, 42
critical exponents, 441
critical value, 40, 55, 272, 423, 438
dual lattice, 41, 273
Galton-Watson tree, 422
Harris’ theorem, 273, 325
Kesten’s theorem, 273, 325
on L2, 40, 272
on Ld, 254
on a graph, 236
on infinite trees, 55, 144
percolation function, 40, 55, 254,

272, 438
RSW lemma, 273, 322, 325

permutations
Erdős-Szekeres Theorem, 39
longest increasing subsequence, 38
random, 38

Perron-Frobenius theory
Perron vector, 426
theorem, 12, 426, 456

Poincaré inequality, 152, 385, 386, 406
Poisson approximation, 245, 269
Poisson equation, 187
Poisson trials, 69
posets

decreasing event, 264
definition, 253
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increasing event, 254, 320
positive associations

definition, 263
strong, 321

positively correlated events, 264
probabilistic method, 33–36, 93, 103, 112
probability generating function, 418
probability spaces

definitions, 503–506
distribution function, 506
expectation, 513–519
filtered spaces, 122, 528
Fubini’s theorem, 519
independence, 510–513
process, 528
random variables, 506–510

pseudo-regret, 171

random graphs
Erdős-Rényi, see Erdős-Rényi graph

model
preferential attachment, 19, 163
stochastic blockmodel, 345

random projection, 93
random target lemma, 184
random variables

χ2, 73, 95
Bernoulli, 68, 235, 244, 250, 307
binomial, 68, 287, 320
Gaussian, 30, 70, 73, 93
geometric, 32, 284
Poisson, 67, 241, 244, 250, 252, 420,

496
Rademacher, 65, 70
uncorrelated, 32, 117, 143
uniform, 31

random walk
b-ary tree, 290
asymmetric random walk on Z, 380
biased random walk on Z, 139, 236

cycle, 285, 359
hypercube, 286, 362
lazy, 16, 238, 284
loop erasure, 220
on a graph, 10–15
on a network, 20
Pólya’s theorem, 215
reflection principle, 125
simple random walk on Z, 11, 127,

138, 183, 211, 365, 528
simple random walk on Zd, 238
simple random walk on a graph, 20
tree, 239
Wald’s identities, 137–141

Rayleigh quotient, 330, 336, 384
reconstruction problem

definition, 451
MAP estimator, 453
solvability, 452

reflection principle, see random walk
relaxation times

cycle, 361
hypercube, 364

restricted isometry property, 97, 101–102
rough embedding, 210, 211
rough equivalence, 211, 230
rough isometry, 230
RSW lemma, see percolation

Sauer’s lemma, 108, 110, 112
second moment method, 45, 46, 48, 50,

52, 54, 57, 58, 60
set balancing, 66
shattering, 108
simple random walk on a graph, see ran-

dom walk
slicing method, 176
span, 331
sparse signal recovery, 97
sparsity, 96
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spectral clustering, 349
spectral gap, 358
spectral theorem, 328, 340
Spitzer’s combinatorial lemma, 436
Stirling’s formula, see factorials
stochastic bandits, see bandits
stochastic domination

binomial, 470
coupling, see coupling
Markov chains, 258
monotonicity, 320
posets, 254
real random variables, 250

stochastic processes
adapted, 529
definition, 528
filtration, 528
predictable, 529
sample path, 528
supremum, 85–93

stopping time
cover time, see Markov chains
definition, 123
first return time, see Markov chains
first visit time, see Markov chains
hitting time, 123
strong Markov property, see Markov

chains
Strassen’s theorem, 325
sub-exponential variable, see tail bounds
sub-Gaussian increments, 91
sub-Gaussian variable, see tail bounds,

146
submodularity, 325
symmetrization, 71, 106

tail bounds
Azuma-Hoeffding inequality, 145,

158, 159, 227, 380
Bernstein’s inequality, 78, 493

Bernstein’s inequality for bounded
variables, 77

Chebyshev’s inequality, 29, 45, 247,
481

Chernoff bound, 69, 155, 365
Chernoff-Cramér bound, 64, 75, 85
definitions, 28–29
general Bernstein inequality, 76
general Hoeffding inequality, 70, 89
Hoeffding’s inequality, 82, 112
Hoeffding’s inequality for bounded

variables, 71
Hoeffding’s lemma, 72
Markov’s inequality, 29, 36, 104, 141,

146
McDiarmid’s inequality, 153, 159,

164, 178, 179
method of bounded differences, 153,

156, 163
Paley-Zygmund inequality, 46
sub-exponential, 74
sub-Gaussian, 70, 85, 107
Talagrand’s inequality, 179

Talagrand’s inequality, see tail bounds
threshold phenomena, 37, 41, 47
tilting, 73
total variation distance, 16
tower property, see conditional expecta-

tion
trees

3–1 tree, 61
Cayley’s formula, 5, 26, 54, 499
characterization, 4–5
definition, 4
infinite, 55, 438
uniform spanning tree, 218–226

type, see recurrence

uniform spanning trees, see trees
union bound, 36, 116
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Varopoulos-Carne bound, see Markov chains
VC dimension, 108, 111

Wald’s identities, see random walk
Wasserstein distance, 323
Weyl’s inequality, 342
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