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Review: Total variation (TV) distance



A lower bound [taken from Rigollet’s notes]

Let v be a sigma finite measure satisfying IPy <« v and IP; < v. For example
we can take v = [Py + IP;. It follows from the Radon-Nikodym theorem [Bil95]
that both IPy and IP; admit probability densities with respect to v. We denote
them by py and p; respectively. For any function f, we write for simplicity

[ £= [ r@wia)

Lemma 4.3 (Neyman-Pearson). Let Py and IP; be two probability measures.
Then for any test v, it holds

Po(p = 1) + P1 (¢ /mln(Po,pl

Moreover, equality holds for the Likelihood Ratio test ¢* = I(p1 > po).
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A lower bound cont’'d [taken from Rigollet’s notes]

Proof. Observe first that

Po(y* =1) +P1(y* =0) /z/: =1 0+/¢ '

[t
P1>Po 1 <po

—/ mln(po,p1)+/ min(po, p1)
P1>Po

Pr1<po
[ i
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A lower bound cont’'d [taken from Rigollet’s notes]

Next for any test 1, define its rejection region R = {1y = 1}. Let R* = {p; >
po} denote the rejection region of the likelihood ratio test 1*. It holds

Po(yp =1) +P1(¢p = 0) = 1 + Po(R) — IP1(R)

=1+/po—p1

R

=1+/ po—p1+/ Do — P1
RNR* RN(R*)e

=1—/ |po—p1|—|—/ [P0 — p1|
RNR* RN(R*)e
—1+4 / po — p|[I(R N (R*)) — I(R N R*)]

The above quantity is clearly minimized for R = R*. 1
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Aside: total variation distance [taken from Rigollet’s notes]

Definition-Proposition 4.4. The total variation distance between two prob-
ability measures Py and IP1 on a measurable space (X, .A) is defined by

TV(Po, Py) = o Po(R) — IP1(R)] (4)
— Zgg)/}%po —pl‘ (47)
—5 [ po-nil (i)
=1 — / min(po, p1) (i)
=1—inf [Po(y = 1) + P1(y = 0)] (v)

where the infimum above is taken over all tests.
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Aside: total variation distance [taken from Rigollet’s notes]

Proof. Clearly (i) = (i) and the Neyman-Pearson Lemma gives (iv) = (v).
Moreover, by identifying a test ¢ to its rejection region, it is not hard to see
that (i) = (v). Therefore it remains only to show that (iii) is equal to any
of the other expressions. Hereafter, we show that (ii¢) = (iv). To that end,
observe that

/|p0—P1|=/ pl—po+/ Po — D1
P12>DPo P1<Po
= / D1 +/ Do — /min(po,pl)
P1>Po p1<Po
=1—/ p1+1—/ Po—/min(po,Pl)
p1<Po P1>Do

=2- 2/min(p0,p1)
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Kullback-Liebler (KL) divergence



Kullback—Lelibler divergence (from Wikipedia)

For discrete probability distributions P and () defined on the same probability space, X,
the relative entropy from Q to P is defined*! to be

(P10~ peo s 22,

which is equivalent to

Dki(P || Q) =—)  P(x) (QE3>

rzeX




Kullback—Leibler divergence cont’'d (from Wikipedia)

More generally, if P and () are probability measures over a set X, and P is absolutely
continuous with respect to (), then the relative entropy from @) to P is defined as

Dy, (P || Q)Z/Xlog(jg)dP,

P
where d_ is the Radon—Nikodym derivative of P with respect to (), and provided the

expression on the right-hand side exists. Equivalently (by the chain rule), this can be
written as

d
Diw (P | Q)—/Xlog( g) )

which is the entropy of () relative to P. Continuing in this case, if y is any measure on X

d
for whichp = d_ and q = d_Q exist (meaning that p and q are absolutely continuous
H H
with respect to ), then the relative entropy from ) to P is given as

DgL(P || Q) = / p10g<q) dp.



Kullback—Leibler divergence cont’'d (from Wikipedia)

¢ Relative entropy is always non-negative,
DL (P || Q) > 0,

a result known as Gibbs' inequality, with Dkr, (P || @) equals zero if and only if

P = () almost everywhere. The entropy H(P) thus sets a minimum value for the
cross-entropy H( P, @), the expected number of bits required when using a code
based on ( rather than P; and the Kullback—Leibler divergence therefore represents
the expected number of extra bits that must be transmitted to identify a value « drawn
from X, if a code is used corresponding to the probability distribution @), rather than the
"true" distribution P.

The result can alternatively be proved using Jensen's inequality, the log sum inequality, or
the fact that the Kullback-Leibler divergence is a form of Bregman divergence. Below we
give a proof based on Jensen's inequality:

Because log is a concave function, we have that:
q; q;
Y pilog— <log) pi— =1log) ¢ <0
; bi . Di ;

Where the first inequality is due to Jensen's inequality, and the last equality is due to the
same reason given in the above proof.



Product measures

3. If IP and Q are product measures, i.e.,

PzéIPi and Qzé@i
i=1 i=1

then .
KL(IP,Q) = Z KL(IP;, Q;) .
i=1



Product measures cont'd




Example 4.7

Example 4.7. For any § € IRY, let P denote the distribution of Y ~
N(0,0%1;). Then

9’ _ 1003

202

M&

L(Py, Pyr) =

=1

The proof is left as an exercise (see Problem 4.1).



Pinsker

The Kullback-Leibler divergence is easier to manipulate than the total vari-
ation distance but only the latter is related to the minimax probability of error.
Fortunately, these two quantities can be compared using Pinsker’s inequality.
We prove here a slightly weaker version of Pinsker’s inequality that will be
sufficient for our purpose. For a stronger statement, see [Tsy09], Lemma 2.5.

Lemma 4.8 (Pinsker’s inequality.). Let IP and Q be two probability measures
such that IP < Q. Then

TV(P,Q) < /KL(P, Q).



Pinsker cont'd

Proof. Note that

KL(P,Q / plog (
pq>0

I3

)

)
plog =
pq>0 b
plog [ S 1
pq>0 p
> 2 L = 1} (by Jensen)
pq>0 D

—2— 2/\/—



Pinsker cont'd

Next, note that

(/x/ﬁl)2 = (/\/maX(p,q)min( ,Q))2

< / max(p, q / min(p, q (by Cauchy-Schwarz)

2—/m1n /mln P, q

(1+TV(P,Q))(1 - TV(P,Q))
_1—TV(IP Q)?

The two displays yield

KL(P,Q) > 2—-2/1-TV(P,Q)? > TV(PP,Q)?,

where we used the fact that 0 < TV(IP,Q) < 1 and v/1—2 < 1—z/2 for
x € [0,1]. ]



Hellinger distance



Squared Hellinger distance

A third distance that plays an important role in statistical problems is the squared Hellinger
distance, given by

2
H'PIQ 2=f(\/1?(x - \/q(x)) v(dx). (15.9)

It is simply the L?(v)-norm between the square-root density functions, and an easy calcula-
tion shows that it takes values in the interval [0, 2]. When the base measure is clear from the
context, we use the notation H*(p || g) and H*(P || Q) interchangeably.

Like the KL divergence, the Hellinger distance can also be used to upper bound the TV

distance:
a N\
Lemma 15.3 (Le Cam’s inequality) For all distributions P and Q,
H*(P|
IP - Qv < HP Q) \/ - (15.10)
\ 4

We work through the proof of this inequality in Exercise 15.5.



Squared Hellinger distance cont'd

Although the squared Hellinger distance does not decouple in quite such a simple way, it
does have the following property:

n

%HZ([PM Q") =1- l—[( = %HZ(IPi [ Qi))- (15.12a)

i=1
Thus, in the i.1.d. case, we have
TP Q™) = 1-(1- (P, Q)" < 1nHA (P || Qy). (15.12b)

See Exercises 15.3 and 15.7 for verifications of these and related properties, which play an
important role in the sequel.



